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The paper discusses the use of the theory of entire functions for solving
the phase problem. In all practical cases only three forms of logarithmic
Hilbert transform could possibly be required. The paper defines them and
analyses their applicability. A generating form is also put forward for cases
of possible theoretical interest. The uniqueness of the phase obtained from
a logarithmic Hilbert transform is investigated and the difficulties due to
the presence of zeros in the complex plane are discussed. Methods are put
forward for both the removal of the zeros and, when this is not possible,
for locating them in order to include their effect. The paper analyses known
experimental methods for phase determination from the point of view of the
theory presented and highlights their unique character.

1. INTRODUCTION

Detecting visible light and radiation —electromagnetic or de Broglie—of higher
frequencies provides data related to the energy density of the radiative field. The
field however, in a quasimonochromatic situation, is characterized by two para-
meters: the modulus and phase, i.e. by a complex function. The intensity is propor-
tional to the square of the modulus and phase information is lost on recording.

Let us consider, for example, a scattering/image formation experiment; we shall
designate the field in the object (primary) space by &'(p) and the scattered wave in
the Fraunhofer space by L (s). If an image is formed, the field in the image space is
E,(p’). The complex amplitudes &(p), K s) and KE(p') are related by Fourier
transform relations and hence the determination of any one of these functions
provides the others. In our scattering experiments we determine only | E,(s)| and/or
| Es(p)]- '

In general, determination of | Ey(p’)| provides only geometrical information con-
cerning the object while knowledge of |E,(s)| permits determination only of the
statistics of &(p). In principle, this may provide information on the statistical
properties of the object itself.

The object of this paper is the determination of the complex object wave. This
requires the solution to the phase problem, i.e. the determination of E(s) or E;(p'),
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from the measured |E(s)| and/or |E(p’)|. The problem of the relation between the
object and the object wave is not considered here.

The phase problem occurs not only in scattering phenomena as introduced here,
but also in image analysis, radio astronomy, coherence theory, and other related
areas. Qur analysis can be extended to any phase retrieval problem when a Fourier
space can be defined. For generality we shall assume, un less specified otherwise,
that the measurements are made either in the Fraunhofer space or the image space.
The function in the space of measurement is denoted by #(x) and the function in the
conjugate space is f(¢).

The principal aims are to establish the conditions under which a solution to the
phase problem can be found, and to seek methods of its solution. Because of the
Fourier relation between the complex amplitudes as well as the finite extent of the
intervals in which these amplitudes are physically defined, we have sought a solution
using the theory of entire functions. This approach provides an integral relation
between the real and imaginary parts of a function and the Hilbert transform
appeared the natural one to consider. Its usual formulation had to be modified and
the convergence and uniqueness of the solutions have been examined. The recovery
of phase as described here allows arbitrary changes of origin of the coordinate
systems in both the primary and Fraunhofer spaces (since a modulus is invariant
with respect to such shifts in its Fourier space) and the multiplication of the field in
any space by an arbitrary but unimodular constant.

We shall restrict our consideration to one dimensional situations. We shall also
consider quasi-monochromatic fields only and exclude from our discussion inelastic

effects of any sort.

2. MATHEMATICAL BACKGROUND

To formulate the Hilbert transforms in suitable forms, we consider the conver-
gence properties of the appropriate integrals by continuing the function F(x) into the
complex plane and examining its behaviour, especially at infinity.

The complete description of this behaviour is provided by the theory of entire
functions (see, for example, Boas (1954) and Cartwright (1955)), and in particular by
the properties of the Phragmén-Lindel6f function.

The following relation shows the significance of the two assumptions made,
namely that a Fourier relation exists in scattering experiments and that objects are
of finite extent

TrEOREM 1. If a function F(z) is defined by
b
F(z) =f J (@) exp (izf) dt, (2.1)
a

where z = z+1y, f(¢) integrable in the interval (a,d), |a| < b < o0, and f (¢) does not
vanish almost everywhere in any neighbourhood of @ and b, then F(z) is an entire
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function of order 1 and type b (and not smaller type)t and refers to all functions of
physical interest.

In general, the growth of |F(z)| is anisotropic. A descriptor of this direction-
dependent growth is the Phragmén — Lindel6f function (or indicator function), h(6).
For a function of unit order,

h(0) = lim supmﬁ%{fe—l—m.

—>00

(2.2)

The indicator function may be identified with a supporting function.] As such,
its value for any direction  may be found from the indicator diagram.§ For functions
defined by equation (2.1), the indicator diagram is the line segment (—ib, —ia). The
indicator function is the most positive projection of this indicator diagram onto the
ray argz = 0, (h(0) is negative if the projection lies completely on argz = 6 +x).
Thus if, for example, @ = — b, the line segment is (—ia, ia) and we have, for the
projection onto the ray argz = 6,

h(0) = a|sin0)|. (2.8)

For b > |a|, the maximum value of |h(0)]| is b and lies in the direction 0 = — r.
Clearly, for functions defined by (2.1), 2(0) = 0 for 6 = 0 or = which means that F(z)
behaves, as |z| — o0, as a finite power of « (and cannot behave exponentially on the
real axis). Since F(z) € L2, F(x) tends to zero as |z| — co. Thus, from the above, it
follows that, as |z| — oo, F(x) — 0, as a finite power.

There are three possible situations to be considered for the positions of the
indicator diagram relative to the origin.

TarEorEM 2. For functions defined by equation (2.1), A(f) has the following
properties:

(i) Ifthe origin is inside the line segment (—ib, —ia), i.e. @ < 0, then A(0) > 0 for
all 6, the equality holding only along the real axis.

(ii) If the origin is outside the line segment (—ib, —ia), i.e. @ > 0, then A(0) is
negative only for direction argz = 6 projected into the half plane not containing
the segment, i.e. the upper half plane.

(iii) If the origin coincides with a, then k() is zero for directions not containing
the segment, i.e. the upper half plane.

T The order, p, and type o, are defined by
In [max | F(r)|]

p = lim supw, o = lim sup ————48——=,
p—o Inr F—>00 7P

where the supremum means the least upper bound, and z = rel?. The importance of the two
parameters in this application is that they represent a limit of the maximum growth rate of
|F(z)| as |z] - co.

i The support function associated with some £2(7) defines the domain in which 2(7) does
not vanish.

§ The indicator diagram is a non-empty, bounded, closed, convex set of points the pro-
jection of which onto the direction argz = 6 is a support function.

13-2
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So far, we have discussed the maximum rate of growth of ¥'(z). However, of more
interest in this application, is the actual rate of growth of F(z). In certain circum-

stances, we are able to use A(0) to describe the actual rate of growth by dropping the

supremum from equation (2.2), i.e.
119

h(0) = ML_[ (2.4)

P—>00
In order to write (2.4) for zero free angles, two conditions must be met:
(i) A(0)+h(x) =0, and (ii) F(z) must have a finite density of zeros.

Since in our case, A(0) = k(n) = 0, the first condition is fulfilled; if n(r) is the
number of zeros of F(z), |z| < r, then the second condition is verified too, provided
that n(r)/r is finite for arbltrarlly large r. This is known to be true, since Titchmarsh

(1925) has established that
nr) M. (2.5)
o T T
The influence of the limits @ and b on the actual growth of [F(z)| in the complex

plane can now be described.
When a > 0, F(x) is referred to as a causal transform?} and Titchmarsh’s theorem

is applicable (Nussenzveig 1972).

TrrorEM 3. (Titchmarsh’s Theorem.) If a function F'(z) fulfils one of the following

conditions, it fulfils all of them.
(i) F(z) is for almost all z, the limit as y — 0% of an analytic function F(z) regular

fory > 0 and eL? over any line in the u.h.p. which is parallel to the real axis, i.e.
+c0
f [P)|2de <c¢ (y > 0).
(ii) The inverse Fourier transform, f(f), of F(x) vanishes forf < 0 (ie. 0 < a < b

in theorem 1).
(iii) Real F'(x) and imaginary F(x) verify the formula

Re F(x Pf Im x) Im Fw)dz (2.6)
(iv) Real F(z) and imaginary F(x) verify the formula
Im F(z') P f Re I (””) dm. (2.7)

T In temporal processes the requirement f() = 0 for ¢ < a, for @ = 0, is referred to as the
causality condition and may be associated with the statement that ‘the effect cannot precede
the cause’. Here, where discussion is concerned with functions of spatial rather than temporal
variables such a concept would seem misplaced. However, we retain the terminology  causal
transform’ to mean a function whose Fourier transform vanishes for negative values of its

argument.
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The relations (2.6) and (2.7) are known as Hilbert transforms (or dispersion
relations): the P denotes that the Cauchy principal value is to be taken. Thus when
0 < @ < b we have an integral relation between the real and imaginary parts of
F(x). For the particular case when o = 0 we shall designate that F(z) be an O-trans-
form (see § 3).

3. THE LOGARITHMIC HILBERT TRANSFORM (L.H.T.)

We consider here the direct determination of F(x) from measured |F(x)| by
associating the modulus and phase with the real and imaginary parts of a causal
transform. We write

F(z) = |F(2)] exp (i$(2)),
In F(z) = In|F(z)| +i(¢(z) + 2nr),

where 7 is an integer specifying the Riemann surface in which the (multiple-valued)
logarithmic function is defined. Thus the real part of In F'(z) is determined solely by
the modulus and if theorem 3 may be applied to this function we have, in principle,
the desired relation between the measured modulus and the required phase.

Unfortunately, in practice, the situation is not as simple as that. I't is well known
(Titchmarsh 1939) that In F'(z) has the same region of analyticity as F(z) except at
the points where F(z) = 0. However the function In F'(z) is not, in general, a causal
transform. This is due to the fact that F(x) e L? and thus tends to zero as |x| — 0.
It follows that In F(x) diverges to — oo and hence cannot be square integrable, its
Fourier transform cannot be defined, and thus cannot be shown to satisfy theorem
3 (ii). While some authors (see, for example, Bates 1969; Goedecke 1975; Saxton
1975) are aware of this fact, other authors have overlooked or ignored it (see, for
example, Wolf 1962; Roman & Marathay 1963; King 1975). This convergence
problem has been resolved for a particular case, by Pefina (1971) and considered
in an intuitive way for another particular situation by Page (1955). We adopt a more
general approach to the problem by either creating a causal transform containing
In F(z) (§ 3 (a)), or modifying F(x) (§§3(b) and (c)) prior to utilizing the logarithm
of its modulus thus achieving a causal logarithmic transform.

The analysis has been suggested by Toll (1956) (see also Hilgevoord 1960) but
doesnotseem to have been previously applied to the Hilbert transform of logarithmic
functions. The formulation of the logarithmic Hilbert transform (1.H.t.) for various
behaviours of F(z) is considered below. We assume in this paragraph that F(z) # 0
in a half plane which is consistent with writing (2.4). This will be regarded as the
simplest case of a ‘reference transform’ which will be introduced in §4(a). The
case in which #(z) has zeros in this half plane will be examined in §4.

(@) The restricted logarithmic Hilbert transform (r.H.t.)

One way to achieve a function having a logarithm which is square integrable is to
add a finite constant A4, obtaining F'(x) = A + F(x) such that In F"l(x) € L?. This is
satisfied when 4 is normalized to unity.
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We require regularity in a half plane of the function F'(x) and this implies that
Fl(x) is also a causal transform. This is consistent with the indicator diagram
approach, as the indicator diagram of a constant is a point at the origin. If F(x) is
a causal transform then the indicator diagram of F(z) lies to one side of the origin.
The indicator diagram of the sum of these two functions is the smallest convex set
containing the union of the separate indicator diagrams, i.e. the line segment
(—ib, 0) and so F'(x) satisfies theorem 3 (iii) and is also an @-transform.

It has been shown (Burge, Fiddy, Greenaway & Ross 1974) that if

Fi(z) = | F'(@)| exp (ia(a)),
then, provided that F'(z) s« 0 for y > 0, the real and imaginary parts of the function
In F(x) are related by Hilbert transform, i.e.

1 0 1
a(x’):—_Pf M (3.1)

T ) =2

The phase a(2') is easily related to the phase required ¢(x’).

Saxton (1975) and Bates (1969) state that an equation of the form (2.7) in terms
of In #(x) may give a good approximation to the phase in practice but this could at
best be true only if the allowable variation of | F(x)] is restricted. The derivation of
(2.7) by Petina (1971) for In | F(x)| requires both real F(x) and imaginary F(x) # 0,
i.e. the addition of a constant.

(b) The modified logarithmic Hilbert transform (m.H.1.)
When a = 0 in a half plane (in which the Hilbert transform is evaluated by
contour integration) k(0) =0 as r-—>co. Hence from (2.4), if F(x) is an 0-
transform, and if its zeros have a density,

i0
lim l_n.[_F_i_._’”e)‘ —0, (3.2)

r—>0

then the function In F(2)/z is the desired modified function containing In #(z).
We write a modified Hilbert transform (m.H.t.) for the function In F(z) by taking
the real and imaginary parts, on the real axis, of the following integral
In F(z)dz
o #z—a')’

where C is a closed contour consisting of the real axis and a semicircle of infinite

radius.
Since

InF In|F i
nF@) _In|7e)| | ige) 53)
x @ x
the first term on the right hand side of (3.3) converges. However, the convergence
of the second term must be investigated. If the phase ¢ is bounded for all z in the
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w.h.p. then the second term is clearly zero in the limit as 7 - oo in the u.h.p. If
Re F(x) # 0, it follows that Re F(z) # 0 in the u.h.p. and the phase will satisfy the
restriction |@(z)| = |arctan (Im F(z)/Re F(z))| < 4= for all z, thus ensuring the con-
vergence of (3.3). In additionitimplies F(z) # 0,i.e.nozerosin theu.h.p., a condition
which we have already said is assumed. Alternatively the assumption that the phase
is bounded is equivalent to considering only the principal part of In F'(z); this is
necessary since we use a closed contour to evaluate the Hilbert integral. Applying
the calculus of residues we have

In F(a') = —i-fpfw mF@de ) p); (3.4)

o X(x—2)

P again denotes the Cauchy principal value. Taking real and imaginary parts of
equation (3.4) gives the dispersion relations

In|F(@)| = ’%Prw pyde 4 |7(0)], (3.5)

—o X(x—2)

+¢(0). (3.6)

and () =~ %’ Pf:) m——-—x‘(i(_g_cll/()ix

These relations are correct if F(z) is assumed to behave as a finite power of r as
7 — o0 in the u.h.p. since then #~1In |F(r)| - 0 as r — co in the w.h.p.; this is always
the case when F(x) is an O-transform.

The m.H.t. (equation (3.5)) has been mentioned by Page (1955). He does not
investigate the properties of the function in the u.h.p., and his conclusion that the
contribution from the integral along the infinite semi-circle at infinity vanishes, is
intuitive and without proof.

For all entire functions bounded on the real axis, £(0) = h(r) = 0 and so the integral
in (3.6) will converge whatever the behaviour of In [F(r)| in the u.h.p. Since the
modulus on the real axis is invariant under a change of origin in the Fourier space,
a change in the values of @, b is possible such that ¢ = 0 (and b = b+ a). This ensures
that 2(f) = 0in a half plane and the solution of (3.6) has the interpretation required,
i.e. it is a phase. However it is the phase of an @-transform, which is precisely the
original function, phase shifted by an amount which is exactly that required to
make o = 0. Thus (3.6) may always be used for phase recovery in practice, the
resulting function being an (¢-transform irrespective of the original values of a, b.

From a rigorous theoretical point of view the m.H.t. can only be applied to regular
functions in a half-plane or entire functions which can be made regular in a half-plane
by a shift of origin in the Fourier space, i.e. to functions of order 1; this includes all
physically realizable functions.

(¢) The general logarithmic Hilbert transform (g9.H t.)

We congider the case @ # 0. F(z) is no longer an @-transform and may not be a
causal transform. Hence F(z) is an entire function of order one not necessarily regular
in a half-plane or even amenable to be made regular in a half plane by shift of origin.
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We demonstrated (§2) that whatever the value of @ (|a| < c0) we have
h(0) = k(n) = 0,
but h(0) # 0 throughout a half plane unless @ = 0. Therefore, for a # 0 we have

- ’

tim 170 ¢Y)] (: I _q (3.7)

P—>0

where @ is a constant such that @ # 0 and |@| = |k(0)| < b < co. This means F(z) is
behaving exponentially (either increasing (e < 0) or decreasing (o > 0), and so a
function is required which goes to zero as r — co. A corollary to Jordan’s lemma

shows that

. In|F(ret))

for ¢ > 0. Therefore we define a new function containing In #(z), which, with the
assumptions made, will be a causal transform, by considering the convergent

integral
In F(z)dz
f o2 (z—a") -9

We choose the parameter ¢ as a positive integer; ¢ = 1 is sufficient although ¢(x)
can still be obtained without difficulty for ¢ > 1 (§3(d)). Thus:

1nF(x')=:_i(x-v7-tfPf°° %m'%(lnﬁ’(m) +InF0).  (3.10)
—~ 0 “ =0

We let
=K

=0

L)

da

say, as the origin « = 0 can be chosen arbitrarily, one may always ensure that K is
finite (Toll 1956).

From (3.10) we have

2 s 7
d(z') =—%—Pf_m%{;(—z1£f+x’lmlf+¢(0). (3.11)

From equation (3.11) we may find the phase from the modulus of F(z), for any
bandlimit (a,b) to within an arbitrary linear term. The numerical evaluation is
complicated by the singularity at « = 0 (the singularity at « = 2’ is avoided by use
of the convolution theorem (von Fey 1956; Saxton 1974)). The problem at x = 0is
avoided by subtracting the value of In |F(z)| at = 0 (Toll 1956; Hilgevoord 1960)
equation (3.9) then becomes

d
InF(z) =l F(0)—a’ T (In F ()| (3.12)
fo 2z —a’)

which leads to the same result as (3.11).
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(d) Recursion relation between 1.H .ts

If In F(z) behaves as a polynomial of degree », for example when F(z) is an entire
function of finite type and of order =, then In F(z)/z"+' will satisfy the square
integrability and regularity conditions of theorem 3.

Thus in general

) = w(x')n+1P © In|F(x)|

T —o X (x—2')
where K’s are constants and » is an integer value of ¢ (see also Muskhelishvili 1953).
We note that the Fourier transform of 2= In #(z) will vanish for negative arguments
(from theorem 3), i.e. this function is a causal transform.

In practice, with a band limited F(z), F'(z) is of finite type and of order 1. Hence
In F(z) behaves at most as an exponential in zin a half plane and the g.H.t. (equation
(3.11)) is always sufficient to recover the phase though it may not be necessary. In
fact, the m.H.t. may also be used, but it renders F'(z) into an @-transform.

Provided that all the integrals which are implied below actually exist, we may
write the general relation

® glx)de _g(=') §(0)
Pf_wx(x—x’) T T (3.14)

do+ K (x')" + Ky(z')* ... + ¢(0), (3.13)

where §(z') is the Hilbert transform of g(z). This equation shows that if the boundary
conditions are chosen such that the correct phase is given by an r.H.t., the same
phase is given by an m.H.t. (to within at most an arbitrary first degree polynomial).
Furthermore, by replacing g(x) in (3.14) by x~"g(x), a recursion relation may be
derived establishing equation (3.11), the g.H.t., and showing that the phases agree
to within the arbitrary polynomial.
In summary, we consider the contour integral
In F(z)dz
0,
c?Mz—a')
where the contour C is the real axis and a semicircle, I', of infinite radius. For
a function F(z) defined by equation (2.1), the choice n = 2 (g.H.t.) is always sufficient
to ensure that the integral along I" does not contribute and that the integral along
the real axis is convergent. The choice n = 1 (m.H.t) will always ensure that the
integral along the real axis is convergent but leads to a zero contribution from the
integral along I"only if a = 0. Thechoicen = 0(r.H.t.)doesnot result in aconvergent
integral along the axis unless | F(x)| contains a d.c. level and even then the contribu-
tion from I vanishes only if @ = 0.

4. THE EFFECT OF ZEROS IN THE U.H.P.

Many functions will have zeros in more than a half plane and we examine the
effect of these zeros on the phase determination and put forward methods for taking
their contributions into account. Whenever F(z) = 0, In F(z) has a branch point.
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Evaluating equation (3.11) by a closed contour integration in the u.h.p. implies that
the branch cuts were avoided, but their contribution to the integral must be
included to give the actual phase ¢(x). We must therefore add to (3.10) a term
. R;(z) where the sum is over the j zeros which lie in the u.h.p. Considering the most
J

general case and taking real and imaginary parts (of (3.9) for ¢ = 1) we obtain
’ (x,)2 @ ¢(x) dx ’ ‘4 ! !
In|F(z')| = TP » m+x Re K +1n | F(0)| + 2(x )zReijj(x ), (4.1)
AN (x')2 ® ln IF(x)ldx ’ AV ’

The term F;(z) is the functional contribution due to the jth zero at z; = x; +iy;. From
the measured modulus we evaluate the g.H.t. integral

( ')ZPJ”““ In|F(x)| da (43)

x
T e =)

Pu(@') =

(the m.H.t. might equally well have been used). We shall designate this phase the
‘Hilbert phase’ (sometimes it is known in the literature as the ‘minimal phase’ or
‘canonical phase’). The function constructed from |F(x)| and ¢y (x) will be called
the ‘Hilbert function’, H(x), associated with F(x).

From equation (4.2), the actual phase is given by

du(x) = — P(x) + 222 Im ?} Ry(x) (4.4)

neglecting linear terms and constants. To evaluate Y, R;(x) it is necessary to know
j

the coordinates and the order of each zero which lies in the u.h.p. However, if the

locations of the zeros are determined, rather than determining ¥, &;(x), the function
J

F(z) can be directly determined (equation (4.6)).
We present first a method for eliminating the zeros from the u.h.p. Second, we
discuss the means of calculating F(z) by taking the zeros into account assuming

them to be of order unity.

(a) Removal of zeros from the w.h.p.
If 3 Ry(z) = 0 for the (unmodified) function F(2), the zeros lie on the real axis

J
and/or in the L.h.p. and the actual phase ¢(x) is given directly by the Hilbert phase
¢p (). This occurs for the complex degree of coherence of black body radiation (Wolf
1962) and the function sinc x (O’Neill & Walther 1963). Other examplesare discussed
by Titchmarsh (1939, 1948), Pélya (1918) and Cartwright (1955).

If F(z) has zeros in the u.h.p. there is the possibility of removing them by modi-
fying the function in a way which follows from Rouché’s theorem (Holland 1973),
which states: If two functions F'(z) and R(z) are regular in a region C of the complex
plane andif | F(z)| < |R(z)| at every point of the boundary of Cthen this is a sufficient
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but not necessary condition for R(z) and F(z)+ E(z) to have the same number of
zeros in C.

R(z) is termed a reference function if it is chosen as having no zeros in the u.h.p.
and satisfying Rouché’s theorem in this half plane. Then the function R(z)+ F(z)
has no zeros in the u.h.p. Hence the behaviour of E(z) + F(2) is dominated at least
from this point of view, by R(z). The function #(z) = E(z) + F(z), zero free in the
w.h.p., is therefore identical to its associated Hilbert function, i.e. its actual phase is
the Hilbert phase. We shall call this particular type of Hilbert function a ‘reference
transform’ (%-transform). A function F(z) with no zeros in the u.h.p. will be
regarded as the simplest #-transform, for which E(z) = 0.

For Rouché’s theorem to be verified, R(z), must increase in the u.h.p. not slower
than F(z) when a < 0 and must not decrease faster than F'(z) for ¢ > 0. Evidently,
a suitable function for both cases will be RB(z) = A ei®, where ¢ » aand |4| > |F(x)|
for all 2.

In the particular case a = 0, the largest acceptable value for ¢ becomes zero and
this corresponds to R(z) = A, a constant. The addition of B(z) to an analytic function
moves the zeros but does not destroy them. This follows from an analytic function
not having a local minimum (or maximum) in its modulus within its region of
analyticity, except for minima at zeros. For example, in the important particular
case of F(z) being an O-transform, if we choose ¢ = 0, i.e. B(z) = constant, then,
since F(z) tends to zero as # — oo in the u.h.p. there must always be a contour in the
u.h.p. along which any added constant, however small, will have a modulus greater
than |F(z)|. This contour will mark the region where zeros may occur since by
Rouché’s theorem, there can be no zeros beyond this contour. As the constant is
increased the contour moves across the real axis, i.e. all the zeros move into the
Lh.p. This procedure makes it also possible to use the r.H.t. (§3(a)) for obtaining
the phase. The optimum constant, bearing in mind experimental error in the deter-
mination of | F(z)| will produce a contour tangential to the real axis from the Lh.p.
Practical applications of this condition are discussed in § 5 (a). It is never possible,
strictly speaking, to add an R(z) having the form A el as this corresponds to a
Dirac -function in the conjugate space, located to one side of the spectrum of #(z);
however, a reasonable approximation can be achieved.

(b) Number and location of zeros

In general, neither the position nor the order of the zeros is known. However,
their location and order (which we assume to be unity) cannot be arbitrary since
these determine the modulus on the real axis (Titchmarsh 1925, lemma 4.4) by the
expression

|F@)| = |F(O)] I1 1—% exp (—i6,)], (4.5)

j=1
where the jth zero is at z; = 7;el.

Zeros on the real axis do not cause any ambiguity, but if F(z) has N zeros in the
complex plane (not on the real axis), then replacing z; by its complex conjugate does
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not affect the modulus on the real axis. Thus 2V possible solutions have this measured
modulus, and so a reflection of an arbitrary number of zeros about the real axis is a
source of ambiguity. A complete set of 2V phases for a given modulus may be
generated by ‘zero flipping’ which all give rise to functions with the same band limit
(Walther 1963) because the density of the zeros is preserved. Since the Hilbert phase
corresponds to a function with no zeros in the u.h.p., all the zeros from the u.h.p. of
F(2) are reflected into the Lh.p. to form the Hilbert function. The z; values for the
Hilbert phase function may be found by the analytic continuation of the Hilbert
function (or the intensity, see, for example, Saxton 1975) in the Lh.p.

The Fourier transform of any bandlimited function has a denumerable infinity of
1,
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zeros tend asymptotically to lie along the real axis at the Nyquist frequency (Bond &
Cahn 1958). Fortunately, in practice, the number of zeros that need be considered is

finite, as will be discussed below.
The function F(z), having zeros in the u.h.p., may be expressed as the product of

two analytic functions (Titchmarsh 1939) as follows:

M P
F(z) = H(z)jl;[l (Z_;) (4.6)

where H (z) is the Hilbert function and the second function is the Blaschke product.

M of the N zeros are in the u.h.p. This form of the Blaschke product (van Kampen
1953) preserves the number of zeros, since introducing a zero into the w.h.p. at z;
cancels the conjugate zero at z;.

Bates (1969) has suggested that if the zeros in the Lh.p. are located by analytic
continuation, and if N zeros need be considered, then by trying various combinations
of zeros (M < N)the ambiguity may be reduced by discarding combinations of zeros
which do not give acceptable solutions. This presupposes that one can establish
a priori acceptable solutions and even if these may be specified, such a procedure will
be exceedingly tedious. The criterion Bates used for an acceptable function was that
its Fourier transform should be real and positive, but such constraints are not
generally applicable in optics (see also Hoenders 1975).

Alternatively, equation (4.6), with ¥ = 0 may be written:

2k;y;(y; +i(x — ;)
- 9(;3_%)2_1_%2 ], (4.7)

N
F(x) = H(x) I1 [1

J=1

where k; = 1 if the zero appears in the uw.h.p. and k. = 0 if the zero appears in the
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H(x) y;(y; +i(@ — )
(x =) +y}

where Bj(x) =

i2
a:nd Aﬂ = é‘lty;é‘l.
J

Taking the Fourier transform of (4.8) gives

N N
J@) = h(t)— 2]§1 ke; b,(t) lgl (1=l Ay), (4.9)
U#j

where k(t) and b,(¢) are Fourier transforms of H(x) and Bj(x). The similarities between
equations (4.8) and (4.9) appear because the product term in each is a function only
of the zero positions.

Fiaure 1. Typical form of a single term of the Blaschke product, on the real axis, for a zero
at z; = x;+1iy;. Full line real part, broken line imaginary part.

Equation (4.9) contains a sum of terms in k;. The coefficient

N
£

of each term contains all the other k values and neither b,(¢) nor c; can ever be
identically zero. If a system of simultaneous equations of the form (4.9) were solved,
a zero jth term implies that the corresponding k; is zero and a finite term necessarily
means that the corresponding k; is unity. In principle NV independent measurements
should allow the determination of the k; values. (Since a non-zero c¢; must have a
modulus > 1, one would assume that any calculated c; value significantly less than
unity represents a zero value: see appendix.)

There are two obvious methods for solving the equations (4.8) and (4.9). The first
makes use of a known, off-axis reference wave r(f), which may not be suitable for the
application of Rouché’s theorem. If 7(f) is known, then for ¢ values where r(f) is
spatially separate from f(¢) we may use this a priort information to solve equation
(4.9) for the set of k; values. If the addition of a reference is not possible, the second
method (see §5) relies on combining information from two experiments.

A typical term in the Blaschke product for the jth zero has the form shown in
figure 1. Since y; decreases asymptotically for increasing x; (Titchmarsh 1925), zeros
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with «; values much larger than the experimental region of interest can be neglected
since the corresponding term in the product approaches unity over this region.
Similarly, for y; large compared to the distance over which the solution is required,
the corresponding term in the product tends to a constant and can be ignored. For
a given minimum signal to noise ratio of recording |F(x)|, the area of the complex
plane over which zero values need be considered is finite. These zeros lie in a strip
parallel to the real axis of width dependent upon the variation of f(¢) within the
support (Cartwright 1930, 1931).

5. PRACTICAL METHODS OF PHASE DETERMINATION

There are many existing methods which attempt to retrieve the phase from
intensity measurements. Our aim in this section is to suggest their underlying unity
as revealed by our approach. It is possible to demonstrate how each of the methods
considered can be regarded as being conceptually equivalent to one of the ways of
treating the zeros already outlined. The realization of this underlying unity may
lead to the formulation of new experimental approaches. We distinguish between
two categories of experimental approach, requiring either the effective removal of
the zeros from the u.h.p., or the location of the zeros in the u.h.p. from equation (4.8)
and/or (4.9). Within the second category there are two approaches:

(i) Using a known input (e.g. a known reference wave) with a set of measured
data to solve equation (4.8) or (4.9).

(il) Relating two sets of data esther from measurements made in two spaces
(Fraunhofer and image), or from two different, i.e. independent, sets of measure-
ments made in one of these two spaces.

(@) Removing the zeros from the w.h.p.

The aim is to create an Z-transform making use of Rouché’s theorem by experi-
mentally utilizing a suitable reference function as defined in §4(a). A possible
function was given as R(z) = Ael%, where c¢(a,b) and | 4| > |F(z)| for all 2.

There are two ways in which such a reference function may be made available:
one may either explicitly add the reference function or, in suitable cases, modify the
unknown function f(f), in such a way that it automatically contains its own reference
function.

If f(¢) possesses a suitably well defined maximum within the support a < ¢ < b,
then a zero free half plane may be created by the use of a spatial filter, the strong
maximum in f(¢) being used to provide the reference function. To illustrate this
situation, let us consider the case of Gabor holography.

In Gabor holography the strong component lies at the centre of the ¢ (diffraction)
space and corresponds to the in-line reference beam. If we describe this reference
beam by the function E(x) = 4 ei®, we have a situation where b > ¢ > @ and in this
spatial location the strong component cannot be used as a reference function since
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we are unable to apply Rouché’s theorem to either half plane. The same restriction
applies if the strong component lies anywhere within the support of the function f (¢)
since then alsob > ¢ > a. However, if a spatial filter is introduced which removes the
spectrum to one side of this strong component at ¢, then we enforce the condition
that ¢ corresponds to one end of the support. If now |4| > |F(x)| for all , and F, ()
is the Fourier transform of the spatial frequency components not obstructed by the
spatial filter and excluding the component at ¢, then R(x) is a suitable reference
function for F;(z) and so a zero free half plane, i.e. an Z-transform has been created.
This approach was put forward, although for a different reason, by Bryngdahl &
Lohmann (1968) and is known as single sideband (s.s.b.) holography. Another
method removing part of the spectrum has been proposed by Misell, Burge &
Greenaway (1974) and the Schlieren technique may also be regarded as a method
falling in this category. However, part of the information about F(x) has been lost
and this may or may not be significant.

If such a strong component does not exist in f(£), then a reference function must
be added in the form of an off-axis reference beam. Using the function 4 ei*® for this
reference beam, we require a sufficiently strong component, |4| > |F(x)|, which is
positioned in such a manner that ¢ % a. In #-space this corresponds to a strong
component which occurs to one side of the spectrum of the function F(x). This
method was put forward, again for different reasons by Leith & Upatnieks (1964);
it is the well known off-axis holography. The discussion of holography as a means
of phase retrieval relying on the removal of the zeros from the half plane will be
considered in terms of wavefront reconstruction.

Consider Z(x) = F(x) + R(x), or equivalently Z(t) = f(¢) +7(¢). Let the bandwidth
of the function f(t) be much greater than that of r(¢). The recorded intensity is
|Z%(x)|? and the Fourier transform of this intensity is 22(t), the convolution square
of 2(t). Denoting the complex conjugate of f(t) by f*(¢), etc., we have:

Pt) = [ (1) ®FH(—8) +7(6) @ r* (=) +£(8) @ r¥(—1) +7() ® f*(—1), (5.1)

where ® denotes convolution

We assume that R(x) is known and investigate the separation of these terms as
the reference beam is moved progressively off-axis. We shall compare the usual
holographic decoding and the 1.H.t. approach as a means for retrieving F'(x). Four
important cases can be distinguished and these are shown in figure 2.

The case (i) shows all four terms from equation (5.1) overlapping and f (¢) cannot
be determined from 9~7’2(t). All the information concerning F(x) is present but it isnot
directly accessible using hologram decoding because of the twin image problem.
F(x)isnot an #-transform and hence we cannot usedirectly an 1. H.t. to determine it.
F(x) can be made an %-transform however by the use of a spatial filter (s.s.b.
holography). Alternatively a second experiment used in conjunction with this
hologram might enable one to locate the zeros as indicated in §4 (b) and §5(b).

Case (ii), off-axis holography, corresponds to an Z-transform for a sufficiently
large R(x) (in the sense defined in § 4 (@)); in this case Z(x)isidentical toitsassociated
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Hilbert function and hence by applying an 1.H.t., F(x) may be determined. We note,
however, that the holographic decoding cannot be applied (except as an approxi-
mation) to this situation since the cross-correlation terms overlap with the auto-
correlation terms although no longer with each other. The same conclusions for
case (ii) apply to case (iii). Its relevance as a distinet situation will become clear in
§5(b).

[ m ¥ )] () D1auto— ma cross correlation terms

i l YR\

Jatk | oDa

Fiaure 2. The Fourier transform of an #-transform and its modulus, as the
reference function is moved off-axis.

Finally, case (iv) represents ‘true’ off-axis holography which corresponds to
distinct separation of the cross-correlation from the auto-correlation terms. In this
situation both holographic decoding and the LH.t. (again assuming R(x) is
sufficiently strong) could be used to retrieve the phase successfully.

As the reference beam moves further off-axis (case (ii) to case (iv)) a higher degree
of temporal coherence is required due to the increasing path difference between the
reference and scattered beams. This points towards a possible advantage in some
experimental situations of using (ii) (with the 1. H.t. decoding which it then requires),
rather than (iv). In addition, it is noted that in case (ii) the frequency of the speckle
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pattern is practically equal to that of the interference fringes while in case (iv) the
frequency of the speckle pattern—equal to that in (ii)—is at most half that of the
interference fringes.

(b) Location of the zeros

When an # transform cannot be created, or when there is no reference wave at all,
it is necessary to locate the zeros of the function using the equations presented in
§4(b).

We consider first the problem when we have a weak reference wave, not strong
enough to produce an #-transform, under the conditions depicted in (ii), (iii) and (iv)
of figure 2. If we assume, asin § 5(a), that r(f) is known everywhere, then because at
least part of 7(¢) does not overlap with f(), we may solve equation (4.9) in order to
find the k; values. This may be understood as follows. Suppose that 7(¢) is non-zero
to the interval (a,b). It is known that zero flipping will not change the overall
bandwidth (@, b). Thus the information that the spectrum is zero outside this range,
cannot be used to solve equation (4.9). However, for ¢ values in the range a < ¢ < d
we may replace the left hand side of (4.9) with a known function. Thus, for these ¢
values, we may solve (4.9) for the c;’s (for example, by Gauss elimination). The
experimental validity of true off-axis holography as a method gives confidence that
a unique solution of equation (4.9) exists in at least case (iv). Equation (4.9) shows
that when the number of zeros, N, corresponding to the available experimental
range is small, the relevant set of k;’s may even be determined by inspection of the
coefficients b;(t) and 4. Unless there exists a high degree of symmetry in 2(¢), (in
which case Schiske-type ambiguities (1974) are possible), it seems reasonable to
conjecture that the solution will also be unique for cases (ii) and (iii): note, however,
that case (iv) can never be symmetric.

Some information about any symmetry in the position of the zeros can also be
obtained by using other a priori knowledge as has been suggested by Bates (1969)
and Roman & Marathay (1963).

Secondly when the reference wave is strong but not sufficiently off-axis to satisfy
Rouché’s theorem, the alternative to the possibility of spatial filtering discussed in
§5(a) is to solve the equations (4.8) and/or (4.9) to determine the k;’s. Two inde-
pendent sets of data are required in order to achieve a solution. One procedure
proposed by Frank (1973) relies on two measurements: one with the central spot in
the scattering pattern (Gabor holography, i.e. a bright field image), and one without
the central spot (a dark-ground image). In relation to the analysis presented here
there are two sets of equations to be solved of the form (4.8), in terms of F(x) + 4,
(A4 assumed known), and F(z) respectively.

Lohmann (1974) bas given a method of phase determination based on the sup-
pression in two separate experiments, of the information in two small and different
ranges of t-space. The success of this method can again be interpreted in terms of the
provision of sufficient information to characterize the k,’s, the only difference being

14 Vol. 350. A.
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the replacement of the known constant 4 by a known function. There are other
experimental techniques which rely on the procedure of modifying the spectrum of
F(x) (see, for example, Misell 1973; Frank 1972).

When two planes are physically accessible it becomes possible to measure | F(x)|
and | f(t)| and so solve for the k;’s from a combination of equations (4.8) and (4.9).
Unfortunately, taking the modulus of (4.9), as is required in this method leads to
computational complications. This idea is contained implicitly in the method of
phase recovery put forward by Gerchberg & Saxton (1972). These authors do not
determine the zero positions explicitly but use a Fourier iterative scheme between
the two data sets. This method is an alternative to using equations (4.8) and (4.9)
but lacks a procedure (Schiske 1974) for judging the uniqueness of the resulting
phase distribution.

6. SUMMARY AND DISCUSSION

In an physically conceivable situation objects and instruments are of finite
dimensions, so that the application of the theory of entire functions will always be
justified for phase retrieval. We have presented this theory only for the one dimen-
sional case. A summary of all the theoretical cases discussed in this paper with their
consequences, is provided in the form of a flow chart (figure 3), which illustrates the
important points.

There will always be some difficulties in practical application of the theory. One
limitation is that only finite intervals are available in each space. This implies that
the Hilbert transform calculated will be an approximation to the theoretical
expression defined on an infinite interval.

Phase retrieval procedures applicable to realizable physical objects may all be
regarded as providing on Z-transform or sufficient data to determine the zero
locations in the u.h.p. by solving equation (4.8) or (4.9). For a large number of zeros
we expect that solving these equations will be tedious and in the presence of noise the
reliability of the solution obtained will be questionable. The removal of the zeros
from the wh.p. by the creation of an Z-transform obviates the need to solve
equations (4.8) and (4.9), since in this case the actual phase is the Hilbert phase.
We emphasize that, in spite of the fact that a true plane wave can never be obtained
in a physical situation, the %-transform approach is far preferable to any method
of zero location. Any Gaussian-like approximation to a plane wave may be expected
to present large areas adjacent to the real axis which are zero free (Nussenzveig
1967). When using such approximations as reference functions, one must ensure that
Rouché’s theorem is satisfied in a sufficiently large area adjacent to the region of
experimental interest. This is the situation used in practical holography when the
reference wave is invariably taken to be plane and strong with respect to the
unknown wave.

It would be particularly interesting to investigate in detail the classes of functions
which have a zero free half plane, since it may then become possible to identify a
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general class of objects for which the Hilbert phase is the actual phase. The equality
(e.g. Bond & Cahn 1958) between the number of zeros and the number of degrees of
freedom, may reflect a deeper connection between the two concepts. We feel that
this is worthy of further study.

Fx)={2 A1) exp (ixt) d¢

zero free no reference wave no
half plane available
yes yes
yes yes
—1_ create Z t. | spatial
no 'l filter

.0 t. with no

no
d.c. level I
yes

yes add d.c. d.c. level no |
level added
‘ no | yes
r.Ht. ] m. or gHt. I r.Ht. | m. or g.H.t.
——— J {

actual second experiment Hilbert
phase and zero location phase

Ficure 3. A flow chart illustrating the steps required
to solve the phase problem.

With respect to causality (see footnote on page 194 and Wolter (1961)) one would
expect in spatial problems that such arequirement would be unreasonable asit may
be regarded as obliterating half of the information present. Nevertheless, the Hilbert
transform which relates the real and imaginary parts of a function does require that
the causality condition, i.e. the requirement of single-sidedness, is fulfilled. In spatial
problems, however, the observable magnitude is always the modulus of the measured
function and the requirement of single sidedness need not apply to the functions of
interest but only to the functions suitably modified for use with the Hilbert relations.
The causality requirement does not restrict in any way the value of the upper
limit b (equation (2.1)) which, from the constraints of Titchmarsh’s theorem
(theorem 3) need not be finite. However, if b were infinite the order of the function
need not be unity and the associated indicator function may not be defined. This

14-2
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would imply that the derivation and subsequent application of the m.H.t. or g.H.t.
could not be justified in any obvious way, if at all.

Two of us (M. A.F. and A. H. G.) acknowledge Science Research Council research
studentships. S.R.C. support for the work is also acknowledged.

APPENDIX
Consider one term in the product in equation (4.6) for the particular case of a zero
at 2, therefore

2y (y +i(x—ay)

and O = 1= ot
9y, +ix
- 1= 2o ) © (), (A1)
where d(x) is the Dirac §-function. The Fourier transform of (A 1) is
pilt) = 8(t)— 2y ot it (), (A2)
where H)=1 (t>0)

=0 (t <0) (Champeney 1973).
A similar expression to (A 2) can be written for a zero at z,,. Convolving p,(¢) and

Pult) gives ) _
P(t) @ Py (t) = O(t) — 2y 074" — 2y, e~ Fmb + dypy, (1), (A3)
where I =e @t H®e¥ntH,
- [e—i<éz—5m)t - 1]
=e ¥mt| —
- l(zl - zm)

i(e—ifit — ~12mt)

2= %,

Hence

P © palt) = 00~ 21522 ettt -2y, (1= L ) oot

El —Zn
Similarly for a further convolution by p,,(f) one obtains
2,) ® p,, ) ® p,(t) = 6(t) — 2y, 1—1247/—”— 1—-;— e &t
! m n W' z-z Z— 2

1 n

—2y (1 _ 1% ) (1 __12?/’_) =it
2, ¥4

m ™ ®n m
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In general, therefore,

i2
10 ® epnl) = 30=2 3, gyt T (1= (a4
171 '
In order to include all the zeros, the parameters k; are introduced such that k; = 1
if the zero is in the u.h.p. and k; = 0 if the zero appears in the L.h.p. Zeros on the real
axis are detectable and so are not included here. Thus, Fourier transforming

equation (A 4) we have
N N +i(z—x)\ N 12y, k
B@)=1-2 % ky (?i____) (1-7%3),
1I=Il i) El i\ @ =2+ 93 }I;I-l Z—%
¥

which is equation (4.8).
Using the definitions following equations (4.8) and (4.9) (§4(b)), these two
equations can be written

N
F(x) = H(x) +j§1 B(x) ¢, (A 5)
N

f@) = h() j§1 b;(t) c;s (A 6)

N
where c; = —2k; l]:[l (1-FkA,). (A7)

15

Now
4 .

(=Tt = 14+ f’_yg/l’2> 1, (A8)

The c; values are finite and we may rewrite equations (4.8) and (4.9) in the form
(A 5) and (A 6). No ¢; value may be zero unless the corresponding k; is identically
zero. Further, a non-zero ¢; must have modulus > 1. Thus, the problems of phase
retrieval is reduced to a yes/no problem with regard to the location of zeros in
the u.h.p.: a finite ¢; value implies yes, a zero value implies no. If a c; is finite then
l¢;| > 1. Approximate solutions to (A 5) and (A 6) may be sought and any calculated
¢; which is significantly less than unity may be taken to be a zero value.
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