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■ Introduction

Neurophysiological signals are mostly recorded as potentials, voltages, currents and
electromagnetic field strengths generated by nerves and muscles. They carry informa-
tion needed to understand the complex mechanisms underlying the behavior of the liv-
ing system. Nevertheless, such information is rarely available directly, but has to be ex-
tracted from the raw signal(s). The whole process of extraction, from a sensor to the rel-
evant information sought, can be considered as a state-of-the-art fermentation and dis-
tillation process aiming to extract the desired properties while preserving their unique
characteristics. Usually, this line of action encompasses several stages which are gener-
ally defined as signal acquisition and processing. As presented in this book, modern
neuroscience heavily relies on a number of different methods extracted from other sci-
ences.

The overall outcome may be a single number, e.g., temperature, or it can be a more
complicated result, e.g., the electromyogram (EMG) from contracting muscle(s) (cf.
Chapters 26–28, 31). Anyway, in most cases, the result of the analysis contains only part
of the information necessary to reconstruct the complete input signal. In this sense, the
complete process can be thought of as a nonreversible signal transformation where the
output signal is the desired result uniquely derived from the first. In order to succeed,
knowledge of the specific properties of the signals as well as adequate signal processing
and system engineering knowledge are critical for all phases of the process. It is rather
unfeasible to recommend a single method of acquiring and processing biological sig-
nals. There are even several standard types of procedures for acquisition and processing
of the same signal type. However, although each researcher could select his own ap-
proach for data recording and processing, some general guidelines should be followed.

Therefore, the general aim of this chapter is not to cover the vast variety of acquisi-
tion and processing approaches used in modern neuroscience research. Rather, it is to
stress some of the general aspects associated with data acquisition and processing of
signals. Theoretical aspects will be dealt with whenever needed to better explain prac-
tical issues, referring the reader to the cited literature when a deeper insight into the var-
ious subjects is sought. In order to assist a step-by-step implementation of particular
neuroscience techniques presented in this book, we have organized this chapter as in-
dependent sections, giving each researcher the freedom to roam through it according to
the actual goals of his study and his imagination.
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Outline

The conventional path of digital signal processing from its source to the final presenta-
tion is depicted in Fig.1.

Most measurements begin with the transducer, a device that converts a measurable
physical quantity, such as pressure, temperature or joint rotation, into an electrical sig-
nal. Transducers are available for a wide range of measurements and different quanti-
ties, and thus come in a variety of shapes, sizes and specifications.

Signal conditioning transforms a transducer’s output signal so that an analog-to-dig-
ital converter can sample the signal. On the hardware level, signal conditioning incor-
porates amplification, filtering, differential applications, isolations, sample and hold,
current-to-voltage conversion, linearization and more. In this chapter, amplification
and filtering will be dealt with in some detail.

The output of the signal-conditioning device is connected to an analog-to-digital
converter (ADC) input. The ADC converts the analog voltage to a digital signal that is
transferred to the computer for processing, graphing and storage.

The generalized instrumentation system usually includes additional signal process-
ing. Traditionally, this additional processing was handled either by using relatively sim-
ple digital-electronic circuits or, if a significant amount of processing was required, by
connecting the instrument to the computer. The use of microcomputers generally re-
sults in fewer integrated-circuit packages. The most useful application of microcomput-
ers for bio-medical instrumentation involves controller functions such as the capability
for self-calibration and error detection, and automatic sequencing of events. All these
functions enhance the reliability of the computerized biomedical instrument.

As mentioned above, the electronic devices used for acquiring a biological signal per-
form some initial processing such as filtering, or perform transformations of the signal
(i.e., Fourier transformation) in order to estimate various signal parameters. When
processing results are not required immediately following signal acquisition, off-line
processing or post-processing methods may be used. By contrast, when results are need-
ed immediately after signal acquisition, real-time or on-line processing methods must
be applied. Depending on the signal-frequency bandwidth and application, the required
digital sampling rate determines the type of hardware that can be applied for digital sig-
nal processing. In real-time processing applications, the computations must be per-
formed on a continuous basis to keep pace with the sampled input signal. In post-
processing applications, the input signal is collected and stored ahead of time, and the
computational rate is driven primarily by the desire to get results quickly. In both cases,
computational speed is desirable. However, in the real-time case it is absolutely manda-
tory to accomplish the task at all. In conclusion, off-line processing can be performed
on general-purpose computers and real-time processing requires special dedicated ma-
chines or processors.

Fig. 1. General signal processing chart from the signal source to the final presentation.
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In order to reveal important attributes of a signal in a more immediately interactive
manner, results from the signal processing operations could be displayed. One or more
displays allow the user to actively participate in the measurement itself. Display devices
come in a wide variety depending on the use of the display. No matter what kind of dis-
play is used, its purpose is to convey information in a timely and non-permanent way
with sufficiently high quality of presentation, so that the user can extract the informa-
tion needed efficiently and accurately.

Frequently, there is a requirement for archiving either experimental or processed da-
ta. This can be done by various techniques and devices and is called data storage, or
backup if it is a more permanent archive.

Part 1: Signal and Noise

What is a Signal?

As depicted in Fig.1, the acquisition process starts with a signal. In general, signals are
physicochemical phenomena that convey information, or they can be described as
quantities that reveal the behavior of a system. As such they possess certain character-
istic properties that require appropriate processing methods.

Two main types of signals are distinguished: continuous (analog) or discrete. Contin-
uous signals are defined over a continuous range of a particular variable (usually time),
while discrete signals are defined at discrete instants. Most of the signals of interest in
neuroscience research are continuous, but some are discrete. In processing, continuous
signals are represented as x (t), where t is time (in units of seconds), as shown in Fig.2a.
The units of x depend on what is being described; examples would be volts, amperes, or
– often in signal processing – unspecified units. Discrete signals are designated by series
of discrete numbers: x (k), where , as shown in Fig.2b.

Another way to classify signals is as deterministic or random signals. Deterministic
signals are those that can be described by explicit mathematical relationships. In con-
trast, random signals cannot be exactly expressed in that way, which is inherent in their
nature. Although it might be possible to determine a mathematical relationship, we may
not have all the information to describe it by an explicit equation. Random signals can
be described only in terms of probabilities and statistical measures. Neurobiological
signals are usually extracted from living organisms and contain various degrees of ran-
domness. Randomness appears in neurobiological signals in two major ways: the source
itself may be stochastic, or the measurement system introduces external, additive or
multiplicative, noise to the signal, often because the measurement device has to be de-
signed so as not to damage the biological system.

Measurements of any kind of signal can be classified as static or dynamic. Static
measurements assume that the input is a fixed value, not changing in time: x(t)=const.
Dynamic measurements assume that the value of the input fluctuates with time, so that
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Fig. 2. Examples of a) a continu-
ous (analog) and b) a discrete 
signal.
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the measurement depends on the exact time at which it is made, or the input can be rep-
resented mathematically as a function of time x(t). The physical value represented by
the function can be a scalar, such as pressure or temperature, or a vector such as force
or velocity.

Noise

Noise is present in all signal sources and in all measuring systems. It is unavoidable in
any electrical signal and affects the useful information that can be derived. Noise is cru-
cially important when processing the low-amplitude signals which neuro-biological sig-
nals in fact are. Minimizing degradation of the desired signal by noise is of main con-
cern in signal processing. There are no criteria for what constitutes acceptable signal
amplitude or an acceptable noise level. The quality of a signal is determined by the sim-
ple ratio (S/N) of the amplitude of the desired signal, S, to the amplitude of the added
noise, N. At what level will the signal-to-noise ratio begin to interfere with the analysis
of the results? The answer to this question depends on both the nature of the interfering
noise and the type of analysis to be performed.

A distinction is commonly made between noise of a random nature arising from ba-
sic physical processes and noise caused by interference which may or may not be corre-
lated with the signal being measured. For example, one fundamental source of noise is
the statistical variation in the electron density in a conductor and is present in all resis-
tive elements. A frequent cause of interference noise is the electromagnetic or electro-
static interference arising from the presence of 50 or 60Hz line current. Some signals are
inherently of low amplitude and some environments are unavoidably polluted by noise
sources of large amplitude. Periodic noise or pulse-like events with a pattern similar to
that of the desired signal may prove confusing even when the signal being recorded
tends to be 10 times greater than the amplitude of the noise. Noise that is time-locked
to events under study may seriously degrade results even when it is invisible on the raw
records. It interferes particularly with signal analysis by averaging (see below) or other
statistical methods that are also time-locked to the event. Whenever the noise sources
interact randomly with each other and with the recorded signal, the probability that the
record will include an event large enough to be confused with a real signal increases
with the time of recording.

Frequency Content
of Noise

Generally, the noise content of a signal increases as the signal bandwidth increases, so
that for dynamic signals requiring large bandwidth for adequate resolution, special care
is needed in the design to insure that the measurement system has an optimum noise
performance.

The frequency content of the noise can be determined by spectral analysis (see be-
low), resulting in a spectral density graph as shown in Fig.3. The graph is a typical ex-
ample of many practical measurement systems in that it displays three distinct regions:
a low-frequency region in which the mean square noise varies as 1/f, an intermediate-
frequency region in which the noise spectrum is essentially flat, and a high-frequency
region displaying an increasing noise spectrum. It is generally found that most compo-
nents and systems display a low frequency region in which the noise varies as 1/fn with
n being approximately unity. Typically, an amplifier may exhibit a noise spectrum in
which the 1/f noise is dominant for frequencies less than a few kHz. At intermediate fre-
quencies the noise may be governed by thermal fluctuations in the electron density, giv-
ing rise to Johnson noise, which has a flat spectrum; noise of this type is commonly re-
ferred to as white noise. As the frequency approaches the cut-off frequency of the am-
plifier, other processes come into play and the noise amplitude generally increases.
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Of particular importance for the amplification of low-frequency signals or signals in
which the direct-current (DC) component must be preserved is the 1/f noise. By modu-
lating the input signal so as to convert it to a higher frequency, the amplifier can be used
in a region where the 1/f component is less important. Once the signal has been ampli-
fied to such an extent that the noise generated by subsequent conditioning elements is
no longer significant, the signal can be demodulated and the original, but amplified,
signal can be recovered.

RmsA consistent measure of the noise amplitude is the square root of the time-averaged
(mean), squared value of the amplitude (root mean square or rms value). For a given
waveform x (t), the rms value is defined as (Fig.4c):

By squaring the amplitude as in Fig.4a, all negative amplitudes become positive, so that
the mean value of the amplitude squared is a nonzero quantity as seen in Fig.4b. In sta-
tistical terms, the rms is the standard deviation of the noise as seen in Fig.4c. The rms

Fig. 3. Spectral density typical of a wide-band signal amplifier. Flat part comes from white noise.
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Fig. 4. Process of obtaining the 
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random signal x (t); b) square 
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value is the only amplitude characteristic of a waveform that does not depend on its
shape. Therefore, the rms value is the most useful means to quantify signal amplitudes
in alternate-current (AC) measurements. Although the rms value is a measure of the
noise amplitude, it says nothing about the frequency content.

The rms value can also be computed precisely using data sampled from the original
analog waveform. In this case, samples must be acquired at a rate greater than twice the
highest frequency of the signal (see Sampling Theorem below). The samples are
squared, the squared values are summed over some averaging interval T, the square root
is taken of the sum of squared values, and this value is divided by the number of samples
within T. These operations can be performed either directly on a computer or in digital
signal processing (DSP) hardware. Many instruments use this sampling technique. The
signal-frequency range of this technique is theoretically limited solely by available sam-
pler and ADC rates (see below). Rms meters and measurement devices are available
from several manufacturers.

Quantizing Noise In any process of analog-to-digital conversion (see below), the next step after sampling
is to encode, or quantize, each sample value into a finite number of binary bits. The most
common technique linearly maps a range of possible sample values Vp-p  into a fixed-
size binary word of n bits. This coding requires that each sample be approximated by the
nearest of 2n possible values. The error introduced by this coding technique is a saw-
tooth function. It is common practice to assume that the signal samples excide this error
function so that individual sample errors can be modeled as random noise, called quan-
tizing noise, with a uniform amplitude probability distribution. Using this assumption
the rms value of the quantizing noise is , where Vp-p is the peak-to-
peak full-scale range of the quantizer.

Eliminating Noise The quantification of noise and signal-to-noise ratio are a science in itself; the experi-
mentalist primarily needs methods for recognizing the types of noise often encountered
during specific recording and for minimizing their amplitude and effect. Obviously, the
identification of the noise source will dictate the range of measures that will be effective
and feasible. Here we summarize the most common reasons of low signal-to-noise ra-
tios: electrode design, the first stage of the preamplifier, ground circuits and shielding.
Unnecessary equipment that is not switched off, as well as AC power, are also noise
sources. Interference can usually be reduced and often virtually eliminated by careful
electrostatic and magnetic shielding; however, noise arising from basic physical phe-
nomena usually sets a fundamental limit to the precision with which a given measure-
ment can be performed.

Filtering Whereas filtering (for more details see below) is an excellent way to minimize noise and
enhance the biological component of a noisy signal, it can also distort noise to the point
that it looks entirely physiological. For that reason the raw, unfiltered signal coming
from a preamplifier should be inspected regularly with a high-accuracy display, such as
an oscilloscope with a fast sweep speed. Inspection will reveal whether unphysiological-
ly fast, large noise spikes have been reduced and smoothed into recorded signal. Almost
all noise sources contain a wide range of frequencies in their spectra, which means that
any filter distorts the shape as well as attenuates the amplitude.

Averaging If the noise is uncorrelated with the signal, very significant reductions in the noise con-
tent of repetitive signals can be achieved by using an averaging process. The conditions
and details are dealt with below.

Blanking In certain applications, especially those employing electrical stimulation with a high-
voltage stimulator, relatively huge transients may be superimposed on the signal, caus-

V2ms
2n

p-p
n=V / 2 12
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ing artifacts that often drive amplifiers into saturation. The recorded signal may be cor-
rupted and the valuable data lost. Typical examples would be extracellular recordings of
nerve impulses (cf. Chapter 5) evoked by high-voltage stimulators, stimulus artifacts in
EMG recordings (cf. Chapters 26–28, 31) due to high-voltage stimulation during func-
tional electrical stimulation or currents saturating EMG amplifiers due to magnetic
stimulation. The solution to overcome these problems is either to prevent the stimulus
coupling or to suppress the artifact before it feeds into the AC-coupled amplifier. This is
usually referred to as blanking. Blanking could be realized in various ways, one of the
most often used is to provide a sample-and-hold function early in the signal pathway. In
this case, the input of the amplifier is going to be forced into the halt mode, causing it to
ignore the incoming signals during the period of the transient. The output of the ampli-
fier will at the same time continue to supply the signal equal to the that just preceding
the transient.

Random Number 
Generators

In some cases, random number generators are used to simulate the effect of noise-like
signals and other random phenomena encountered in the physical world of signals.
Such noise is present in electronic equipment and systems under measurement. Its pres-
ence usually limits our ability to communicate over large distances and to detect rela-
tively weak signals. By generating such noise on a computer, we are able to study its ef-
fects through simulation of communication systems, and to assess the performance of
such systems in the presence of noise.

Most computer software libraries include a uniform random number generator. The
output of the random number generator is a random variable, and is in the range [0,1]
with equal probability. For all practical purposes, the number of outputs is sufficiently
large, so that it can justify the assumption that any value in the interval is a possible out-
put from the generator. Noise encountered in physical systems is often characterized by
the normal or Gaussian probability distributions. Again, different mathematical meth-
ods could be employed on the computer in order to obtain such probability distribu-
tions.

Part 2: Signal Conditioning

Amplification and Amplifiers

The main reason for neurophysiological signals to be amplified is the need to make
them suitable for signal-processing hardware whose proper functioning depends on the
signal being within a certain amplitude range. As already mentioned, many measure-
ments of neurophysiological signals involve voltages at very low levels, typically ranging
between 1µV and 100mV, superimposed with noise and interference from different
sources. Amplifiers are commonly used to couple these low-level biopotentials from
high impedance sources to make them compatible with devices such as recorders, dis-
plays and A/D converters for computerized equipment.

Amplifiers adequate for measuring neurophysiological signals have to satisfy several
very specific requirements. They have to provide amplification specific to the signal, re-
ject superimposed noise and interference signals, and guarantee protection against
damage from voltage and current surges for patient and animal and electronic equip-
ment. Amplifiers featuring these specifications are known as biopotential amplifiers.

Differential Amplifiers

The input signal to the amplifier consists of several components: the desired biopoten-
tial, undesired biopotentials, a power-line interference of 50 (60) Hz and its harmonics,
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interference signals generated by the transducer (i.e., tissue/electrode interface), and
noise. The differential measuring technique is used in biopotential amplifiers to mini-
mize interference and noise, which are usually present in these low-level signals. Proper
design of the amplifier provides rejection of a large portion of interference.

A typical configuration for the measurement of biopotentials is shown in Fig.5. Three
electrodes, two of them collecting the biological signal Vbiol and the third providing the
reference potential Vc, connect the subject to the amplifier. The output of the differen-
tial amplifier is, therefore, the difference between the two input signals times a certain
gain factor. The desired biopotential appears as a voltage between the two input termi-
nals of the differential amplifier and is referred to as the differential signal. The signal
that appears between inputs and ground is called the common-mode signal. Thus, any
common signal applied to both inputs (i.e., any common-mode signal) should result in
zero output. In practice, the gains of the two signal paths are slightly different, resulting
in a small output voltage even when identical voltages are applied to the two inputs. The
line frequency interference signal shows only very small differences in amplitude and
phase between the two measuring electrodes, causing approximately the same potential
at both inputs. Differential voltage measurement eliminates common-mode noise, thus
reducing the noise in analog input signals.

The ratio of the output voltage to the common input voltage is the common-mode
gain (GCM), which is usually much less than one. The ratio of the output voltage to the
applied differential input voltage is the differential gain (GD) of the bioamplifier and is
usually much larger than one.

An index of how closely the bioamplifier approaches the ideal differential amplifier
is given by the common-mode rejection ratio (CMRR), which is the ratio of the amplifi-
er’s differential gain to the common-mode gain. This value is expressed in decibels (dB),
and is a function of frequency and source-impedance unbalance. Strong rejection of the
common-mode signal is one of the most important characteristics of a good biopoten-
tial amplifier. It should be in order of at least 100dB. Rejection of the common-mode
signal is a function of both the amplifier CMRR and the source impedances Z1 and Z2.
For the ideal amplifier CMRR is infinite and Z1=Z2 (Fig.5), leaving the output voltage as
the pure biological signal amplified by the differential mode gain. With CMRR finite or
even slightly different Z1 and Z2, the common-mode signal is not completely eliminated,
adding the interference term. The common-mode signal causes currents to flow

Fig. 5. Typical configuration for 
the measurement of biopoten-
tials. Z1 and Z2 are source im-
pedances from measured bio-
logical signal Vbiol. Vc provides 
reference potential for the am-
plifier.
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through Z1 and Z2. The related voltage is amplified and thus not rejected by the ampli-
fier. The output of a real amplifier will always consist of the desired output component
resulting from the differential biosignal, an undesired component due to incomplete re-
jection of common-mode interference signals as a function of CMRR, and an undesired
component due to source impedance imbalance allowing a small proportion of com-
mon-mode signal to appear as a differential signal to the amplifier.

In order to achieve optimum signal quality, the biopotential amplifier has to be
adapted to the specific application. Obviously, each particular application for a biopo-
tential amplifier will have a unique solution. Some of the amplifiers need to be extreme-
ly fast (e.g., when measuring action potentials from nerve cells; cf. Chapter 5), or have
extremely high gain (e.g., when measuring EEG; cf. Chapter 35), or be extremely quiet
(e.g., when measuring random noise in biological processes), etc. Based on the signal
parameters, both appropriate bandwidths and gain factors are chosen. A final require-
ment for biopotential amplifiers is calibration. Since the amplitude of the biopotential
often has to be determined very accurately, there must be a way to easily determine the
gain or the amplitude range referenced to the input of the amplifier. For this purpose,
the gain of the amplifier must be well calibrated. In order to prevent difficulties with cal-
ibrations, some amplifiers that need to have adjustable gains use a number of fixed gain
settings rather than providing a continuous gain control. Some amplifiers have a stand-
ard, built-in signal source of known amplitude that can be momentarily connected to
the input by the push of a button to check the calibration at the output of the biopoten-
tial amplifier.

Instrumentation Amplifiers (IA)

As mentioned, a very important stage in analog processing hardware is the amplifica-
tion block. This stage is called an instrumentation amplifier and has several important
functions: signal voltage amplification, rejection of the common-mode signal and prop-
er driving of A/D converter input. Crucial to the performance of the preamplifier is the
input impedance, which should be as high as possible. The input stage of an instrumen-
tation amplifier usually consists of two voltage followers, which have the highest input
impedance of any common amplifier configuration. A standard single operational am-
plifier (op-amp) design does not provide the necessary high input impedance, but two
input op-amps provide high differential gain and unity common-mode gain without the
requirement of close resistor matching (Fig.6). The differential output of the first stage
represents a signal with substantial relative reduction of the common-mode signal and
is used to drive a standard differential amplifier, which further reduces the common-
mode signal. Complete instrumentation amplifier-integrated circuits based on this
standard instrumentation amplifier configuration are available from several manufac-
turers. All components, except the resistor that determines the gain of the amplifier, are
contained on the integrated chip.

The output of the instrumentation amplifier has low impedance, which is ideal for
driving the A/D converter input. The typical A/D converter does not have high or con-
stant input impedance. It is important for the preceding stage to provide a signal with
the lowest impedance practical. Instrumentation amplifiers have some limitations, in-
cluding offset voltage, gain error, limited bandwidth and settling time. The offset volt-
age and gain error can be calibrated out as part of the measurement, but the bandwidth
and settling time are parameters that limit the frequencies of amplified signals.

There is a special class of instrumentation amplifiers with programmable gain which
can switch between fixed gain levels at sufficiently high speeds to allow different gains
for different input signals delivered by the acquisition input system. These amplifiers
are called programmable gain instrumentation amplifiers (PGIA).
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Isolation Amplifiers

Biopotential amplifiers have to provide sufficient protection against electric shock to
the user, patient and animal or other preparation. Electric safety codes and standards
specify the minimum safety requirements for the equipment. To that end, isolation am-
plifiers may be used to break ground loops, to eliminate source-ground connections,
and to provide isolation of patient and electronic equipment. They also contribute to
preventing line frequency interferences. Isolation amplifiers are realized in three differ-
ent technologies: transformer isolation, capacitor isolation and opto-isolation. An iso-
lation barrier provides a complete galvanic separation of the input side, i.e., patient and
preamplifier, from all equipment on the output side. Ideally, there should be no flow of
electric current across the barrier. An index is the isolation-mode voltage, which is the
voltage appearing across the isolation barrier, i.e., between input common and output
common. The isolation mode rejection ratio (IMRR) is the ratio between the isolation
voltage and the amplitude of the isolation signal appearing at the output of the isolation
amplifier. Since the isolation mode rejection ratio is not infinite, there is always some
leakage across the isolation barrier. Two isolation voltages are specified for commercial
isolation amplifiers: the continuous rating and the test voltage. To eliminate the need for
lengthy testing, the device is tested at about two times the rated continuous voltage.

Dynamic Range

Practical amplifiers introduce errors into the signal. Random noise is added by mecha-
nisms such as thermal noise in resistors or shot noise in transistor junctions. Another
problem is nonlinearity introduced into transistor junctions. To minimize the effect of
added noise, it is desirable to keep the analog signal levels large compared with the noise
sources. On the other hand, to minimize the distortion effects of nonlinearities, it is de-
sirable to operate with low signal levels. The range of signal levels that can be processed
between the lower limit imposed by the noise and the upper limit imposed by distortion
is called the dynamic range of an amplifier. Expressed in decibels, a dynamic range up
to 200dB is achievable.

Fig. 6. Typical configuration of 
an instrumentation amplifier 
for biological application; an 
op-amp version.
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Additive noise introduced in amplifiers tends to be “white”, meaning that the noise
power is distributed evenly over a wide frequency range. Thus the noise density per Hz
is constant over the bandwidth of the amplifier. A common basis of amplifier compari-
son is to specify the noise density in decibels relative to one milliwatt (dBm) per Hz.

Single-Ended and Differential Measurements

Data acquisition systems have provisions for single-ended and differential input con-
nections. The essential difference between the two is the choice of the analog common
connection. Single-ended multi-channel measurements require that all voltages be ref-
erenced to the same common node, which will result in measurement errors unless the
common point is very carefully chosen; sometimes there is no acceptable common
point. Differential connections cancel common-mode voltages and allow measurement
of the difference between the two connected points. When given the choice, a differen-
tial measurement is always better. The rejected common-mode voltages can be steady
DC levels or noise spikes. The best reason for choosing single-ended measurement will
be for a higher channel count that is available in some devices. Most data acquisition
products allow doubling the number of channels in a differential system by selecting
single-ended operation.

Fundamentals of Filtering and Filters

Filtering is a signal processing operation that alters the frequency content of a signal. A
filter is a frequency-selective device or a computer program that passes signals in one
band of frequencies and rejects (or attenuates) signals in other bands. In signal process-
ing, spectral components containing information on the desired signal are of foremost
interest, and filters are designed so as to pass those spectral components while rejecting
or attenuating components consisting mostly of noise. To design a satisfactory filtering
device or program, it is necessary to have some knowledge of the structure of both the
signal and the noise. Filtering is mostly performed to enhance the signal-to-noise ratio
(S/R), eliminate certain types of noise or smooth the signal.

Frequency Response

The basic feature that determines filter behavior is its frequency response. The frequen-
cy response is a complex function which includes both gain and phase information. The
gain and phase responses show how the filter alters the amplitude and phase of a sinu-
soidal input signal to produce a sinusoidal output signal. Since these two characteristics
depend on the frequency content of the input signal, they can be used to describe the
frequency response of the filter. The gain (dimensionless) and the phase (in degrees or
radians) are mostly plotted versus frequency yielding frequency-response plots as ex-
emplified for low-pass filters in Fig.7.

Since the frequency ranges of interest often span several orders of magnitude, a log-
arithmic frequency scale compresses the data range, highlighting important features in
the gain and phase responses. Special terminology involved with the use of logarithmic
frequency intervals is octave and decade. The octave is the frequency range whose end
points have a ratio of 2:1, while the one with a 10:1 ratio is called decade.

In signal processing, most often variables are not an issue, but the relation of two of
the same kind. Furthermore, to simplify the mathematics that follows processing, it is
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useful to take logarithmic measure of the relation. In practice, variables are expressed
through the measure’s power or amplitudes. A relative (dimensionless) logarithmic
measure of signal amplitudes is the decibel (dB) scale. It relates two signal powers, P1
and P2 or two corresponding signal amplitudes, A1 and A2. Since power is proportional
to amplitude squared, the definition is:

10 log10 (P1/ P2) = 10 log10 (A1/A2 )
2 = 20 log10 (A1/A2 ) [dB].

When describing the amplitude response of filters, the term attenuation is often pre-
ferred to gain because many filters have a maximum gain of unity. Attenuation is the re-
ciprocal of the gain. For example, if the gain is 0.1, then the attenuation is 10.

Passband and Stopband The frequency range over which there is a little attenuation is called the passband. The
range of frequencies over which the output is significantly attenuated is called the stop-
band. For example, at high frequencies the gain in Fig.7 falls off, so that output signals
at these frequencies are reduced in amplitude. At low frequencies the gain is essentially
constant and there is relatively little attenuation.

Ideally, all the power would pass through the filter in the passband and no power
would pass through in the stopband. In practical filters, however, between 80 and 95%
of the input power shows up at the output in the passband and some small amount ap-
pears at output in the stopband. A real filter must have a transition zone between the
stopband and passband (Fig.8). It is defined by the cut-off frequency fc and stopband
frequency fs. For the high-pass filter in Fig.8. everything above fc is passed; everything
below fs is stopped.

Cut-off Frequency The frequency where the response starts to fall off significantly is called cut-off frequen-
cy (fc). The term is closely associated with the boundary between a passband and adja-
cent stopband. It is defined as that frequency at which the signal voltage at the output of
the filter falls to  of the amplitude of the input signal. Since the fall of  cor-
responds to –3dB, this frequency is often called  –3dB frequency, or f–3. Equivalently, the
cut-off frequency (fc) is the frequency at which the signal power at the output of the fil-
ter falls to half of the power of the input signal, which yields another term for cut-off
frequency: half-power frequency.

Passband Ripple
(Passband Flattens)

Real filters cannot be perfectly flat in the passband and stopband, though depending on
the type of filter used, the amount of unevenness can vary. The amplitude variation

Fig. 7. Frequency response 
plots: a) gain; and b) phase.
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within the passband is called the passband ripple (usually expressed in decibels)
(Fig.8). Some filters also have a predefined stopband ripple.

Phase ShiftThe filter shifts the phase of sinusoidal components of the input signal as a function of
frequency. If the phase shift in the passband is linearly dependent on the frequency of
the sinusoidal components, the distortion of the signal waveform is minimal. When the
phase shift in the passband is not linearly dependent on the frequency of the sinusoidal
component, the filtered signal generally exhibits overshoot. That is, the initial response
to a step input transiently exceeds the final value.

10–90% Rise TimeThis term refers to the time it takes for a signal to rise from 10% of its initial value to
90% of its final value. As a general rule, when a signal with t10–90 =ts is passed through
a filter with t10–90 =tf, the rise time of the filtered signal is approximately .

Filter Types

Four common types of filters can be distinguished in respect to the bandwidth: low-
pass, high-pass, band-pass, and band-stop or band-reject. An illustration of how the
amplitude of an input signal is altered by each of the four filter responses is shown in
Fig.9. For simplicity, consider an input signal consisting of three separate frequency
components: f1, f2 and f3. The cut-off frequency is designated by fc for low-pass and
high-pass filters, and by fc1 and fc2 for band-pass and band-stop filters. The low-pass fil-
ter passes frequency f1 below its cut-off frequency fc, and attenuates the frequencies
above it: f2 and f3. A high-pass filter attenuates frequency f1 below the cut-off frequency
fc and passes the frequencies above it: f2 and f3. A band-pass filter attenuates frequency
components f2 and f3 outside the bandwidth determined by cut-off frequencies fc1 and
fc2 and passes frequency component f2 inside the same bandwidth. A band-reject
(notch) filter does the opposite. Band-pass and band-reject filters can simply be thought

Fig. 8. Ideal vs. real high-pass 
filter magnitude response; a) 
and b), respectively.
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of as a series cascade of high-pass and low-pass filters, or as a parallel combination of
high-pass and low-pass filters, respectively.

Order The order of a filter controls the intensity of its falloff with frequency. The higher the
order of a filter, the better its performance, meaning the less the attenuation in the pass-
band and the more complete the rejection of out-of-band signal components. The order
is often described as the slope of the attenuation in the stopband, well above cut-off fre-
quency, so that the slope of the attenuation has approached its asymptotic value. For in-
stance, a first-order low-pass filter falls off near-linearly with frequency for high fre-
quencies, at a rate of 6dB per octave. A first-order filter can be constructed from one re-
sistor and one capacitor. It is also known as a simple filter or a single-pole filter (see An-
alog Filter in Glossary, n=1). The order of the filter relates to the number of poles and
the slope in the following way: 1 pole = 1st order = 6 dB/octave (=20 dB/decade); 2 poles
= 2nd order = 12 dB/octave (= 40 dB/decade). In other words, voltage attenuation in-
creases by a factor of 2 for each doubling of the frequency (octave) or by 10 for each ten-
fold increase in frequency (decade).

Filtering in Time and Frequency Domains

Neuropysiological signals can be processed either in the time domain or the frequency
domain. Time-domain analysis refers to the analysis of a signal that is represented the
same way it would appear on a conventional oscilloscope. Frequency-domain analysis
refers to the analysis of signals that are transformed into the frequency domain (see be-
low). To achieve optimal analysis, specific filtering should be applied.

For time-domain analysis, the filter should optimally minimally distort the time
course of the signal. For example, it would not be very helpful to implement a very ef-

Fig. 9. Frequency responses for a) low pass; b) high pass; band pass; and band stop filters. (See text
for details).
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fective filter for elimination of high-frequency noise if it causes 15% overshoot. In gen-
eral, the best filters to use for time-domain analysis are Bessel filters. They add less than
1% overshoot to pulses and have the linear change of phase with changing frequency.
Because they do not alter the phase of the sinusoidal component of the signal, Bessel fil-
ters are sometimes called “linear-phase” or “constant-delay” filters. Unlike Bessel fil-
ters, Butterworth filters add considerable overshoot. In many experiments in neuro-
physiology, the signal noise increases rapidly with bandwidth. Therefore, a single-pole
filter is inadequate. The four-pole Bessel filter is usually sufficient, but high-order filters
are preferred. In experiments where the noise-power spectral density is constant with
bandwidth, a single-pole filter is sometimes considered adequate. In the time domain,
notch filters must be used with caution because signals that include sinusoidal compo-
nents at the notch-filter frequency will be grossly distorted. On the other hand, if the
notch filter is in series with low-pass or high-pass filters that exclude the notch frequen-
cy, distortion will be prevented. For example, notch filters are often used in electromy-
ogram recordings, in which the line-frequency pickup is sometimes much larger than
the signal. The 50 (60) Hz notch filter is typically followed by a 300Hz high-pass filter.

Frequency-domain analysis is typically achieved using a fast Fourier transform
(FFT). For this type of analysis the most important requirement is to have a sharp filter
cut-off so that the noise above −3 dB frequency does not get folded back into the fre-
quency of interest by the aliasing phenomenon (see below). The simplest and most com-
monly used filter for frequency-domain analysis in biological applications is the Butter-
worth filter. This filter type has the attenuation in the passband as flat as possible with-
out having passband ripple. This means that the frequency spectrum is minimally dis-
torted. Notch filters can be safely used in conjunction with frequency-domain analysis
since they simply remove a narrow section of the power spectrum. Another approach
could be to store “raw data” and then digitally remove the disturbing frequency compo-
nents from the power spectrum.

Implementation

Basically, two filtering methods are available: special-purpose hardware designed for
each filter structure or a general-purpose computer system with special-purpose soft-
ware.

Hardware FiltersFiltering via hardware is performed by electrical circuits usually comprising capacitors,
resistors, inductors and operational amplifiers which will allow one range of frequen-
cies to pass through it and will block another range. The main drawback of using hard-
ware for filtering is that each filter requires its own specific components, and a filter de-
signed for one particular application cannot be used for another. Analog filters are de-
signed as active or passive. Active filters arose from the need for filters that are compat-
ible with modern integrated circuitry (IC) technology. They have become very attrac-
tive not only because passive filters are much more difficult to implement in IC technol-
ogy, but also because active filters have other advantages over passive filters. Active fil-
ters offer higher sensitivity and flexibility, the ease of tuning and power gain. They also
outperform passive filters in costs. There are many possible frequency responses that
can be implemented by active filters. The most common filters are: Elliptic, Cauer,
Chebyshev, Bessel and Butterworth.

Digital FiltersThe alternative approach is to use general-purpose digital hardware (i.e., a computer)
and implement the filter algorithm in the form of software. Software design can be ac-
complished via “high- or low-level” languages. This has the advantage of flexibility:
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software designed for one application can easily be adapted to another, but has the dis-
advantage of being slower than special-purpose hardware. Digital filters are linear dis-
crete systems governed by differential equations implemented in software. They consist
of a series of mathematical calculations that process digitized data. Digital filter algo-
rithms can implement all of the already mentioned filter frequency responses and more.
Digital filtering is accomplished in three steps. First, the signal must be Fourier trans-
formed (see below). Then, the signal’s amplitude in the frequency domain must be mul-
tiplied by the desired frequency response. Finally, the transferred signal must be in-
verse-Fourier transformed back into the time domain. There are two types of discrete-
time filters: FIR (Finite Impulse Response) and IIR (Infinite Impulse Response). Each
filter type has its own set of advantages. The choice between FIR and IIR filters depends
on the importance of these advantages to the design problem. If phase considerations
are put aside, it is generally true that a given magnitude response specification can be
met most efficiently with an IIR filter. In contrast, FIR filters can have precisely linear
phase.

Finite Impulse
Response Filters

FIR filters are almost entirely restricted to discrete implementations. Design techniques
for FIR filters are based on directly approximating the desired frequency response of the
discrete-time system. Most techniques for approximating the magnitude response of an
FIR system assume a linear phase constraint. These filters have the advantage of not al-
tering the phase of the signal. FIR filters are also known as nonrecursive filters. The out-
put of a nonrecursive filter depends only on the input data. There is no dependence on
the history of previous outputs. An example is the smoothing filter. Another example of
a nonrecursive digital filter is the Gaussian filter. It is similar to a smoothing filter, ex-
cept that the magnitudes of coefficients stay on the bell-shaped Gaussian curve.

Infinite Impulse
Response Filters

IIR filters, unlike FIR filters, do not exhibit linear phase. However, the IIR design often
results in filters with fewer coefficients than an equivalent FIR design. These are also
known as recursive filters. The output of a recursive filter depends not only on the in-
puts, but on the previous outputs as well. That is, the filter has some time-dependent
“memory”. Digital filter implementations of analog filters such as Bessel, Butterworth,
Elliptic and Chebyshev filters are recursive.

Digital over Analog
Filtering?

Digital filtering is advantageous because the filter itself can be tailored to any frequency
response without introducing the phase error. In contrast, analog filters are only avail-
able with a few frequency response curves, and all introduce some element of phase er-
ror. The delay introduced by analog filters necessarily makes recorded events occur later
than they actually occurred. If it is not accounted for, this added delay can introduce an
error in subsequent data analysis. A drawback of digital filtering is that it cannot be used
for anti-aliasing because it occurs after sampling. Another problem with digital filters
is that values near the beginning and end of the data cannot be properly computed. This
is only a problem for a short data sequence. Adding values outside the sequence of data
is arbitrary and can lead to misleading results.

Optimal and Adaptive
Filtering

When the signal and noise are stationary and their characteristics are approximately
known or can be assumed, an optimal filter can be designed a priori. Wiener and
matched filters belong to this group. When no a priori information on the signal or
noise is available, or when the signal or noise is non-stationary, a priori optimal filter
design is not possible. Adaptive optimal filters are filters that can automatically adjust
their own parameters, based on the incoming signal. The adaptation process is conduct-
ed so that a given performance index is optimized. Adaptive filters thus require little or
no a priori knowledge of the signal and noise. Least-mean-square (LMS) filters belong
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to this group. The adaptive filter is required to perform calculations to satisfy the per-
formance index and must have provision for changing its own parameters. Digital tech-
niques, with or without a computing device, have clear advantages here over analog
techniques. It is mainly for this reason that most adaptive filter implementations are
performed by discrete systems.

Decimation FilteringOften the information of interest in a signal is contained only in the low-frequency
range, and the upper frequencies are not of interest. By filtering out the unwanted high
frequencies and thereby narrowing the signal bandwidth, it is possible to meet the
Nyquist sampling criterion with a lower sampling rate. If the bandwidth is reduced by a
factor of k, the remaining signal can be fully described by saving every k-th sample and
discarding the samples in between. This is called decimation by factor k, and the result-
ing output sample rate is fs /k.

Part 3: Analog-to-Digital Conversion (Digitization)

Digital or Analog Processing?

Modern digital technology, both in terms of hardware and software, makes digital
processing in many cases advantageous over analog processing. It may therefore be
worthwhile to convert the analog signal to a discrete one so that digital processing can
be applied. The conversion is done by analog-to-digital (A/D) conversion systems that
sample and quantitize the signal at discrete times (see below). The factors that deter-
mine whether signals are processed digitally or in analog form include signal band-
width, flexibility, accuracy and cost.

CostWhen a signal has a broad bandwidth, analog processing is more attractive because of
the cost associated with high-speed digital signal-processing hardware. Most signal
processing above 100MHz is analog, while much of the signal processing up to 10MHz
is digital.

AccuracyAccuracy is always an issue. The simplest analog-signal processing function is to change
the signal amplitude with an attenuator or amplifier. The main reason for doing this is
that the proper operation of the analog-signal processing hardware depends on the sig-
nal being within a certain amplitude range. Although the ideal result of this function
would be to multiply the signal by a fixed gain, amplifiers and attenuators also introduce
errors into the signal.

A digital signal, in principle, assumes only one of two states or levels, either “high”
(logic 1), or “low” (logic 0). These states are represented by a voltage signal that is, ac-
cording to the current standards, nominally defined as either 5 or 0 Volts. Actual digital
signals fluctuate over a small range near their nominal values. The acceptable level of
fluctuation depends on the technology in use. In addition to the amplitude of the signal,
the time behavior is important, specifically the time required for the signal to change
from one state to the other. Typically, this is in the order of milliseconds to nanoseconds
in today's technology and depends on the slope of rise or fall expressed in volts per sec-
ond.

Multiple Functions 
and Flexibility

One of the primary benefits of digital signal processing is the wide range of processing
functions that can be implemented. Virtually any function that can be expressed math-
ematically can be performed with digital processing. Analog functions, on the other
hand, are limited by the available components. Some functions may be theoretically im-
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plemented in analog form, but the inability to maintain sufficient accuracy may make
the function impractical. Also, random noise and component nonlinearities limit the
dynamic range of analog signal processing. By contrast, digital processing can be done
with arbitrary precision by representing signals with high-precision numeric data
types. Also, digital processing is exactly reproducible and is stable over time, tempera-
ture changes, and other environmental conditions. Calibration procedures are not man-
datory for manufacturing and maintaining digital signal processing circuits. As men-
tioned above, the costs of digital signal processing strongly depend on the signal band-
width. However, the costs of programmable digital signal processing (DSP) integrated
circuits are substantially less than of those of analog circuitry that can perform the same
function.

A/D Conversion

Neurophysiological signals are mainly analog. To process analog signals by digital
means, it is first necessary to convert them into digital form, that is, to convert them to
a sequence of numbers having finite precision. This procedure is called analog-to-dig-
ital (A/D) conversion, and the corresponding devices are called A/D converters (ADCs).
The analog-to-digital converter stage is the last link in the chain between the analog do-
main and the digitized signal path. Analog-to-digital converters have played an increas-
ingly important role in instrumentation in recent years. The expansion of ADCs has
been driven by the development of high-performance integrated circuit (IC) technolo-
gy. Advanced IC technology has led to the microprocessor and fast digital signal
processing capability, which are essential in providing a low-cost transformation from
the raw data generated by the ADC to the measurement results sought by the user.

Sampling The first step in A/D conversion is sampling and involves time discretization of the con-
tinuous signal xa (t) into a series of n discrete numbers {xa (k), 1≤k≤n}. Here we consider
a band-limited analog signal xa (t) with maximal frequency fmax, which is also bounded
in amplitude. Also, we assume uniform sampling with a constant sampling frequency fs,
so that the signal xa (t) is transformed into a sequence of sampled data {xa(kTs), 1≤k≤n},
where Ts=1/fs is the sampling period or sampling interval, as illustrated in Fig.10.

Sampling Theorem In many cases of interest it is desirable to be able to reconvert the processed digital sig-
nals back into analog form, that is, to apply D/A conversion. This puts certain demands
on the sampling of the original analog signal. If this signal is sampled at greater than
twice the frequency of the highest-frequency component in the signal, then the original

Fig. 10. Sampling of an analog 
signal xa(t) with sampling fre-
quency fs=1/Ts.
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signal can be reconstructed exactly from the samples. In other words, xa (t) can be re-
constructed from {xa(kTs), 1≤k≤n} if fs>2 fmax. This is known as Nyquist’s sampling the-
orem, and fs/2 is known as the Nyquist frequency. If the sampling frequency does not sat-
isfy the sampling theorem, i.e., fs<2 fmax, time discretization results in a phenomenon
called aliasing. Any frequency above fs/2 results in samples that are identical with a cor-
responding frequency in the range –fs/2 < f < fs/2. To avoid the ambiguities resulting
from aliasing, we must select the sampling rate to be sufficiently high, i.e., fs>2 fmax.

AliasingConsider the effect of sampling a signal that is not band limited to fmax in a case where
the sampling frequency is fs =2 fmax. Any signal component having a frequency higher
than fmax is folded back or falsely translated to another frequency somewhere between
0 and fmax by the act of sampling. Figure11 shows an example of two cases for fs. In
Fig.11b, the sampling frequency obeys fs >2 fmax, where fmax is the largest frequency of
the signal xa(t). Note that the sampled signal in the frequency domain consists of non-
overlapping functions. Consider the effect of a low-pass filter that passes all frequencies
in the range 0<f<fmax undistorted, while zeroing all frequencies outside this range. The
Fourier transform of the signal at the output of such a filter equals that of xa(t). Since
the Fourier transform is unique, we can restore the original signal from its samples by
such a low-pass filtering operation, provided the sampling frequency obeys: fs>2fmax. In
Fig.11c, the sampling frequency is lower than twice the fmax: fs<2fmax. All signal fre-
quencies above fs /2 show up as aliases or spurious lower frequency errors that cannot
be distinguished from valid sampled data (black area).

Since knowledge of Fourier transform (X) implies (by Inverse Fourier transform) a
knowledge of xa(t), it follows from the sampling theorem that if we sample fast enough,
then we can reconstruct the original signal from its Fourier transformation.

How to Avoid AliasingThe apparently straightforward solution to the aliasing problem is low-pass filtering of
the analog signal before sampling. The filter’s cut-off frequency must then be set at one-
half the sampling rate or lower. Note, however, that slight fluctuations in the measured
environment or the measured signal can cause alias signals to move, leaving errors in
different locations throughout the data each time an A/D converter is in use. To circum-

Fig. 11. Sampled band-limited 
signal in the frequency do-
main: a) Spectrum of the band-
limited signal; b) Spectrum of 
the sampled signal when fs > 
2fmax; and c) Spectrum of the 
sampled signal when f s< 2fmax. 
Aliasing results in overlapping 
spectrum regions (black area).
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vent this problem, one could sample the analog signal at a very high rate far beyond the
Nyquist frequency and then filter out the high frequencies with digital techniques. But
such oversampling increases system costs by requiring faster A/D conversion for digital
processing, more memory and higher bandwidth buses. It also leads to higher analysis
costs by creating more data to process and interpret. Nevertheless, a practical alterna-
tive is to limit bandwidth of the signal below one-half the sample rate with a low-pass or
anti-alias filter, which can be implemented on each channel in front of the A/D convert-
er. Low-pass filtering must be done before the signal is sampled or multiplexed since
there is no way to retrieve the original signal once it has been digitized and aliased sig-
nals have been created. The perfect reconstruction of a sampled signal would require an
ideal rectangular low-pass filter, which is impossible to implement (see above). The
need to use realizable filters instead leaves no choice but to sample at frequencies higher
than the Nyquist rate. Sampling frequencies of 2.5 to 10 times fmax are often used.

Quantization Error A/D conversion is achieved in three steps: sampling, quantization and coding. In prac-
tice, A/D conversion is performed by a single device that takes an analog signal and pro-
duces a binary-coded number. The digital number represents the input voltage in dis-
crete steps with finite resolution. A/D conversion can be viewed as forming a ratio be-
tween the input signal Vin and a known reference voltage Vref, and then rounding the
result to the nearest n-bit binary integer. The reference voltage is typically a precise val-
ue generated internally by commercial converters and sets the full-scale input range of
the converter (Fig.12). ADC resolution is determined by the number of bits that repre-
sent the digital number. An n-bit ADC has a resolution of 1 part in 2n. For example, a
12-bit ADC has a resolution of 1 part in 212 = 4096. Twelve-bit ADC resolution corre-
sponds to 2.44mV for a 10V range. Similarly, a 16-bit ADC resolution is 1 part in 65 536,
which corresponds to 0.153mV for a 10V range. The rounding error is often called the
quantization error.

Acquisition Methods Digital signal acquisition is performed in three distinct modes depending on the in-
tended application. The three methods are: real-time sampling, sequential repetitive
sampling and random repetitive sampling. The most straightforward application of dig-
ital capture technology is real-time sampling. In this method, a complete record of n
samples is simultaneously captured on each and every channel in response to a single
trigger event. Each waveform plotted on the display is derived entirely from the samples
recorded in a single acquisition cycle and might represent the capture of a single non-
repeating transient.

Implementations

Data acquisition ADCs typically run at speeds ranging from 20kHz to 1MHz. Many data
acquisition systems have the capability of reading bipolar or unipolar voltages to the full

Fig. 12. Concept of the ADC: forming the ratio between Vin and Vref, and rounding it to the nearest
n-bit binary integer.
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resolution of the ADC. The unipolar-type range typically runs between 0 volts and some
positive or negative voltage as V. The bipolar-type range typically runs from a negative
voltage to a positive voltage of the same magnitude. Different ADC types offer varying
resolution, accuracy, and speed specifications. The most popular ADC types are the par-
allel converter, integrating converter, voltage-to-frequency ADC and successive approx-
imation ADC.

Parallel or Flash 
Converter

The parallel or flash converter is the simplest ADC implementation. It uses a reference
voltage at the full scale of the input range and a voltage divider composed of 2n+1 resis-
tors in series, where n is the ADC resolution in bits. The value of the input voltage is de-
termined by using a comparator at each of the 2n reference voltages created in the volt-
age divider. Parallel ADCs are used in applications where very high bandwidth is re-
quired, but moderate resolution is acceptable. These applications essentially require in-
stantaneous sampling of the input signal and high sample rates to achieve their broad
bandwidth. Parallel converters are very fast because the bits are determined in parallel.
Sample rates of 1 GHz have been achieved with parallel converters.

Integrating ConverterIntegrating ADCs operate by integrating (averaging) the input signal over a fixed time,
in order to reduce noise and eliminate interfering signals (integration corresponds to
low-pass filtering with infinite time constant). To determine input voltage, integrating
ADCs use a current proportional to the input voltage and measure the time it takes to
charge or discharge a capacitor. This makes integrating ADCs the most suitable for dig-
itizing signals that do not change very rapidly. The integration time is typically set to
one or more periods of the local AC power line in order to eliminate noise from that
source. With 50Hz power, as in Europe, this would mean an integration time that is a
multiple of 20ms. In general, integrating converters are chosen for applications where
high resolution and accuracy are important but where extraordinarily high sample rates
are not. Resolution can exceed 28 bits at a few samples/s, and 16 bits at 100 ksamples/s.
The disadvantage is a relatively slow conversion rate.

Voltage-to-Frequency 
Converter

Voltage-to-frequency ADCs convert an input voltage to an output pulse train with a fre-
quency proportional to the input voltage. Output frequency is determined by counting
pulses over a fixed time interval, and the voltage is inferred from the known relation-
ship. Voltage-to-frequency conversion provides a high degree of noise rejection, be-
cause the input signal is effectively integrated over the counting interval. Voltage-to-fre-
quency conversion is commonly used to convert slow and often noisy signals.

Successive 
Approximation Converter

Successive approximation ADCs employ a digital-to-analog converter (DAC) and a sig-
nal comparator. The converter effectively makes a bisection or binomial search by be-
ginning with an output of zero. It provisionally sets each bit of the DAC, beginning with
the most significant bit. The search compares the output of the DAC to the voltage being
measured. If setting a bit to one causes the DAC output to rise above the input voltage,
that bit is set to zero. Successive approximation is slower than parallel because the com-
parisons must be performed in a series and the ADC must pause at each step to set the
DAC and wait for it to settle. Nonetheless, conversion rates over 200kHz are common.
Successive approximation is relatively inexpensive to implement for 12- and 16-bit res-
olution. Consequently, they are the most commonly used ADCs, and can be found in
many PC-based data acquisition products.

Digital-to-Analog 
Converters

Digital-to-analog converters (D/A) convert a digital signal into an analog signal. The
main function of D/A converters is to interpolate between discrete sample values. From
a practical viewpoint, the simplest D/A converter is the zero-order hold, which simply
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holds constant the value of one sample until the next one is received. Additional im-
provement can be obtained by using linear interpolation to connect successive samples
with straight-line segments. Even better interpolation can be achieved by using more
sophisticated higher-order interpolation techniques. In general, suboptimum interpo-
lation techniques result in passing frequencies above the folding frequency. Such fre-
quency components are undesirable and are usually removed by passing the output of
the interpolator through a proper analog filter, which is called a postfilter or smoothing
filter. Thus D/A conversion usually involves a suboptimum interpolator followed by a
postfilter.

Part 4: Data Processing and Display

Data Processing

Data processing involves a huge number of diverse techniques specifically tailored to a
customer’s demands. This plethora cannot be dealt with here. Instead a few issues of
more general concern are briefly touched upon.

Signal Averaging

Averaging is a processing technique to increase the signal-to-noise ratio (S/N) on the
basis of different statistical properties of signal and noise in those cases where the fre-
quency content of signal and noise overlap (see above). In these cases, traditional filter-
ing would reject signal and noise in parallel. Averaging is applicable only if signal and
noise are characterized by the following properties:
– The data consist of a sequence of repetitive signals plus noise tied to a sequence of

identifiable time flags.
– These signal sequences contain a consistent component x (n) that does not vary for

all sequences (repetitive component of the signal).
– The superimposed noise w (n) is a broadband stationary process with zero mean.
– Signal x (n) and noise w (n) are uncorrelated, so that the recorded signal yi (n) in the

i-th signal sequence can be expressed as . The averaging proc-
ess yields y as: 

where M is the number of repetitions in the signal sequence.

If the desired signal is characterized by the above properties, then the averaging tech-
nique can satisfactorily solve the problem of separating signal from noise. Averaging is
then performed in two steps: all recorded repetitions of signal + noise in a sequence are
first superimposed, such that they are synchronized to the time flags, and then divided
by M. Because the noise in each sequence is uncorrelated to the noise in any other se-
quence, the amplitude of the noise in the accumulated signal only increases by . After
the division, the signal has a magnitude of unity compared to the noise having a magni-
tude of 1/ . Signal averaging thus improves the signal-to-noise ratio by a factor .

Although averaging is an effective technique, it suffers from several drawbacks. Noise
present in measurements only decreases as the square root of the number of recorded
repetitions. Therefore, a significant noise reduction requires averaging many repeti-
tions. Also, averaging only eliminates random noise; it does not necessarily eliminate
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many types of system noise, such as periodic noise from switching power supplies. It is
also important to remember that averaging is based on the hypothesis of a broadband
distribution of the noise frequencies and the lack of correlation between signal and
noise. Unfortunately, these assumptions are not always warranted for neurobiological
signals. In addition, much attention must be paid to the alignment of the repetitions;
slight misalignments may have a low-pass filtering effect on the final result. Still, with
the easy access to A/D converters and digital computers, signal averaging is easily per-
formed.

Fitting

Fitting a function to a set of data points may be done for any of the following reasons:
– A function may be fitted to a data set in order to describe its shape or behavior, with-

out ascribing any biophysical meaning to the function or its parameters. This is done
when a smooth curve is useful to guide the eye through the data or when a function
is required to find the behavior of some data in the presence of noise.

– A theoretical function may be known to describe the data, such as a probability den-
sity function consisting of an exponential, and the fit is made only to extract the pa-
rameters. Estimates of the confidence limits on the derived parameters may be need-
ed in order to compare data sets.

– One or more hypothetical functions might be tested with respect to the data, e.g., to
decide how well the data are described by the best-fit function.

The fitting procedure begins by choosing a suitable function to describe the data. This
function has a number of free parameters whose values are chosen so as to optimize the
fit between the function and the data points. The set of parameters that gives the best fit
is said to describe the data as long as the final fit function adequately describes the be-
havior of the data. Fitting is best performed by software programs. The software follows
an iterative procedure to successively refine the parameter estimates according to a se-
lected optimization criterion until no further improvement is found when the proce-
dure is terminated. Feedback about the quality of the fit allows the model or initial pa-
rameter estimates to be adjusted manually before restarting the iterative procedure.
Two aspects of fitting can be discussed: statistical and optimization.

Statistical MethodsStatistical aspects of fitting concern how good the fit is and how confident the knowl-
edge of the fitting parameters is. They are thus concerned with the probability of occur-
rence of events. There are two common ways in which this word is used: direct and in-
verse probability. The direct probability is often expressed by the probability density
function (pdf) in algebraic form. After a best fit has been obtained, the user may want
to find out if the fit is good (the goodness of fit) and obtain an estimate of the confidence
limits for each of the parameters.

Optimization MethodsOptimization methods are concerned with finding the minimum of an evaluation func-
tion (such as the sum of squared deviations between data values and values of the fitted
function) by adjusting the parameters. A global, i.e., the absolute minimum, is clearly
preferred. Since it is often difficult to know whether one has the absolute minimum,
most methods settle for a local minimum, i.e., the minimum within a neighborhood of
parameter values.

An Example: 
Linear Regression

Linear regression is the simplest fitting procedure. It determines the best linear fit to the
data. Additionally, the following parameters are noted as parameter descriptions for
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linear regression: intercept value and its standard error, slope value and its standard er-
ror, correlation coefficient, p-value, number of data points and standard deviation of the
fit. More information on fitting procedures can be found in statistical textbooks.

Frequency-Domain Analysis

Signals are most frequently given as a function of time. For many applications, it is ad-
vantageous, or even imperative, to transform the signal to an alternative, frequency-do-
main form in which the distribution of amplitudes and phase are given as a function of
frequency. The design of digital signal processing algorithms and systems often starts
with a frequency domain specification. In other words, it specifies which frequency
ranges in an input signal are to be enhanced, and which suppressed. The low-pass, high-
pass, band-pass and band-stop filters (see above) are good examples.  The Fourier
transform (FT) provides the mathematical basis for frequency-domain analysis. The
Fourier transform is reversible, since the original signal as a function of time can be re-
covered from its Fourier transform. The two representations are thus related via the
Fourier Transform (FT) and Inverse Fourier Transform (IFT). Not only is the Fourier
transform useful for analyzing the frequency content of a signal, but it also has some
properties that make it a useful intermediate step in a wide range of signal processing
algorithms.

There are several major reasons for a frequency-domain approach. Sinusoidal and
exponential signals take place in the natural world and in technology. Even when a sig-
nal is not of this type, it can be decomposed into component frequencies. The Fourier
transformation (FT) has therefore become a basic tool in the analysis of many biological
signals. The FT is also fundamental to linear systems theory in which, via the convolu-
tion theorem, the spectrum of the output is simply the product of the spectrum of the
input and the frequency response function of the system under study (see above). In-
deed, the first line of investigation of a biological system is often to model it as a linear
system. Just as a signal can be described in the frequency domain by its spectrum, so a
time-invariant system can be described by its frequency response. This indicates how
each sinusoidal (or exponential) component of an input signal is modified in amplitude
and phase as it passes through the system. In modeling, the response of a linear, time-
invariant (LTI) processor to each such component is quite simple: it can only alter the
amplitude and phase, not the frequency of that component. The overall output signal
can then be found by superposition of the component responses. The product of fre-
quency response and input signal spectrum gives the spectrum of the output signal.
This process is generally simpler to perform, and to visualize, than the equivalent time-
domain convolution.

The main features of the frequency-domain analysis are: a signal may always be de-
composed into, or synthesized from, a set of sine and cosine components with appropri-
ate amplitudes and frequencies; Fourier transformation of a signal provides its spec-
trum. A complementary process, Inverse Fourier Transformation (IFT), allows us to re-
generate the original signal in the time domain. If the signal is an even function (sym-
metrical about the time origin), it contains only cosines. If it is an odd function (anti-
symmetrical about the time origin), it contains only sines; If the signal is strictly peri-
odic, its frequency components are related harmonically. The spectrum then has a finite
number of discrete spectral lines and is called a line spectrum. It is described mathemat-
ically by a Fourier series. The trigonometric form of the Fourier series may be converted
into an exponential form, by expressing each sine and cosine as a pair of imaginary ex-
ponentials. When a signal is aperiodic, it can be expressed as the infinite sum (integral)
of sinusoids or exponentials, which are not related harmonically. The corresponding
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spectrum is continuous and is described mathematically by the Fourier transform. Ap-
proximation of the signal by a limited number of frequency components provides a best
fit in the least-squares sense.

Fourier analysis is intuitively appealing in the case of long periodic signals, where
there are many repetitions or cycles of some temporal pattern. However, measured bio-
logical signals, such as fast muscular movements or the underlying neuromuscular sig-
nals that drive such movements, may be single events in time, meaning that they change
their behavior in a certain relatively brief interval. In general, biological data are always
finite in time, having defined start and end transients. In such cases, Fourier analysis
can be physiologically informative, but it is not the natural approach, and it is neither
intuitive nor trivial. The Fourier spectrum of a transient depends strongly on the tem-
poral separation and type of the edge discontinuities, and may be completely dominated
by them rather than the signal during the transient.

Power SpectrumIn many applications we consider the distribution of the energy of the signal in the fre-
quency domain, rather than the distributions of amplitude and phase. The power is pro-
portional to the squared amplitude. Thus, when dealing with energy and power distri-
bution, we lose information concerning the phase of the signal.

In the case when the signal is very long in duration, it is not feasible to measure the
true spectrum because of the requirement to integrate over the entire signal length. It is
common to approximate the spectrum in one of two ways: the short Fourier transform
and the swept-spectrum measurement. In the short Fourier transform method, a seg-
ment of the signal is captured and weighted with a finite-length window function. The
Fourier transform of this weighted segment is computed as an approximation of the ac-
tual spectrum. In the case of transient signals, it is sometimes possible to capture the
entire signal in the short segment. By using a uniform window function in this case, the
resulting spectrum is not an approximation but is the actual spectrum of the signal. The
amplitude of the Fourier transform for transient signals is in units of energy per Hertz
and is therefore called an energy spectral-density function. The integral of this energy
density function over all frequencies will yield the total energy in the transient signal.
An alternative analog signal-processing technique for estimating the power spectrum
of a stationary signal is to filter the signal with a narrow-bandwidth filter and measure
the amplitude of the filter output. By sweeping this filter across a range of frequencies,
a measurement of the signal power versus frequency can be obtained. The rate of sweep-
ing is limited by the bandwidth of the narrow-band filter. A good estimate of the maxi-
mum sweep rate is B2 /2, where B is the frequency bandwidth of the filter. With this
sweep-rate limit, the measurement time required to produce a power spectrum is much
longer than when using the FFT-based short Fourier transform technique.

Fourier Transform 
of Digital Signals

Fourier analysis has been applied to analog signals for almost two hundred years. Re-
cent developments in digital processing have resulted in corresponding discrete-time
(digital) techniques for analyzing the frequency components of signals, and the fre-
quency-domain performance of systems. That is, the two Fourier representations, Fou-
rier series and Fourier transformations, can be applied to both analog and digital sig-
nals. The Fourier transforms defined for analog signals are modified for finite-duration
sampled signals. There are many similarities, as well as a few important differences, be-
tween discrete-time and continuous versions of Fourier representations. There is a third
type of Fourier representation known as the Discrete Fourier Transform (DFT), which is
of key significance for the computer analysis of digital signals. The DFT is an important
tool for discrete signal processing for the same reasons that the FT is important for con-
tinuous signal processing. The direct computation of the DFT requires approximately
n2 (n is a number of samples) complex multiplication and addition operations. Another,
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more efficient, method requiring only nlog2n operations is known as Fast Fourier Trans-
form (FFT). The DFT is widely implemented using FFT algorithms. Many different FFT
algorithms have been developed for software and hardware implementations. Two com-
monly used algorithms are known as the decimation in time and decimation in frequen-
cy algorithms. The popularity of the FT has grown because of the increasing availability
of computer software packages that can generate DFTs at the press of a mouse button.

Digital Filters The availability of low-cost and efficient computers and dedicated processing circuits
has made the implementation of digital means of filtering very attractive. Even when
dealing with analog environments, where both input and output signals are continuous,
it is often worthwhile to apply analog-to-digital conversion, perform the required filter-
ing digitally, and convert the discrete filtered output back into a continuous signal.

Windowing Computing the Fourier transform of a signal involves integration over the entire dura-
tion of the non-zero portion of the signal. For signals of long duration, this can be im-
practical if not impossible. An alternative is to compute the transform of a finite-length
segment of the signal multiplied by a “weighting” or “windowing” function. Since the
Fourier transform of the product of two signals is the convolution of their individual
transforms, the result is the Fourier transform of the original signal convoluted with the
Fourier transform of the finite-length windowing function. By choosing a long, smooth
time-domain window, its width in the frequency domain will be narrow, and little
smearing will result from the convolution. Different functions produce several win-
dows, such as Hanning, Hamming, Blackman, Bartlet, Kaiser and Tukey.

Examples of FT Applications

Example 1 A common use of Fourier transforms is to find the frequency components of a signal
buried in a noisy time-domain signal. For illustration consider two frequencies of 50Hz
and 5Hz, which are sampled at 1000Hz, as shown in Fig.13, upper two traces. In the
middle of Fig.13, zero-mean random signal is created by a random number generator.
Two frequency components at 50Hz and 5Hz are then corrupted with the random signal
forming the noisy signal, as shown in the second trace from the bottom. It is hard or
even impossible to recognize the 50 and 5Hz components in the noisy signal. By con-
trast, the power spectral density as seen at the bottom reveals strong peaks at 5Hz and
50Hz. The frequency content of the noisy signal is presented in the range from DC up
to and including the Nyquist frequency (500Hz).

Example 2 Most practical digital signals are aperiodic – that is, they are not strictly repetitive. For
illustration consider two signals of predominantly low frequency content (Fig.14a,b up-
per traces). A relevant technique to apply Fourier analysis on digital signals is the Fou-
rier transform. There are several ways of developing the FT for a digital sequence. A
common approach is via the continuous-time FT, as used in analog signal analysis.
However, a digital approach is also common. The spectrum of a digital signal is always
repetitive, unlike that of an analog signal. This is an inevitable consequence of sampling,
and reflects the ambiguity of digital signals. It is informative enough to show one period
of that repetition, as it is in the lower traces in Fig.14 for digital signals a) and b).

Data Display

Using results from the signal processing operations, it is possible to create displays that
reveal important attributes of a signal. The generation of one or more of these generic
displays is often the end objective of measurement instrumentation. Display devices on
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Fig. 13. An example of the use of 
FFT. From the top to the bot-
tom: 50Hz signal, 5Hz signal, 
random signal, noisy signal, all 
presented in the time domain. 
At the bottom, the power spec-
tral density clearly shows 
peaks at 50 and 5Hz.

Fig. 14. Fourier transforms of the aperiodic digital signals:  (a) signal defined as x(n)=0.2 {δ[n–
2]+δ[n–1]+δ[n]+δ[n+1]+δ[n+2]}; (b) signal defined as x(n)=0.5n+1 for n≥0 and x(n)=0 for n<0.
n is the number of samples and δ is the delta function. 
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instruments come in a wide range and variety depending on the use of the display, but
they can be grouped into three basic categories. The simple, single-purpose indicator
light is used for conveying information that has a binary or threshold value, such as
warnings, alerts and go-no-go messages. Small alphanumeric displays are quite com-
mon on instrument front panels. They are useful for displaying information that has rel-
atively short messages composed of text only. The third category of display handles both
graphics and text and is found on instruments whose measurement results are easier to
interpret if the information is in a graphic form, such as an oscilloscope. Computer dis-
plays also fall in this third category, since they use graphic representations to signify in-
strument controls, as well as displaying results.

No matter what kind of display is used, its purpose is to convey information in a time-
ly and non-permanent manner with sufficient quality of presentation so that the user
can extract the information efficiently and accurately. In instrumentation, a display al-
lows the user to observe measurement data in a more immediately interactive way and
actively participate in the measurement itself.

A display must have sufficient quality for its purpose to allow the user to extract the
information presented there efficiently and accurately. Factors affecting the image qual-
ity of a display include the following: amount of glare, resolution, design of characters,
stability of the screen image, contrast in the image, color selection, and image refresh
rate. The basic unit of a display is the smallest area that can be illuminated independ-
ently, called a pixel. The shape and number of pixels in a display are factors determining
the resolution that the display can achieve. Current display technologies used in instru-
mentation are cathode-ray tubes (CRTs), light-emitting diodes (LEDs) and liquid-crystal
displays (LCDs).

Cathode-ray tube display technology was the first developed. While it has some draw-
backs, such as large size, weight and power consumption, in some applications it is still
by far superior to the other technologies. In instruments, CRT display technology was
first used in oscilloscopes, and it continues to be the best choice of display technologies
for displaying information rapidly with a high graphic waveform content requiring high
visibility. There are several types of CRT hardware displays in the PC world: mono-
chrome display adapter (MDA), color graphics adapter (CGA), enhanced graphics adapt-
er (EGA) and video graphics adapter (VGA). The different hardware implementations
differ in their resolution and color capabilities, with MDA capable of displaying only
monochrome text, the CGA capable of displaying graphics and text in 16 colors but at low
resolution, and the EGA capable of displaying 16 colors but at higher resolution than
CGA. VGA and super VGA use an analog display signal instead of the digital signal that
MDA, CGA and EGA use, requiring a monitor designed specifically for use with VGA.
VGA and super VGA are capable of high resolution and use 256 simultaneous colors.

Light-emitting diode display technology uses light-emitting diodes that illuminate
pixels by converting electrical energy into electromagnetic radiation ranging from
green to near infrared (550 to 1300µm). LEDs in instruments are used most commonly
as indicator lights and small alphanumeric displays. Relative to CRTs, LEDs are smaller,
more rugged, have a longer life, and operate at a lower temperature.

Liquid-crystal display technology channels light from an outside source, such as a flu-
orescent lamp behind the display, through a polarizer and then through liquid crystals
aligned by an electric field. The aligned crystals twist the light and pass it through the sur-
face of the display. Those crystals which have not been aligned do not pass the light
through. This creates the pattern of on/off pixels that produces the image the user sees.
The advantages of LCD technology are low power consumption, physical thinness of the
display, lightweight, raggedness, and good performance in bright ambient light condi-
tions. LCD outperforms both LED and CRT technology for readability in bright light.
LCDs are used for both small alphanumeric displays and larger graphics and text displays.
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Part 5: Storage and Backup

Data storage refers to various techniques and devices for archiving experimental data,
while backup might be regarded as a more permanent archive of experimental data by
making copies on a second medium. In general two distinct approaches to archival stor-
age can be undertaken. The first is to record data on a laboratory tape recorder (mag-
netic, VCR or DAT) while the second includes direct digitization and storage in the com-
puter. Which approach to apply depends on several aspects like the type of data to be
stored, the total amount of data to be stored, the necessity for on-line processing and the
personal preferences of the researcher. It is also very common to combine these two
methods, i.e., to record data simultaneously to the laboratory recorder and the compu-
ter. While the data recorded on the tape recorder are in a way permanently stored, data
recorded on the computer hard disk are only temporarily stored and additional means
of backup and archival storage must be secured. This is done as a precaution in the case
the first medium fails. One of the cardinal rules in using computers is “Back up your
data regularly”. Since the data are already kept in binary format, it is most common to
archive the data on conventional computer backup media. Choosing an appropriate de-
vice for a particular application requires understanding the ways that devices differ and
weighing the trade-offs involved in using various devices. Performance and speed of
backup, capacity and price per storage unit of the backup device, reliability, volatility,
writable medium as well as random access should be carefully considered before mak-
ing a choice.

Performance refers to the speed of a storage device and can be expressed as through-
output and latency. Through-output is the rate at which a device can accomplish work,
i.e., storing and retrieving data. Latency is the time it takes to do a portion of work. The
ideal storage device has high through-output and low latency.

Reliability refers to the rate at which the storage device fails; this can also be inverted
to express the expected time before failure. For example, the device failure rate is given
as 1 error every 100 trillion accesses or 1 failure every 10 years.

Capacity refers to the amount of data that a device can store. As already mentioned,
closely connected to this concept is the cost since it is usually possible to buy more de-
vices to increase capacity.

Volatility refers to whether or not a device can retain information after power is
turned off. Volatility can also be viewed as a component of reliability, since a power fail-
ure is one of the reasons for volatile devices to fail. In general, mass storage devices are
non-volatile, i.e., they do not need power to store information.

Rewritable are those devices that can store new information. Almost all applications
require the ability to read a storage device, but some do not require the ability to write
new information to the device.

Recording and storing data on the laboratory recorder is commonly employed when
dealing with continuous data such as spike train recordings or patch-clamp data. The
tape recorder could be an FM recorder, a VCR recorder or a DAT recorder. Their main
advantage is huge capacity, while their biggest disadvantage is that they are sequential-
access devices. This means that to read any particular block of data, the tape has to be
navigated to a certain position either through reading all preceding blocks of data or
tape winding. This makes them relatively slow for general-purpose storage operations.
Once the experiment has been completed, the experimental data stored on the tape can
be transferred onto computer either directly, if previously stored in digital format on the
VCR or DAT tapes, or they can be digitized through ADC conversion. This is a very flex-
ible solution that enables additional signal conditioning.

Direct digitization and storage of experimental data is commonly employed for non-
continuous, episodic data, for which storage demands are not as large as for continuous
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data. Nevertheless, increasing availability of DAT recorders on the market reduces cer-
tain advantages of direct digitization approaches such as higher acquisition rates.

In general, the optimal solution for data storage is arbitrary and depends on the type
of research and data, amount of data, necessity for speed and on-line processing, and
again on available solutions versus costs.

We will address in more detail various types of available computer mass storage me-
diums. Modern mass storage devices include all types of disk drives and tape drives.
Mass storage is distinct from memory, which refers to temporary storage areas within
the computer. Unlike main memory, mass storage devices retain data even when the
computer is turned off. Mass storage is measured in kilobytes (1,024 bytes), megabytes
(1,024 kilobytes), gigabytes (1,024 megabytes) and terabytes (1,024 gigabytes). It is also
sometimes called auxiliary storage.

Backup could be archival, in which case all data are copied to a backup storage device.
Archival backups are also called full backup. Incremental backup implies backup in
which only those files that have been modified since the previous backup are copied.

The main types of mass backup media include:
– Floppy disks: They are relatively slow and have a small capacity, but they are portable,

inexpensive and universal. Lately they are being replaced by devices with much high-
er capacity such as zip or jazz drives. These mediums are also portable and are rela-
tively inexpensive. Their speed is still much lower then that of hard disks.

– Hard disks: Very fast and with more capacity than floppy disks, but also more expen-
sive. Some hard disk systems are portable (removable cartridges), but most are not.

– Optical disks: Unlike floppy and hard disks, which use electromagnetism to encode
data, optical disk systems use a laser to read and write data. Optical disks have very
large storage capacity, but they are not as fast as hard disks. In addition, the inexpen-
sive optical disk drives are read-only. Read/write varieties are more expensive.

– Tape drives: They are relatively inexpensive and can have very large storage capaci-
ties, but they do not permit random access of data. Their transfer speeds also vary
considerably. Fast tape drives can transfer as much as 20MB (megabytes) per minute.
Tapes are usually called streamers or streaming tapes.

– CD-ROMs: abbreviation of Compact Disc Read Only Memory, also called a CD-ROM
drive, a device that can read information from a CD-ROM. It is a type of optical disk
capable of storing large amounts of data – up to 1GB, although the most common size
is 650MB (megabytes). A single CD-ROM has the storage capacity of 700 floppy
disks, enough memory to store about 300,000 text. All CD-ROMs conform to a stand-
ard size and format, so any type of CD-ROM can be loaded into any CD-ROM player.
In addition, CD-ROM players are capable of playing audio CDs, which share the same
technology. CD-ROMs are particularly well suited for information requiring large
storage capacity.
CD-ROM players can be either internal, in which case they fit in a bay, or external, in
which case they generally connect to the computer's SCSI (Small Computer System
Interface) or parallel port. Parallel CD-ROM players are easier to install, but they
have several disadvantages: they are somewhat more expensive than internal players,
they use the parallel port which means that another device such as a printer cannot
use that port, and the parallel port itself may not be fast enough to handle all the data
pouring through it.
There are a number of features that distinguish CD-ROM players, the most important
of which is probably their speed. CD-ROM players are generally classified as single-
speed or some multiple of single-speed. For example, a 4x player accesses data at four
times the speed of a single-speed player. Within these groups, however, there is some
variation. Also, one should be aware of whether the CD-ROM uses the CLV (Constant
Linear Velocity) or CAV (Constant Angular Velocity) technology. The reported
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speeds of players that use CAV are generally not accurate because they refer only to
the access speed for outer tracks. Inner tracks are accessed more slowly. Two more
precise measurements are the drive’s access time and data transfer rate. The access
time measures how long, on average, it takes the drive to access a particular piece of
information. The data transfer rate measures how much data can be read and sent to
the computer in a second. Finally, how the player connects to the computer should
also be considered. Many CD-ROMs connect via an SCSI bus. If the computer doesn’t
already contain such an interface, it needs to be installed. Other CD-ROMs connect
to an IDE (Integrated Device Electronics) or Enhanced IDE interface, which is the
one used by the hard disk drive.

– CD-R drive: Stands for Compact Disk-Recordable drive, a type of disk drive that can
create CD-ROMs and audio CDs. This allows users to “master” a CD-ROM with se-
lected data. Until recently, CD-R drives were quite expensive, but prices have dropped
dramatically. A particularly useful feature of many CD-R drives, called multisession
recording, enables sequential adding of data to a CD-ROM over time. This is ex-
tremely important if you want to use the CD-R drive to create backup CD-ROMs. In
order to create data archives, a CD-ROM-appropriate CD-R software package is also
needed, and it is often the software package, not the drive itself, that determines how
easy or difficult it is to create CD-ROMs. CD-RW (rewritable) disks are a type of CD
disk that enable multiple writing sessions unlike CD-R disks that only enable sequen-
tial adding of data up to the maximum storage capacity of the disk. Therefore, CD-
RW drives and disks can be treated just like a floppy or hard disk, writing data onto
it multiple times. They became available in mid-1997 while their price has dropped
dramatically since then.

– DVD: Short for Digital Versatile Disc or Digital Video Disc, a new type of CD-ROM
that supports disks with capacities ranging from 4.7GB to 17GB and access rates
from 600 KBps to 1.3 MBps. One of the best features of DVD drives is that they are
backward-compatible with CD-ROMs. This means that DVD players can play old
CD-ROMs, and video CDs, as well as new DVD-ROMs. Newer DVD players, called
second-generation or DVD-2 drives, can also read CD-R and CD-RW disks.

– DAT: Acronym for digital audio tape, a type of magnetic tape that uses a scheme
called helical scan to record data. A DAT cartridge contains a magnetic tape that can
hold from 2 to 24 GBs of data. It can support data transfer rates of about 2MB per sec-
ond. Like other types of tapes, DATs are sequential-access media. The most common
format for DAT cartridges is DDS (digital data storage).

Concluding Remarks

The rapid development of computer technology and data processing has made these
techniques widely accessible and used. Furthermore, the ease of implementation of var-
ious data acquisition and processing techniques and tools as well as the comfort of gen-
eration and implementation of complex transformations of the signal data, with the ex-
cellent graphical presentations with just a couple of finger strokes on the computer key-
board, has tempted a number of researchers to slip into this clicking environment. Nev-
ertheless, the essential question remaining is what do such manipulations and opera-
tional condensations of the signal and data signify in the context of a particular para-
digm and set of observations. Are the signal processing and analyses undertaken the
most appropriate ones, and if so, do they implement the optimal methods and what
kind of errors, inaccuracies and ambiguities can result from them?

This has recently been recognized by several authors, leading to a number of publi-
cations and specialized issues aiming to critique modern signal processing and analysis
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approaches and at the same time provide introductory texts with a number of practical
examples to which the techniques they discuss may or may not be applied.

As a bottom line, researchers should be aware of their own attitudes towards the phe-
nomena under investigation and the tactical approaches they deploy in their experi-
ments. Before jumping hastily into an experiment, one should stop and ask what is re-
ally required of the data to be collected, preferably before its accumulation. This re-
quires a clear concept of the purpose of the experiment with respect to the type of ob-
servation to be made, measurements used and processing and analysis necessary for
making final comparisons and conclusions as to the mechanisms investigated. It also re-
quires a clear hypothesis about the nature and composition of the signals. It is only
within such a conceptual and operational framework that sense can be made of the re-
sults acquired and processed with tricky techniques.

Finally, a simple and essential piece of advice to inexperienced researchers, particu-
larly those with no mathematical or engineering background, is to stop and ask oneself
what particular operation is to be done and why. The raw signal recorded contains all
information available. Conditioning and processing may reveal hidden features, but can
also hide features and frequently remove information that may be of importance. It is
essential to remember that these procedures never add information to a signal, so at
times it may be better not to process it from the beginning.
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■ Glossary

AliasingAliasing or frequency folding is interference due to an insufficiently high sampling rate in A/D
conversion when an input signal has frequency components at or higher than half the sampling
rate. If the signal is not correctly band-limited before sampling to eliminate these frequencies,
they will show up as aliases or spurious lower frequency errors that cannot be distinguished from
valid sampled data.

AnalogA term applied to any device, usually electronic, that represents values by a continuously variable
physical property, such as voltage in an electronic circuit.

Analog SignalAn analog signal consists of a voltage or current that varies continuously within a range of values.

Analog-to-Digital 
(A/D) Converter

An analog-to-digital converter is a device that translates analog signals to digital signals suitable
for input to the computer. It periodically measures (samples) the analog signals and converts each
measurement into the corresponding digital value.

Analog FilterAn analog filter is defined by a rational function of the form:

where s is the Laplace variable (a complex number) and the complex numbers zi, pi  are, respec-
tively, the zeros and poles of the transfer function G. We define the loss function (or attenuation)
of G (in dB) by 

Anti-alias FilterAn anti-alias filter is always required to band-limit the signal before sampling and to avoid alias-
ing errors. Such filters are specified according to the sampling rate of the system, and there must
be one filter per input signal. In practice, such filtering is commonly used prior to sampling.

AttenuationThe weakening of a transmitted signal as it travels farther from its point of origin. Usually atten-
uation is measured in decibels (dB). The opposite of attenuation is amplification or gain.

AveragingFiltering technique based on the summation of M time-locked, stationary waveforms buried in
real-world broadband noise. Averaging improves S/N by a factor of . 

BackupAs a noun, a duplicate copy of a program, a disk, or data, made either for archiving purposes or
for safe-guarding files from loss if the active copy is damaged or destroyed. A backup is an “insur-
ance” copy. As a verb, back up means to make a backup copy.

BandwidthThe difference between the highest and lowest frequencies of a certain signal or of the frequency
range of an electronic device, within which it transmits, processes or stores a signal.

BlankingBrief suppression of a signal.

Butterworth FilterFilter built around the Butterworth polynomial; it is a mathematical approximation to an ideal fil-
ter, in which the magnitude of the transfer function in the frequency domain is maximally flat.
Butterworth filters are optimal in the sense that they provide the least weakening without over-
shoot in the magnitude response.

Chebyshev FilterVariant of the Butterworth filter, in which the magnitude of the transfer function has a series of
ripples in the passband that are of equal amplitude. Chebyshev filters are optimal in the sense that
they provide the sharpest transition band for a given filter order.

Common-Mode (CM)
Voltage

Common-mode voltage is the voltage common to both input voltages. Ideally the instrumentation
amplifier ignores the common-mode voltage and amplifies the difference between the two inputs.

Common-Mode 
Rejection Ratio (CMRR)

CMRR is the degree to which the amplifier rejects common-mode voltages and is usually ex-
pressed in decibels: CMRR = 20 log (GD/GCM)[dB], where GD is differential gain and GCM is com-
mon-mode gain.
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Conditioning The use of special equipment to improve the ability of the signal processing line to transmit data.

Data Plural of the Latin datum (that which is given), meaning an item of information. Following clas-
sical usage, one item of information should be called a datum, and more than one item should be
called data: “The datum is”, but “the data are”. In practice, however, data is frequently used for
the singular as well as the plural form of the noun.

Data Acquisition The process of obtaining data from another source, typically one outside the system, such as by
electronic sensing.

DC Offset The shift in the DC level of the signal.

Decibel (dB) One-tenth of a bel (derived from Alexander Graham Bell), a dimensionless unit of relative meas-
urement commonly used in signal processing. Measurements in decibels fall on a logarithmic
scale, and they compare the measured quantity against a known reference, or against another
measured quantity of the same kind.

Differential Inputs Reduce noise picked up by the signal leads. For each input signal there are two signal wires. A
third connector allows the signals to be referenced to the ground. The measurement is the differ-
ence in voltage between the two wires: any voltage common to both wires is removed.

Digital Digital representation that maps values onto discrete numbers, limiting the possible range of val-
ues to the resolution of the digital device.

Digital Filter Digital filter is an algorithm implemented in computer software that transforms digital input sig-
nal. Digital filters are usually specified in the frequency domain in terms of the frequency ranges
that they leave unaffected and those that are removed from any input signal.

Digital Signal A signal in which information consists of discrete numeric values represented by binary patterns
of 0s and 1s, or physically by “low” and “high” voltages.

Digital Signal Processor Abbreviated DSP. An integrated circuit designed for high-speed data manipulations, used in data
acquisition applications, for example.

Digital-to-Analog
(D/A) Converter

A digital-to-analog converter is a device that transforms series of samples back into an analog sig-
nal. A D/A converter takes a sequence of discrete digital values as input and creates an analog sig-
nal whose amplitude corresponds, moment by moment, to each digital value.

Disc and Disk It is now standard practice to use the spelling disc for optical discs and the spelling disk in all other
computer contexts, such as floppy disks, hard disk, and so on.

Discrete vs. Digital Signal A discrete signal may be specified a priori, without any reference to a continuous-time system, or
it may be obtained by sampling a continuous-time signal. If x (t) is a continuous-time signal and
we sample at intervals of length Ts, than we obtain the sequence x(nTs), with n=1…M, and M the
maximal number of samples. When we wish to process a sampled signal by computer, then we
must digitize each sample. Rounding x(nTs) to its nearest level results in a quantized signal value
xq(nTs). The quantized signal xq is called a digital signal to distinguish from discrete signal.

Discrete Time System A discrete system is an algorithm that operates on an input sequence x and produces an output
sequence y. Obvious properties of this kind are linearity and time invariance. The response to any
input of linear, time-invariant (LTI) system can be found by convolving the input with the re-
sponse of the system to the unit impulse. This implies that an LTI system is completely character-
ized by its impulse response.

Display Displays are used to reveal important attributes of a signal. In a computer environment, a display
is the visual output of a computer, which is commonly CRT-based video display. With notebook
computers, the display is usually LSD-based.

Fast Fourier Transform Abbreviated FFT. A set of algorithms used to compute the discrete Fourier transform of a func-
tion, which in turn is used for solving series of equations, performing spectral analysis, and car-
rying out other signal-processing and signal-generation tasks.

Finite Impulse Response
(FIR) Filters

Filters whose response to a single input impulse remains only as long as the next sample arrives
to be included in the calculating formula.

Fitting The calculation of a curve or other line that most closely approximates a set of data points or
measurements.
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Fourier TransformTransforms data from the time into the frequency domain and is a representation that is often eas-
ier to work with.

Frequency ResponseAlso called a spectral response. It embraces magnitude and phase-frequency characteristics.

Infinite Impulse Response 
(IIR) Filters

Their response to a single impulse extends indefinitely into the future. The output of IIR filters
depends not only on the inputs, but on previous outputs as well.

Quantization EffectsQuantizing effects are introduced by analog-to-digital conversion and are due to coding tech-
nique.

Random NoiseA noise in which there is no relationship between amplitude and time and in which many frequen-
cies occur without pattern or predictability.

Random Number 
Generator

Generator that creates a number or sequence of numbers characterized by unpredictability so that
no number is any more likely to occur at a given time or place in the sequence than any other is.
Because a truly random number generator is generally viewed as impossible, the process would
be more properly called “pseudo-random number generator”.

ResolutionThe resolution of an A/D or D/A converter is the number of steps the range of the converter is di-
vided into. The resolution is usually expressed as bits (n) and the number of steps is 2n, so a con-
verter with a 12-bit resolution divides its range into 212 or 4096 steps. In this case a [0–10] volt
range will be broken up to 0.25 millivolts.

Rms - Root Mean SquareThe square root of the sum of the squares of a set of quantities divided by the total number of
quantities. Used in monitoring and measuring AC signals.

Signal-to-Noise RatioAbbreviated as S/N or SNR. The amount of power by which a signal exceeds the amount of noise
at the same point in transmission or processing.

Signal ProcessingAn umbrella term for the work performed by mostly electronic devices, more specifically the sys-
tematic manipulation of signals to transform it in some way in order to achieve a desired goal.

SpectrumThe range of frequencies that a signal contains in the frequency domain.

Settling TimeSettling time of the amplifier is the time necessary for the output to reach final amplitude to with-
in small error (often 0.01%) after the signal is applied to the input.

SignalA variation in the amplitude and polarity of an observed physical quantity produced by a mech-
anism we desire to understand by experimental investigation.

SmoothingTechniques to smooth rugged variations in digitized data with a tendency to preserve features of
the data such as peak height and width.

StorageIn computer terms, any physical device in which computer information can be kept.
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