
Coherence  and Time Delay Estimation 

This  paper  presents a tutorial review of work in coherence and 
time delay estimation. A review  of  coherence  research and devel- 
opment is presented. A derivation of the ML estimator  for time 
delay is presented together with an interpretation of that estimator 
as a special member of a class of generalized cross correlators.  The 
performance of the estimator is given for both high and low  signal- 
to-noise  ratio  cases. The proposed  correlator is implemented and 
stimulated with synthetic data. The  results  are  compared with per- 
formance  predictions and found to be in  good  agreement.. 

INTRODUCTION 

This paper is  a summary of  work  done by the author and 
several coauthors over more  than a decade.  The paper is 
organized into five sections. Section I is a review of coher- 
ence. Section II is a review of the generalized framework 
for coherence estimation. Section Ill is a summary of sta- 
tistics  of  the MSC estimator and has five subsections dis- 
cussing the  probability  density  function, experimental 
results,  bias, receiver operating characteristics, and con- 
fidence bounds. Section IV discusses time-delay estima- 
tion. Finally, Section V discusses the focused time-delay 
beamformer form  of passive ranging. 

I. COHERENCE 

This section discusses application of  the coherence  func- 
tion.  Much  of  the material in this section is a summary of 
the  work by Carter and  Knapp [13]. The coherence function 
between two wide-sense stationary random processes x and 
y is  equal to  the cross power spectrum C,,(f) divided by 
the square root  of  the  product  of  the two auto power spec- 
tra.  Specifically, the complex coherence is defined by 

where f denotes the frequency of  interest  and  where  the 
complex cross power spectrum 

G,,(f) = J ~ ~ 7 ) e j z ~ f r  d7 (1 b) 
--o) 

is the Fourier transform of the cross correlation  function 

R q ( 7 )  = E [ x ( t )  )'(t f dl. (1 c) 
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.Here x and yare real and €denotes  the mathematical expec- 
tation  (for ergodic  random processes the ensemble average 
can be replaced by a time average).  The coherence is a nor- 
malized cross-spectral density  function; in particular,  the 
normalization constrains (1) so that magnitude-squared 
coherence (MSC) defined  by 

lies in the range 

0 s C,,(f) 5 1 (2 b) 

for all frequencies. Throughout the text we use Cand 1 y 1' 
interchangeably. 

The coherence function has  uses in numerous areas, 
including system identification, measurement of signal-to- 
noise ratio (SNR), and determination  of  time delay.  The 
coherence-in particular, magnitude-squared coherence 
(MSC)-can only be put  to use when i ts value can be accu- 
rately estimated. Indeed, it is highly desirable to  under- 
stand the statistics of  the estimator. Therefore, this section 
addresses interpretations of  the coherence function. Fol- 
lowing sections  address procedures for  properly estimat- 
ing  the MSC and statistics of  the estimator. 

One  interesting  interpretation of coherence-particu- 
larly MSC-is that it is a measure of  the  relative  linearity of 
two processes. To illustrate this, consider Fig. 1 in  which a 

Fig. 1. Model of error resulting from linearly filtering x(t) 
to match  any  desired  signal fit). 

sample function  y(t)  of an arbitrary stationary random  pro- 
cess consists of  the response yo(t) of a linear filter  plus an 
Crror component e@). When  the linear filter is chosen to 
minimize  the mean-square value of e(t), i.e., the area under 
the  error spectrum, then yo(t)  becomes that  part  of  y(t)  lin- 
early related to  x ( t ) .  The spectral characteristics of e(t)  are 
given by 

where * indicates complex  conjugation  and H (  f )  is  the  fil- 
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ter transfer function. The error spectrum 

Note  that  the coherence is related to the  optimum linear 
filter  according to 

and 

(6a) 

These results apply regardless of  the source of y ( t ) .  When 
the linear filter is optimum  in  the mean-square sense, the 
error is  uncorrelated with x(t),  i.e., 

Gxyo(f )  = H, ( f )   G , , ( f )  = Cx, ( f ) .  (7) 

Furthermore, the  minimum value of G,(f )  is given by 

G,(f )  = G,(f )  [ I  - C,,(f)l (8) 

Gyoyo(f) = JH, ( f ) lZ  G,,(f)  = G,(f)  C,,(f).   (9) 

and 

From the  identity 

G,(f )  = cx,(f) G, ( f )  + [I - C,,(f)IG,(f) (loa) 

we can  show that 

G,(f)  = Gyoyo(f) + G,(f )  (lob) 

indicating  that  the MSC is the  fraction  of G,( f )  contained 
in  the linear component  of y ( t ) ,  and 1 - C x , ( f )  is  the  pro- 
portion  of G,(f )  contained in  the error,  or nonlinear com- 
ponent  of y ( t ) .  These results can be  applied to  the config- 
urations  shown in Figs. 2 and 3. 

LHEAR Y.M 
FLTER: H 

Fig. 2. Model of error  resulting from linear approximation 
of  unidentified system. 

d" DELAY 

Fig. 3. Model of directional signal corrupted  with additive 
noise  and  processed. 

1 1 .  THE GENERALIZED FRAMEWORK FOR COHERENCE 
ESTIMATION 

The purpose of this section is  to review a generalized 
framework for  power spectral estimation  and to show how 
three  estimation  methods  fit into  this framework. (Beyond 
the scope of  this paper  are important methods of time-vary- 
ing spectral estimation  and parametric methods of spectral 
estimation. See for example IEEE PRESS books  by  Childers 
[21] and Kesler [MI . )  

In  the generalized framework of  Nuttall and Carter [59] 
weareconcerned  with  both auto and cross (nonparametric) 
spectral estimation  of stationary random processes;  hence, 
we consider two discrete  random processes. Auto spectral 
estimation is then a special case of cross spectral estima- 
tion. In particular, in auto spectral estimation we replace 
the second time series bya duplicate  of  the  first  time series. 
As is  often  the case in practice, we are limited  to a single 
time-limited  realization (TLR) of each random process. 
Within  our generalized framework for power spectral esti- 
mation, we first partition each TLR into N segments, where 
the segments  may be overlapped. Second,  each  segment 
is  multiplied by a time-weighting  function  (the  weighting 
function may be unity everywhere within  the segment as, 
for example, rectangular weighting  or it may be  smooth as, 
for example, Hanning  weighting). Third, the discrete Fou- 
rier coefficients (DFC)  are computed  for each weighted seg- 
mentviaanappropriatealgorithmsuchastheFFTaftereach 
segment has been  appropriately  appended with zeros. 
Fourth, the DFCs for  one TLR segment  are multiplied by the 
complex  conjugate of  the DFCs for  the other time syn- 
chronous segment (or same  segment for auto spectra). As 
a matter of  clarification  both  time series  are presumed to 
be aligned, that is, in  proper  time register, so that  the i t h  
segment of  one segment only interacts with  theith segment 
of  the other time series. Fifth, the complex  products are 
averaged  over the N available segments (one segment if 
N = 1). Sixth, the resultant spectral estimates  are Fourier 
transformed into  the  correlation  or lag domain, where they 
are multiplied  by a lag-weighting  function  (which may be 
unity). Finally, the results are transformed back into  the fre- 
quency  domain. (Alternatively, the last two steps  can be 
replaced by a convolution in the frequency domain. 
Depending on  the  extent  of  the frequency-domain  con- 
volution,  the  former  alternative may be  computationally 
preferable over the latter.) Mathematical details are in  the 
paper by Nuttall and Carter [60]. 

We now  point  out  howthree spectral analysis techniques 
fit  into this generalized framework. All three achieve vir- 
tually  the same statistical, in particular, mean and variance 
properties. First, the Blackman and Tukey [IO] (BT) method 
allows for  only  one segment with rectangular time weight- 
ing over the  entire record (from each TLR), and it applies 
asmooth  lag-weightingfunction  in  thecorrelation domain, 
which goes to zero well before the  end  of  the data record. 
(We note that, historically, the BT approach estimated the 
correlation  function  direction rather than  first trans- 
forming  into  the frequency domain, but since it is faster 
than  the  original time-domain BT method, it is a viable and 
equivalent alternative approach.) By adjusting  how  quickly 
the lag weighting goes to zero, resolution and stability can 
becompromised. Forexample, iftheweightinggoestozero 
quickly  the spectral estimates will have  coarse resolution 
and good  stability  compared with a lag weighting  that does 
notgotozeroquickly.Theexactshapeoftheweightingwil1 
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influence the exact  shape of  the sidelobes and  main lobe 
in the  frequency  domain. 

The second method  that  falls within  the generalized 
framework is the weighted  overlapped-segment averaging 
or WOSA technique. The  WOSA method is  sometimes 
referred to as Welch’s method based on  the  contribution 
of  Welch [74]. We propose  here  that WOSA refer to Welch’s 
overlapped-segment averaging method. In  the WOSA 
method we apply a smooth  multiplicative  time  weighting 
to each of a large number  of segments, and average the DFC 
products from these overlapped segments to  obtain  a  final 
spectral estimate, without employing  additional  lag  weight- 
ing. See, for example,  Fig. 4 for a graphical  portrayal  of  a 
family  of  overlapped  time-weighting  functions. The time 

Fig. 4. Overlapped weighting functions. 

weighting is  typically  a  smooth weighting such as Hanning, 
in  the WOSA method, because it yields  good  sidelobe 
behavior. Overlap is important  in  the WOSA method  in 
order to realize  maximum  stability  (that is, minimum vari- 
ance) of  the  spectral estimate. The  WOSA method is a sta- 
tistically  sound method  widely  in use today. 

A  third technique  that  falls within  the generalized frame- 
work is the lag-reshaping method (see,  e.g., Nuttall  and 
Carter [MI). The lag-reshaping method recognizes that the 
number of available data points may be so large as to pre- 
clude the  normal BT method  in practical  situations. We seg- 
ment the  datawithout overlapping and apply unit gain  rect- 
angular time  weighting  to each segment (this  rectangular 
weighting  requires notimeweighting multiplications). Later 
we will  undo  the bad sidelobe  effects  that  this  rectangular 
timeweighting initiallycauses, and gain additional  stability. 
Note the segment-averaged power  spectrum will be trans- 
formedintothecorrelation(orlag)domain,whereasmooth 
multiplicative  lag-weightingfunction  will be applied before 
transforming back into  the frequency  domain. The smooth 
lag weighting will be the  product  of  two lag weightings  one 
for the desired window and one  for  lag reshaping. This lag- 
domain  “reshaping” is an ingenious method  for almost 
completely undoing  the bad sidelobe effects of  rectangular 
time weighting. 

All  three  of these techniques  that  fall within  the gener- 
alized  framework have good statistical  properties. The 
Blackman andTukey[lO]  method attains minimum variance 
spectral estimatesand isthe benchmarkagainstwhich  other 
techniques have been measured. The  key assumptions  for 
a statistical  investigation  of any spectral analysis technique 

are stationarity, Gaussian random process, and  a  large 
product of  observation time and  desired  resolution  band- 
width. Since we are interested in spectral estimates, sec- 
ond-order  stationarity is required. Since one  must inves- 
tigate variances of  second-order  quantities  for  stability 
determination,  fourth-order  moments  of the random  pro- 
cess are required; hence, for  mathematical  tractability, the 
Gaussian assumption is needed.  And in many practical 
cases, to have meaningful  spectral estimates with any 
method, large observation-time resolution-bandwidth 
products are required. These assumptions are the practical 
essentials of any mathematical analysis of spectral  esti- 
mation  methods. 

Under these assumptions, Nuttall [57l has shown  that  the 
WOSA method can achieve the same stability, in particular, 
the same number of  equivalent degrees of  freedom (EDF) 
as the BTspectral estimation  method  for both auto  and cross 
spectral estimation  if the  proper overlap is used for each 
weighting, when  both methods  operate on  the same 
amount  of data and are constrained to  the same frequency 
resolution. For many practical time weightings, most of the 
maximum EDF (minimum variance) can be  attained  by  a 
computationally reasonable amount  of  overlap. For exam- 
ple, with  Hanning weighting, 92 percent of  the  maximum 
EDF can be realized with 50-percent overlap.  And  for Parzen 
(cubic)  weighting, 93 percent  of the  maximum EDF can be 
realized with  62.lpercent overlap. Furthermore, the  num- 
ber of FFTs required is virtually  independent  of the partic- 
ular time  weighting employed (with i ts  optimum overlap), 
but depends only  upon  the observation-time  resolution- 
bandwidth  product. 

For more  complicated  spectral measures, such as coher- 
ence, the analysis of WOSA becomes unwieldy,  and  one is 
driven  to simulation. In particular, Carter, Knapp, and Nut- 
tall [ll] empirically  investigated the effect of overlap on  the 
variance of  the  coherence  estimate via the WOSA method. 
There was a  pronounced improvement  (about  a  factor  of 
two in variance reduction)  with overlap as opposed to  no 
overlap. In another  experiment, Carter and Knapp [13] com- 
pared the use of Hanning and  rectangular  weightings  for 
estimating  coherence  between  a  flat  broad-band input  to 
a second-order digital  filter and i ts  output.  It was dem- 
onstrated  that  smooth weighting  functions are required  to 
obtain  good  coherence estimates with  the WOSA method. 
(Recall that the WOSA method does not use additional lag 
shaping.) 

The  WOSA nonparametric  spectral  estimation method 
widely  in use today with  proper overlap can attain the EDF 
of the BT method, when  both  methodsoperateon  the same 
amount  of data and are constrained to have the same fre- 
quency  resolution.  Further, for good time weightings, rea- 
sonable amounts  of  overlap achieve most of  the available 
EDF. 

Based on analytic work by Nuttall and  Carter [a], the lag- 
reshaping method can virtually  (but  not exactly) attain the 
.EDFoftheBTmethodandyieldverygoodsidelobesthrough 
the use of  unusual lag weighting. It appears highly  certain 
that  the  lag-reshaping method requires  fewer  computa- 
tions  (perhaps  by  a  factor of two) than  the WOSA method 
in practice, and therefore deserves serious consideration 
as a  replacement  for  (or  variation  on) the  widely used  WOSA 
method. 
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Table 1 Probability  Density  and  Distribution Functions 

Distribution  Function 

Ill. STATISTICS OF MSC ESTIMATES OBTAINED VIA THE 

WELCH'S  OVERLAPPED SEGMENT AVERAGING (WOSA) 
METHOD 

A. Introduction 

Much of the historical work  on  the statistics of the MSC 
estimates centers on  the WOSA method; by proper  inter- 
pretation  of variables, these results also apply to  the lag- 
reshaping  method. Recall that the WOSA method consists 
of obtaining  two finite-time series from  the random  pro- 
cesses being investigated. Each time series is partitioned 
into equal length segments and sampled at equally spaced 
data points. The  segments are overlapped. However, the 
statistics are analytically  developed  for  nonoverlapped seg- 
ments. Empirical  results are presented  for  overlapped seg- 
ments. Samples from each segment are multiplied by a 
weighting  function,  and  the FFT of the weighted sequence 
is performed.  Then the Fourier  coefficients  for each 
weighted segment are  used to estimate the auto- and cross- 
power  spectral  densities. The spectral  density estimates 
thus  obtained are used to  form  the MSC estimate. 

Spectral resolution  of  the estimates varies inversely with 
the segment length T. Proper weighting  or  "windowing" 
of  the T-second segment is also helpful  in achieving good 
sidelobe  reduction. On the other hand, for  independent 
segments with ideal  windowing,  the bias and the variance 
of the MSC estimate vary inversely with  the  number of seg- 
ments n. Therefore, to generate a good  estimate with  lim- 
ited data, one may be faced with  conflicting requirements 
on n and T. Segment overlapping can be used to increase 
both n and T. When  the segments are disjoint,  that is, non- 
overlapping, we call the  number  of segments n,,.  As the per- 
centage of  overlap increases, however, the computational 
requirements increases rapidly, while  the improvement 
stabilizes owing  to  the greater correlation  between data 
segments  (see Carter, Knapp, and Nuttall [Ill). 

B. Probability  Density for the Estimate of the MSC 

The first-order  probability  density  and distribution  func- 
tions  for  the  estimate  of MSC, given the  true value of MSC, 

and the  number  of  independent segments n d  are given in 
Table 1. Notationally,  recall I y 1' = C. Equations (1 b)  and (IC) 
in that  table are useful because the ' F ,  hypergeometric 
function is an (nd - 1)st-order  polynomial. 

Figs. 5 and 6 illustrate the  probability  density  and  distri- 
bution  functions for several  cases, as computed using (1b) 
and (Id)  from Table 1. It is evident from Fig. 6 that the vari- 
ance of the MSC estimate decreases when nd is  increased. 

The  bias and variance of the MSC estimate can be eval- 
uated  using  a general expression  for the  mth  moment of 
the MSC estimate (see Carter, Knapp, and  Nuttall [Ill). 

Bias and variance expressions obtained are summarized 
in Table 2. Approximations (2c) and (2d) 'are the result  of 
truncating  the series (2a) and (2b). Equations (2e) through 
(2g) then follow  for large nd; they  indicate  that the MSC esti- 
mate is asymptotically  unbiased, and that  for large nd the 
following is true. 

1) The  bias is greatest, I/nd,  when  the MSC equals zero 

2) The variance is zero  when the MSC equals unity  and 

3) The mean-square error from  the  true value is equal to 

and  smallest, 0, when  the MSC equals unity. 

greatest,  (2/3)3/nd, when  the MSC equals one  third. 

the variance, provided  the MSC is  not zero. 

Figs. 7 and 8, respectively, show the bias and variance as 
functions  of nd and I y 1'. For values of nd in  the range from 
32 to 6 4 ,  expressions (2e) through (2g) in Table 2 are good 
approximations; however, the curves in Figs. 7 and 8 were 
obtained using  the exact formulas (2a) and (2b) of Table 2. 
PeaksinthevariancecurveswhentheMSCequalsonethird 
are evident. We note, however, there is an additional bias 
when  our FFT size is too small. This second type  of bias  can 
be extremely  important. It is  the subject  of texts including 
Koopmans [48] and  Brillinger [6] and is  discussed in Section 
I I I-D. 

C. Experimental Investigation of Overlap Effects 

An experimental  study has been made of  the  effect  of 
overlap  of data on the MSC estimate. The analytical  results 
presentedearlier relateonlytothecaseof independent seg- 
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Fig. 5. (a) Probability  density  functions.  (Functions  have been  normalized  by maximum 
values, which are 31.0,  4.13,  5.23, and  17.5.)  (b)  Distribution  functions. 

0 .2 .4 . b  .8 1.0 0 .2  .4 .6 . 8  1.0 

I;? 

Fig. 6. Probability  density  and  distribution  functions  of /T I2  for Iy12 = 0.3. 
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Table 2 Bias and  Variance Expressions 

Exact 
~ 

Bias 

Variance 

- i“ - J y l z ) ” d  3F2(2,  nd,  nd;  nd + 1, 1; IyJ’) . 
nd I’ (2 b) 

Approximate 

B z - [l - (yI2]’ 
1 

nd 

c - 11 - Irl’l 1 

nd 

f .  

0.0 C 

Fig. 7. Bias of 1 + 1 2  versus Iy1’ and nd. 
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om x 10-2 

0.0 

Fig. 8. Variance of ]TI2 versus (71' and nd. 

ments,thatis,thecaseofzerooverlap.Intuitively,theappli- 
cation  of  nonoverlapped  smooth weighting  functions does 
not make the most  efficient use of  the data when  forming 
the MSC  estimate. The experiment  described herein exam- 
ines this inefficiency, in terms of bias and variance of  the 
MSCestimateas a function  of  different  amountsof overlap. 

The method  of  evaluating overlap is straightforward in 
concept. Data are generated with an accurately prespeci- 
fied value of MSC that is independent  of frequency. Then 
the sample mean and variance of  the MSC estimate can be 
measured for  the given  overlap by averaging over fre- 
quency. Details are described in  the paper by Carter,  Knapp, 
and Nuttall [Ill. 

Results of  the experiment are summarized in Figs. 9 and 
IO. It is apparent from these results that  the bias and vari- 
ance  can be reduced through overlapped processing.  For 
example, when  the MSC is 0.0, the variance of  the estimator 
with a 50-percent overlap equals 31 percent of  the variance 
of theestimatorwith  no overlap. With a50-percent overlap, 
the bias is 55 percent as large as with  no overlap. Similarly, 
when  the MSC = 0.3 and the overlap is 50 percent, the vari- 
ance is 55 percent of  the nonoverlapped estimator, and the 
bias is 50 percent as large. Observe that  the bias and vari- 
ance for  zero overlap agree very well  with (2e) through (2g) 
in Table 2. With a 62.5-percent overlap, or greater, the bias 
and variance  achieve  values corresponding to an effective 
ndof about64with nonoverlapped processing. In  the WOSA 
method, clearly, as the overlap increases, the computa- 
tional cost must also  increase. Increasing  the overlap from 
50 to 62.5 percent  requires 32 percent more FFTs, but  the 
variance of  the MSC estimator decreases only  from 80 to 
95 percent of i ts  value at a 50-percent overlap. It is doubtful, 
therefore, that  the  improvement in the WOSA method 

os 

C 

Fig. 9. Bias of li.1' when nd = 32. 

derived from  using a 62.5-percent  overlap, as opposed to 
a 50-percent  overlap, will warrant the increased compu- 
tational costs, except in unusual circumstances. Overlap 
percentages of 50 percent are quite reasonable and widely 
used.  However, with  the advent of  the lag-reshaping 
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Fig. 10. Variance of \+I2 when nd = 32. 

method  other computational efficiencies need to be 
explored. 

D. MSC  Bias 

Onetype  of bias, derived under  simplifying assumptions 
including  that each data segment is sufficiently  long to  
ensure adequate spectral resolution, has been  shown by 
Nuttall and Carter [58] from Table 2 to be 

where E denotes the expected value. Equation (11) corrob- 
orates the observation by Bendat and Piersol [4] that  more 
than  one segment must be used to  estimate MSC. It can be 
shown that, for n,j = 1, the estimated MSC  equals unity 
regardless of  the  true value of MSC; however since (11) is 
an approximation it cannot be used to  prove this relation- 
ship. 

However, there is a second type  of bias, described  by 
Koopmans[48]thatcanbeextremelyserious.Thisisthebias 
due to misalignment, or  rapidly  changing phase. In partic- 
ular, Koopmans [ I l l  notes that  if  the phase  angle of  the cross 
power spectrum is a rapidly varying function of frequency 
at the frequency that  the coherence is to  be estimated, the 
estimated coherence (in  particular, MSC)  can be biased 
downward to such an  extent  that a strong  coherence is 
masked. An expression for  the bias as a function  of  the  first 
derivative of  the phase spectrum was given  by  Jenkins  and 
Watts [42].  Based on results which  follow here, Koopmans’ 
[ I l l  statement iscorrect; however, the MSC  bias resultsfrom 
the  widely used benchmark text by  Jenkins and Watts‘ [42] 
are quantitatively  incorrect  for  the  application here. A brief 
derivation of  the effect of misalignment  akin to rapidly 
changing phase will be given later. These results compare 
favorably with analytical results by Halvorsen and Bendat 
[33], with empirical results by Carter and  Knapp [13], and 
with empirical results to be  presented here. 

Rapidlyvaryingphaseasafunctionoffrequencyiscaused 
by a time delay. One way to see this is  to consider that  the 
units  of  the slope of  the phase  are radians divided by radi- 

ans per second, or simply seconds. The data  can be 
realigned to compensate for a time delay. As stated by  Bril- 
linger [5], the importance of some form  of  prefiltering can- 
not  be overemphasized, the simplest form  being  to lag one 
time series relative to  the  other (we note here, this  prefil- 
tering importance is also true  for time-delay estimation). 
This procedure  for coherence  estimation has been sug- 
gested by others, including Akaike and Yamanouchi [2], 
Jenkins and Watts [42], and Koopmans [a]. Important to the 
concept of  prefiltering two time series before  estimating 
theMSCisthat(unliketheestimatedvalueofMSC)the(true 
value of) MSC is invariant  under  the  linear  filtering  of  the 
two series, as shown, for example, by Carter,  Knapp, and 
Nuttall [Ill, and Koopmans’ 1481. 

The effect of misalignment can be seen in  the corre- 
spondence by Carter [19]. The results of  that  work show the 
magnitude of  the cross-power spectrum (and cross cor- 
relation) is decreased by a constant factor, depending  on 
theratioofthedelaymisalignmenttotheFFTtimeduration. 
Note, though, that  the average  phase estimate remains 
unaltered. Further, we  note  that  the constant degradation 
factor will  not appear in either of the auto-power spectral 
densities.  Thus the complex  coherence is degraded by  the 
same factor as the cross spectrum  and the MSC is  degraded 
by the square of this factor. That is, 

which agrees with Halvorsen and Bendat 1331. Heuristically, 
this makes  sense because for  no delay there is no degra- 
dation and for adelay equal to, or greater  than, the FFT size, 
the estimated  MSC is  zero. Note  that  the bias due  to mis- 
alignment Dl with FFT time  duration T, is 

For example, if 1 D(/T = 0.25, the expected value of  the esti- 
mated MSC is about one-half of i ts  true value.  Clearly, the 
effect is important. Indeed, empirical results bear this out. 

One  of  the results of Carter and  Knapp [I31 was the dem- 
onstration  of the need to make the FFT (or  equivalent trans- 
form) size  larger.  Empirically, large Twas observed to reduce 
the bias in MSC estimation. This is consistent with (13). 
Looking at these data  again  (Carter and Knapp [13, fig. 51) 
we see that  the phase  appears to have undergone a 1.5- 
radian change in 10 Hz, or a 24-ms delay was encountered 
in the band. Since  each  FFTwas 500 ms, theestimated value 
of MSC should be  about 0.91 of i ts true value. Indeed, this 
is what was indicated in Carter and Knapp 113, fig. 71). 

One  practical means of  reducing  the bias due  to a single 
path  misalignment is to realign  the two time series under 
investigation  before  estimatingthe MSC. Theeffects of mis- 
alignment  were  evident in a recent  empirical  investigation 
in  which a broad-band  underwater acoustic signal was 
transmitted  through a direct path from a submerged trans- 
mitter to a submerged receiver. The recorded signals were 
processed with a number  of  different  bulk  time delays 
inserted  before  estimating  the MSC. The bulk  time delays 
were  quantized to  250  ms; the FFT size  was 1.0 s. The effect 
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of degraded MSC estimation is evident in Figs. 11 and 12, 
computed  from 16 independent FFTs. In Fig. 11, D = 0.18 
and the estimated MSC  appears to  be about 0.45 at 250  Hz. 
In Fig.  12 introducing another 250-ms bulk delay  moves the 

FREQUENCY (Hz) 

Fig. 11. SCOT  estimate  showing  a -180-ms delay  and  cor- 
responding MSC estimate of 0.45  at  250 Hz with a -180-ms 
delay. 
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Fig. 12. SCOT  estimate  showing  a 70-rns delay  and  corre- 
sponding MSC estimate of 0.7 at  250 Hz with a 70-ms delay. 

1024 

generalized crosscorrelation SCOT peak from -0.18to0.07. 
(The SCOTor smoothedcoherencetransform isthe Fourier 
transform of  the complex coherence; it is therefore  the Fou- 
rier  transform of the cross-power spectrum after weighting 
with a particular  frequency  function. See, for example, 
Carter, Nuttall,  and Cable [12], Knapp and Carter [46], and 
Kuhn [49] for a discussion of  the SCOT.) Now  the estimated 
MSC is about 0.7 at 250 Hz in Fig.  12. There is a notable  and 
predictable increase in  the MSC estimate due to realign- 
ment. 

Thus we see that even with a large number of FFT seg- 
ments,  estimates of  the MSC  can be  significantly biased 
downward  by unremoved bulk  time delays, giving an erro- 
neous indication  of  the value of  the coherence. When  the 
data  are realigned and processed,  estimates of  the coher- 
ence  are informative  descriptors  of  the  extent to  which  the 
ocean channel can be modeled by a linear time-invariant 
filter. 

E. Receiver Operating Characteristics for a Coherence 
Detector 

An algorithm  for  computing  the receiver operating char- 
acteristics (ROC) or  the  probability  of  detection Po versus 
the  probability  of false alarm P f  for a linearly  thresholded 
coherence estimation  detector is presented together with 
an example of an  ROC table. More details can be found  in 
Carter 1151. An  article  by Gevins et a/. [27l presents results 
on using  linearlythresholded coherence estimatesto detect 
biomedical phenomena. We present an algorithm  for com- 
puting PDversus Pf for a specified amount of averaging and 
underlyingcoherence.,Under simplifyingassumptions,the 
probability  density  function  of e, when C = 0, is obtained 
from Table 1. In particular 

p(C 1 nd, C = 0) = (nd - 1) (1 - C)(nd-2).  (14) 

Hence, the  probability  of false  alarm is  

Pf = 1 - (nd - 1) (1 - d e  (15a) I 
and the threshold 

E = 1 - ( P F ) l / ( n d - l )  (1%) 

that is, for a specified P,we establish a threshold according 
to (15b). Now  the computationally more complex question 
is: What probabilityof  detection is achieved for this thresh- 
old value € ?  The answer is 

1 

Po = S, p(d (nd, C)dC = 1 - P(C 5 € (nd, C) (16) 

where P ( C  I €/nd, C) is the cumulative distribution  func- 
tion (CDF). The CDF is given in Table 1. An example is illus- 
trative. 

For models of  the  form 

X U )  = zl(t) + ndt)  (1 7 4  

y(t) = z2(t) + nAt) (17b) 

where zi(t) is  the  output  of a linear filter H i (  f )  excited  by s(t),  
i=l, 2, and the noises are mutually uncorrelated and uncor- 
related with  the signal, then it can be shown that 

CXY( f 1 = CJ f ) CsvC f ) (1 8) 

that is, the coherence between two receivers is the  product 
of  the coherence between the source and each of the  indi- 
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Hence, to study the O-dB (or equal signal-to-noise) case, we 
must select 

1 

PD 

4 
1 

which  implies C = 0.25. The  ROC  curves for JyI2 = C = 0.25 
and N = nd = 4 ,8 ,  and 16 independent data  segments  are 
given in Fig. 13. As seen in Fig. 13, performance can be 

- 0  
PF 

1 

PD 

C - 0.25 

PF 

Fig. 13. ROC curves for ly12 = C = 0.25, nd = N = 4,8, 16. 

1 

improved  by increasing the  number  of  disjoint data seg- 
ments nd if a sufficient  amount  of stationary data  exists; if 
not, nd can only be increased  at the expense of degrading 
the frequency  resolution with i ts  inherent  difficulties.  If nd 
is  fixed, performance is determined  by the  underlying 
coherence or, equivalently, the signal-to-noise ratio (SNR) 
(see,  e.g.,  Fig. 14). For many particular problems, the per- 
formance will be  desired for  different values of nd and C. 
Because of  the large number  of  possible choices for these 
parameters, we will  not present an exhaustive series of 
results; a basic computer program listing is  available in 
Carter [14]. 

F. Confidence Bounds for  Magnitudesquared Coherence 
Estimates 

In many applications, two received signals  are digitally 
processed to  estimate coherence. Results of  computing 
coherence estimate confidence  bounds  for stationary 
Gaussian  signals  are presented. Computationally difficult 
examples  are given for 80- and 95-percent confidence with 

Fig. 14. ROC curves for nd = N = 8, ly12 = C = 0.1,0.2,0.3. 

independent averages of 8,16,32,64, and 128. A more com- 
plete discussion can be found  in Scannell and Carter [65]. 

The  MSC is useful in detection and is also of value in esti- 
mating the amount of coherent power  common  between 
two received signals. Therefore, it would  be desirable,  hav- 
ingestimatedaparticularvalueofMSC,tostatewithcertain 
confidence that  the  true coherencefalls in a specified inter- 
val. (A general discussion of confidence intervals is avail- 
able in Cramer [24].) Early attempts to present 95-percent 
confidence  were  accomplished  by Haubrich [39] who 
apparently used precomputed CDF  curves and used a dif- 
ferent  method of presentation than  the  one used  here. 
Related confidencework  for  the magnitudecoherence  (MC) 
is presented by Koopmans [48]. Empirical results for 95-per- 
cent  confidence are given by Benignus [7]. The confidence 
limits given here appear to agree with approximate results 
in Bendat and Piersol [4], and Enochson and Goodman [26], 
and with results of  Brillinger [5] from  tabulated densities. 
Gosselin [28] compared MSC detectors with other detec- 
tors using the  notion  of ROC  curves. 

A computer  program has been written (see  Scannell and 
Carter [65]) to evaluate the CDF and confidence limits. Recall 
the CDF is a finite sum of 2F1 hypergeometric  functions, 
each of which is a polynomial, as given in Table 1 .  When 
C equals zero or  unity, CDF values  can  .be computed  in 
closed form. 

Let C be the  true value of an unknown parameter and let 
be i ts estimate. cis a random variable (RV) with a known 

probability  density  function  (pdf) p(e 1 C). (The condition- 
ing  on C indicates that  the shape of  the  pdf  of e depends 
on  the exact (unknown) value of C.) 

Suppose we choose AL(C) and AJC) such that 

AdC) 

Pr (e < AJC) C) = s de p(e 1 C) = 0.95 (say). (22b) 

Then the  probability  that  RVelies  in  the range (A,(C),A,(C)) 
is 

Pr (AL(C) < e < AJC) 1 C) = 0.90. (23) 
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Now assume that AL(C) and AJC) are monotonically 
increasing with C, and are continuous. Then there  follows: 

Pr (A; ’ (e)  c C < A;’(e)  I C) = 0.90.  (24) 

Therefore, the  confidence  interval  for C is 

&’(e), AL’(C)), with confidence  coefficient 0.90. , (25) 

Given a measurement e, this  interval can be computed once 
the  functions A;’(.) and A;’(.) are known. 

Fig. 15 presents computer  generated 80- and 95-percent 
confidence  limits (see Scannell and  Carter [65]). The five 

CONF. ~IMlT=80.0 

CON ENDS 

CONF. LIMIT=95.0 

i o  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1.0 
CON ENDS 

Fig. 15. Wpercent and  95-percent MSC estimate  confi- 
dence bounds for N = 8,16,32,64,  and 128. 

pairs of curves in each figure  are  for nd = 8,16,32,64, and 
128 from  outer  to inner, respectively. If we make many esti- 
mates of MSC and keep applying confidence  rules  (whether 
or  not C is random or constant), we will correctly include 
the  true value of C in  the  determined interval the specified 
percent  of the time. Sometimes the  method  of applying 

confidence  rules is in doubt;  for example in Fig. 15 if  the 
estimate comes out  to be 0.3 and nd = 8, then a horizontal 
line does not intersect the upper  confidence limit unless 
we extrapolate it backwards. Thus we  could say that with 
9lpercent confidence the  true MSC is  in  the region (-0.1, 
0.62). Since we know a priori that the  true value of Cis  non- 
negative, we could just as easily say (but  with  no  more con- 
fidence)  that with 95-percent confidence  (for nd = 8 and 

= 0.3) the  true MSC falls in  the region (0.0,0.62). It is inter- 
esting to  note that larger values of N do  not always result 
in the  upper  confidence bound  being lower. This  also 
occurs not  only  in MSC but also in  MC estimate  confidence 
limits (see Koopmans [481). It is also interesting to  note that 
while increasing nd is  desirable, the confidence  bounds  for 
nd = 128 are still very large. 

IV. TIME DELAY ESTIMATION 

A. Introduction 

A coherent signal emanating from an underwater acous- 
tic source and monitored in the presence of noise at two 
spatially separated  sensors  can be  mathematically  modeled 
in  the  direct  path as 

x#) = s(t) + ndt) (26a) 

x2(t) = s(t - D )  + n2(t) (26b) 

where s(t),  nl(t), and n2(t) ar real, jointly stationary  random 
processes.  Signal s(t) is  assumed to be uncorrelated with 
noisen,(t) and nz(t) and  one desires to estimate the  unknown 
time delay D. We note  that in  the literature  the received 
signals in noise are sometimes denoted by rl(t) = x#) and 
rz(t) = x2(t). 

There are many applications in  which  it is of  interest to 
estimate the  time delay D. This section reviews the deri- 
vation of  a  maximum  likelihood (ML) estimator  given by 
Knapp and Carter [46]. While  the model  of the physical phe- 
nomena presumes stationarity, the techniques to be  devel- 
oped  herein are usually  employed in slowly  varying  envi- 
ronments  where the characteristics  of  the signal and noise 
remain stationaryonlyforfiniteobservation time T. Studies 
of  more  complex  effects are given by Bj@rn@ [9]; Tacconi 
VO]; Griffiths,  Stocklin,  and VanSchooneveld [29]; and Chan 
[20]. Further, the  time delay D may  also change slowly 
requiring time-varying or  adaptivetechniques such as those 
of  Griffiths [301; Owsley [621; Picinbono [63]; Meyr 1551; and 
Lindsey and Meyr [50]. Other investigations  of the time- 
varying case are studied  by Knapp and Carter [47];  Adams, 
Kuhn, and Whylund  [I]; Carter and Abraham [18]; and 
Schultheiss and  Weinstein [69]. 

Another important consideration in estimator  design is 
the available amount  of prior knowledge  of the signal and 
noise statistics. In many problems,  this information is neg- 
ligible. For example, in passive detection, unlike  the usual 
communications  problems, the source spectrum is 
unknown  or  only  known approximately. 

B. Derivation of the ML Estimator 

The ML estimator is derived as follows. Assume that sig- 
nals and noises are  Gaussian. Denote the Fourier  coeffi- 
cients  of xi(t) by 
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where 

= - 2* 
T ‘ 

Note  that  the  linear  transformation X i ( k )  is  Gaussian since 
xi(r) is Gaussian. Further, as Tgoes to  infinity and k goes to 
infinity such that kwA = w is  constant 

= 1 xi(t)e-iwt dt  (28b) 

where ki is  the Fourier  transform  of xi(r). A more complete 
discussion on Fourier  transforms  and  their  convergence is 
given in standard texts. When  the  observation time is large 
compared to  thecorrelation  timeof  the signal plusthe mag- 
nitude of the delay then 

-01 

Now  let the vector 

X(&) = [Xl(k),  XZ(k)l’  (30) 

where ’ denotes transpose. Define the power spectral den- 
sity matrix Q such that 

0 Q(kwA). 
T 

( 3 1 ~ )  

Recall from Section I that the magnitude-squared  coher- 
ence  (MSC) 

Using  the  positive  semidefinite  properties  of the spectral 
density  matrix Q  one can readily show that C is bounded 
by zero and unity. The vectors X ( k ) ,  k = -N, -N + 1, * * , 
Nare uncorrelated Gaussian  (hence, independent)  random 
variables. More explicitly, the  probability  density  function 
for X = [ X ( - N ) ,   X ( - N  + I), * a ,  X(N) ] ,  given the power 
spectral density  matrix Q  (or  the delay, and  spectral char- 
acteristics  of the signal and noises necessary to determine 
Q) is 

where 

and cp i s  a  function of the  determinant of the spectral den- 
sity matrix IQ(kwA)l. With  proper  substitution we obtain 

N 

11 = C j i * ; ( k~A)~ - ’ ( kwA)  R(kwA) - 1 
T ‘  (33d) 

For ML estimation it is desired to choose D to maximize 

In general, the parameter D affects both cp and J1 in p ( e ) .  

However, under certain  simplifying assumptions, cp is  con- 
stant or is only weakly  related to  the delay. Specifically, sup  
pressing the frequency  argument 

k = - N  

p ( X  I Q, Dl. 

Q = (G, + C,,,,) (Gss + Gmm) 
- (cnm + G,e-j2rf4 (G:,,,, + G,e+jZrf”) (34) 

which is independent of D if G,,,, = 0 (i.e., the noises are 
uncorrelated). 

For large observation  times we have 

Jl I R*’(f)Q-‘(f) x ( f )  df. (35) 
m 

-01 

The inverse of the spectral  density  matrix is given  by 

When  the noises  are uncorrelated 

and it follows  that 

0) 

J1 = I-- R * ’ ( f )  Q-’ ( f )  R ( f )  df = 1 2  + I 3  

where 

-J3  = 1 A ( f )  + A * ( f )  df 
OD 

-01 

Note  that  for real  signals and noise A * ( f )  = A ( - f )  and it 
follows  that 

OD  OD 

- I3  = I A ( f )  df + A ( - f )  df 
--o -01 

OD 

= 2 A ( f )  df. 
-01 

Letting Tcxlx,( f ) be defined as jil( f ) f ), we have 

(39) 
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Notice  that the  ML estimator for D will  minimize I1 = 
I 2  + J3, but  the selection of D has no effect on 12. Thus D 
should maximize -I3.  Equivalently, the ML estimator selects 
as the estimate of delay the value of T at which 

achieves a peak. 
These results compare favorably with closely  related work 

of MacDonald and Schultheiss [53]; Hannan and Thomson 
[MI-[36]; Hahn  and Tretter [31]; and Cleveland and Parzen 
[23]. A more  complete discussion of the  derivation and 
related references  can be found  in Knapp and Carter [&I. 

C. Interpretation of the ML Estimator 

One  common  method of determining  the  time delay D 
is to  compute  the standard cross-correlation function 

~ ~ ~ ~ ( 7 )  = E[x,(t) x,(t - T)]  (42) 

where E denotes expectation. The argument 7 that maxi- 
mizes(42)providesanestimateofdelay.Becauseofthefinite 
observation time, however, Rxlx2(~) can only  be estimated. 
For  example, for ergodic processes,  an estimate of  the cross 
correlation is given  by 

kXlx2(T) = - Srr xl(t) xZ(t - 7 )  dt (43) T - - 7  

where T represents the observation time. In  order  to 
improve  the accuracy of  the delay estimate B, it is desirable 
to pre-filter x#) and xz(t) prior  to cross correlation.  We  call 
this  simple but very important process generalized cross 
correlation  for lack of a better  description. As shown in Fig. 
16,  xi or ri may be filtered  through Hi to yield yi for i = 1,2. 

The resultant yi are  cross correlated, that is, multiplied and 
integrated, for a range of hypothesized time delays or  time 
shifts T until  the peak is obtained. We caution the reader 
that in  the  literature and even here we use xi and ri inter- 
changeably to denote received signal.  The time  shift caus- 
ing  the peak is an estimate of  the  true delay 6. When  the 
filters H l ( f )  = H,(f) = 1, for  all f, the estimate D i s  simply 
the abscissa value at which  the standard cross-correlation 
function peaks. Knapp and Carter [46] provides for a gen- 
eralized cross correlation  through  the  introduction  of  the 
filters H l ( f )  and H,(f) which, when  properly selected,  can 
significantly enhance the  estimation  of  time delay. 

The  cross correlation between x#) and x2(t) is related to 

the cross-power spectral density function by the  well- 
known Fourier transform  relationship 

m 

RXlX2(~) = [ G,,,,( f )  e j Z T f r  df. (44) 

When x#) and xz(t) have been filtered  with  filters having 
transfer functions H1 and Hz, respectively, as depicted in 
Fig. 16, the cross-power spectrum  between the  filter  out- 
puts is given by 

-0) 

G,,(f) = H l ( f )   H 3 f )   C X l X Z ( f )  (45) 

(again we  note x1 = rl and x2 = r2). 

function between x,(t) and x,(t) is 
Therefore, the generalized cross-correlation or GCC 

Pm 

where the generalized frequency weighting 

W ( f )  = Hl ( f )   H : ( f ) .  (46b) 

In practice, only an  estimate of the cross-power  spectral 
density can be  obtained from  finite observations of the 
received  signals. Consequently, the integral 

m 

kyly2(T) = [ w( f ) c,,,,( f )  e j z x f r  df (47) 

isevaluated and used for  estimating delay. Indeed, depend- 
ing on the particular form  of W ( f )  and prior  information 
available, it may  also be necessary to estimate the gener- 
alized weighting. For  example, when  the  role  of  the  pre- 
filters is to accentuate the signal passed to the  correlator 
at those frequencies at which  the coherence or signal-to- 
noise ratio (SNR) is  highest, then W ( f )  can be expected to 
be a function  of  the coherence or signal-and-noise spectra 
which must either  be  known  or estimated.  Besides the max- 
imum  likelihood (ML) weighting  there are  an entire  family 
of generalized weightings. See  Fig.  17 for some common 
GCC weightings. A discussion of  when to use these adhoc 

-m 

SCC 

ROTH 

WIENER 
PROCESSOR 

ML 

Fig. 17. Various GCC functions. 

weightings is beyond  the scope of  this paper;  however, the 
reader should  be aware that  other weightings have been 
shown under  certain  conditions to offer attractive pro- 
cessing capabilities (e.g., tonal  rejection via SCOT pro- 
cessing). 

The ML weighting, that causes minimum variance TDE 
under Gaussian  assumptions, is given by 
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When G,,,(f) and C12(f) are known,  this  isexactlythe  proper 
weighting.  When these terms are unknown, they can be 
estimated via lag-reshaping  spectral  estimation  techniques 
discussed earlier or using  techniques  of  others, e.g., Mar- 
ple [54]; or  the WOSA method of  Carter, Knapp, and Nuttall 
[ I l l ;  or classical methods, e+., Jenkins  and Watts [42] and 
Bendat and Piersol [6]. Substituting  estimated  weighting  for 
true  weighting is entirely  a  heuristic  procedure  whereby 
the M L  estimator can approximately be achieved in prac- 
tice.  When the noises are uncorrelated but have the same 
power  spectrum we can show 

For small SNR we have 

(49) 

which is  the  well-known Eckart filter (see  Eckart  [25])  used 
in  optimum signal detection at low SNR. Thus the prefilters 
used for optimum signal detection at low SNR are the same 
prefilters 'as used for  minimum variance time-delay esti- 
mation at low SNR. 

D. Fundamental Performance Limits 

The  Cramer-Rao lower  bound (CRLB), is given by 

The only part  of the log density which depends on 7, the 
hypothesized delay, is J3.  More  explicitly 

If 

G,,J f ) = 1 G,,,,( f )I e -jlrfD 

then (since the complex cross-spectral estimator is 
unbiased) it follows  that 

Hence the  minimum variance of any time-delay estimator 
is 

This is the minimum variance and  that which the ML pro- 
cessor  achieves asymptotically  for  sufficiently large T. For 
constant signal-and-noise power spectra 

C12(f) - (s N R ) ~  
1 - C 4 f )  1 + 2SNR 

- 

so that 

min var = 
1 

or  simply 

2 3 (1 + 2SNR) 1 
UCRLB = - . -  

8u2 SNR2 B3T' 
(56b) 

When  the signal and  noise have the same flat  power spec- 
tra, as noted by Scarbrough, Tremblay, and Carter [67], for 
the time-delay estimation (TDE) problem,  this form of  the 
Cramer-Rao lower bound (CRLB) is commonly used as the 
performance standard. The CRLB yields  a  lower bound  on 
the variance of any unbiased  time-delay  estimate as a func- 
tion of several parameters (e.g., the signal-and-noise  power 
spectra and  the  integration  (observation)  time). Part of the 
appeal of  the CRLB is that  for cases of  practical interest, there 
is a theorem which states that the  maximum  likelihood (ML) 
estimate can be made arbitrarily close to the CRLB for  suf- 
ficiently  long integration times, see  Van  Trees  [71]. How- 
ever, thetheorem does not specify how  longthe integration 
time must be. Thus while  the CRLB  sets a  lower bound  on 
the variance of the time-delay estimate, actual performance 
can be much  worse  for a given  signal-to-noise (SNR) and 
observation  time. This is corroborated by the simulation 
results of Scarbrough, Ahmed, and Carter [66], Scarbrough, 
Tremblay, and  Carter [67l, and Hassab and Boucher [37]. 
Several studies have been  conducted to  find  a  bound 
tighter  than  the CRLB which  would  predict performance 
more accurately. Work  in  this area  has been  done by lan- 
niello,  Weinstein,  and Weiss [41],  Weiss and Weinstein [72] 
and [73], as well as Chow  and Schultheiss [22]. lanniello [40] 
has developed  a  correlator  performance  estimate (CPE). It 
has been shown via simulation that, for the cross-corre- 
lationtechniqueofTDE,theCPEyieldsamoreaccurateesti- 
mate of performance  than the CRLB, especially at low SNR 
(see lanniello[40]). The following discussion presents some 
additional  comparisons  of  the CPE and CRLB and discusses 
some implications  of these comparisons. In particular, the 
behavior of the CPE and the CRLB is considered as a func- 
tion of the observation time and SNR, and the implications 
of  this  behavior are considered as related to coherent and 
incoherent signal-processing techniques  for  time-delay 
estimation. In addition,  simulation  results are presented to 
support the inferences  of the theoretical analysis. 

Chow and Schultheiss [22], Scarbrough [68],  Betz  [8], and 
Johnson,  Ohlms, and Hampton [43] have studied the  low 
SNR problem. In  the  work here, consideration will be lim- 
ited to signal-and-noise  power spectra Gss( f )  and Gflfl( f 1, 
respectively, which are flat  (constant) over the frequency 
range - B to + B  hertz and zero outside  this range. B i s  then 
a measure of the source signal bandwidth. Additionally, it 
will be  assumed that  the  bandwidth-observation time 
product BT is  large (say BT L 100,  e.g., for B = 100  Hz, 
T L 1 s). 

In general, proper  prefiltering  prior  to cross correlation 
is required to achieve the M L  estimate  of time delay. Under 
the special conditions here, the M L  estimate  of the  time 
delay can  be obtained by computing  the cross-correlation 
function R(7) between xl(t) and x2(t). The ML time-delay  esti- 
mateisthevalueof  ?which maximizesR(7). Forother power 
spectra, a generalized cross correlator with  the proper  pre- 
filters is  required. 

For the signals of  interest in  this section, the  minimum 
variance of the TDE for  the CRLB can be expressed as (see 
Quazi [64]) 

2 3 (1 + 2SNR) 1 
UCRLB = 8s2 . -  

S N R ~  B ~ T  
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where T i s  the observation time and SNR = G,(f)/G,,(f) = 
constant  for 1 fl < B. Note that in this  definition, SNR is the 
signal-to-noise  ratio at the  input of  a  single receiver. 

The CPE  was developed  by  lanniello [40] to  provide more 
accurate performance prediction  for  the  crosscorrelation 
techniqueforTDE  inthe presenceof largeestimationerrors 
or anomalous estimates.  The CPE assumes that the anom- 
alousestimateswill beuniformlydistributedacrossthecor- 
relation  window, say, from -To to +To seconds.  The CPE 
yields  the following estimate of  the variance of the TDE 
error: 

where P is  the  probabilityof an anomalous estimate. Forthe 
signal-and-noise spectra considered here, P can be approx- 
imated as 

" 1  
P = l -  

where 

m T  (SNR) 
a = [SNR' + (1 + SNR)2]1'2 (59b) 

and M = 46TP The probability  of anomaly must  be eval- 
uated numerically to  obtain  the  probability of anomaly P 
for  a  given set of parameters 6, T,  To, and SNR. 

The CPE and CRLB are compared in Fig.  18 for  the case 
of B = 100  Hz, T = 8 s, and To = 4 s relative to an  assumed 
sampling  frequency of 2048 Hz. Both curves in Fig.  18 are 

0.0 1 

- 20 -10 * 0 

S N F i ( d B 1  

Fig. 18. Plot of CPE and CRLB versus SNR (dB) (T = 8 S, 
B = 100 Hz, To = a 5). 

plotted as the base10 logarithm of uD, the standard devia- 
tion of the time-delay  error, versus the  input SNR in dec- 
ibels. The upper  curve is the CPE; the  lower curve is the 
CRLB.  The  CPE is characterized  by  three  regions: 1) at low 
SNR, there is a  region  where prior  information  limits  the 
variance (e.g., the  maximum  observable delay To is known); 
2)  at moderate SNR, there is a transition  region  from  the 
prior  information  limit  to  the CRLB; and 3) at high SNR, the 
CPE coincides with  the CRLB. The SNR  at which  the CPE 
begins to deviate from  the CRLB is referred to as the thresh- 

old SNR  (SNR,,, in Fig.  18). We note also that while  the CPE 
is not  a bound, recent work has been done to derive  a bound 
tighter  than  the CRLB. This new  bound is close to the CPE, 
falling  just  below  the CPE on Fig.  18.  This new  bound, the 
Ziv Zakai lower bound (ZZLB) is discussed by lanniello, 
Weinstein,  and Weiss  [41]. 

E. Simulation  Description and Results 

A computer  simulation was conducted to corroborate the 
theoretical TDE performance  predictions. Earlier simula- 
tions have been conducted  by Hassab and  Boucher [37]. 
Good agreement among many earlier  simulation was shown 
in  a comparison of  a large number  of simulation  results by 
Kirlin and Bradley [45].  The cross correlation of simulated 
received sequences was computed using the FFT approach 
described by Oppenheim and Schafer  [61].  The particular 
method is very similar to  the lag-reshaping method of spec- 
tral  estimation  presented  earlier. It is a little more complex 
in that  zero filling  on FFT segments is not necessarily equal. 
Thedetailsarenot  importanttothediscussion here but may 
be if  attempting  to reproduce the results. It is important that 
the mean and variance of all the noise-only  correlation 
points be the same for  all  correlation lags. After cross cor- 
relationtheestimateofthetimedelaywasobtained  byfind- 
ing the delay value for  which  the cross correlation' was a 
maximum. This approach  yields the time-delay estimate 
quantized in units  of  the sampling  interval. 

The simulation was conducted  for two integration  times 
over a range of SNR values. Unlike many earlier  simula- 
tions,effectsof low SNRwerestudied.  Different  integration 
times are obtained by varying the  number of cross power 
spectra which are averaged before taking the IFT (inverse 
Fourier  transform) to obtain  the estimate  of the cross-cor- 
relation  function. 8 and 32 data segments were processed 
coherently in  the simulation to obtain integration  times  of 
2 and 8 s, respectively, for  the case of 512-point data seg- 
ments and an  assumed sampling  frequency  of 2048 Hz. A 
total  of 2000 trials was conducted at  each SNR to  obtain  the 
experimental  time-delay variances. These results are plot- 
ted in Fig.  19(a) along with  the corresponding  theoretical 
curves for  the CRLB and the CPE. The symbol size of the 
experimental  points is  indicative  of  the  %percent  confi- 
dence  limits. The theory and results are in veryclose agree- 
ment  and  support the previous analysis. Of  profound 
importance is that the CRLB is a  poor  predictor  of  perfor- 
mance at low-input SNR. This has significant  implications 
for  using  techniques to increase coherent  processing time 
as discussed by Scarbrough, Tremblay, and Carter [67] and 
Scarbrough [68].  These results are graphically  portrayed in 
Fig.  19(b). Note  now we plot  the Ziv Zakai lower bound 
(ZZLB) as opposed to  the CPE. Also we compare  a  coherent 
ortrackingapproachforT=8withanincoherentapproach. 
(Intheincoherentcase,wefirstestimatethedelayovershort 
observation  intervals  and then Average the  timedelay esti- 
mates over the available intervals.) The threshold is clearly 
reduced  by  coherent processing. 

V. FOCUSSED TIME-DELAY ESTIMATES FOR RANGING 

A. Introduction 

This section discusses using focussed time-delay esti- 
mates to passively estimate range to a coherent source. Most 
oftheworkinthissectionisasummaryoftheworkinCarter 
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Fig. 19. (a)ComparisonofCPE,CRLB,andsimulation results 
(B = 100 Hz, To = i s ,  T = 2 , 8  5). (b) Plot of U L B  and  effects 
of coherent versus incoherent  processing. 

[15]. Other related  references include Owsley [62], Lynch 
[51], and Lynch,  Schwartz, and Sivaprosad  [52]. 

The maximum-likelihood (ML) processor is presented  for 
passively estimating range and bearing to an acoustic 
source.  The source signal is observed  for  a  finite-time  dura- 
tion at  several  sensors in  the presenceof  uncorrelated noise. 
When  the speed of  sound in an isovelocity medium and the 
sensor positions are known, the  ML estimator  for  position 
constrains the source-to-sensor delays to be focused into 
a point  corresponding  to  a hypothesized source location. 
The  variances of  the range error  and  bearing  error are pre- 
sented for  the  optimum processor. It is  shown  that  for bear- 
ing and range estimation,  different sensor configurations 
are desirable. However, if  the area of uncertainty is to be 
minimized, then  the sensors should be divided  into equal 
groups with  one-third of the sensors in each group. 

An underwater  acoustic point source radiating energy to 
several collinear  receiving sensors is shown in Fig. 20. The 

(EllipcLtke) Region-' 
Uncerbinty 

Acourlie Source 

Fig. 20. Array  geometry  used  to  estimated  source  position. 

position  of  the source in  two space can be characterized 
by range R and bearing B from  a given  frame  of reference. 
The particular geometryof interest  istwo-dimensional with 
an acoustic point source whose range and  bearing are to 
be estimated  by  a  fixed  number  of receivers. For the  pur- 
poses of  this  work, we presume  that the receiving  hydro- 
phones are collinear. However, regardless of the hydro- 
phonepositions,afixed numberof sensors havean inherent 
uncertainty in estimating source location. For our geom- 
etries here, this  uncertainty  region is nominally elliptical, 
so that by properly  defining  how range and  bearing are 
measured, the estimation  errors can be decoupled (see  Fig. 
20).  For acollineararrayof sensors, we measure the bearing 
as the angle between the  line array and  the  major axis of 
the uncertainty  region. 

For a  radiating source distant from an  array, the  uncer- 
taintyinmeasuringRandBischaracterized byanextremely 
elongated  elliptical  uncertainty  region. The problem 
addressed here is how  to estimate range R and bearing B 
to a source when M sensors  separated by  a  maximum  of L 
(meters) have observed Tseconds of received data.  We will 
examine the  maximum-likelihood (ML) technique  for posi- 
tion estimation. 

B. Mathematical Model 

For our purposes we assume that each receiving sensor 
at the  tth  instant in  time corresponds to a signal plus noise. 
Namely, the  ith (of M) sensor outputs is characterized  by 

ri(t) = s( t  + 0;) + n,(t), i = 1, M, 0 5 t 5 T. (60) 

The  signal and noises  are uncorrelated and the noises  are 
mutually  uncorrelated. Without loss of  generality D, = 0. 

For a spatially stationary, that is, nonmoving, source the 
signal  can be viewed as an attenuated  and delayed source 
signal. However, it is felt  the  problem  of  estimating  the  posi- 
tion of  a  stationary source is considerably easier than  that 
of a moving source. Thus the results  here serve as a  bound 
on performance;  still we will see that it is extremelydifficult 
in  the best case to passively estimate source range. 

C. Maximum  Likelihood Performance 

The maximum-likelihood (ML) estimate for the time-delay 
vector has been derived  for  stationary Gaussian  processes 
by Hahn [32] and Carter [14]. It is not  difficult  to show that 
an M L  estimate for range and  bearing  when the sensor (ele- 
ment)  positions are known is achieved by  a  variation  of 
Carter [14]. In particular, by focusing all the time-delay ele- 
ments at many (hypothesized) range and  bearing pairs and 
watching  for the peak output of the M L  time-delay vector 
system, the M L  position  estimate is observed. An M L  system 
realization is shown in Fig.  21. This figure is sometimes 
referred toas afocused  beamformer. Moredetails aregiven 
inthepaperbyCarter[15].Anotherwaytolookatthisprob- 
lem is  that we want to maximize  a quantity by  adjusting a 
number of delay parameters subject to the constraint  that 
all the delays must  intersect in a  single  hypothesized  posi- 
tion. Such a system and  its variance has been examined by 
Bangs and Schultheiss [3]. 

For equal noise spectra, we should  utilize  a  product  of 
pre- and postfilters with magnitude-squared  transfer  func- 
tion,  given  by Bangs and Schultheiss [3] (see  also Knapp and 
Carter [MI, Hannan and Tompson [35], MacDonald  and 
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Table 3 Constants  for  Four Arrays of  Interest 

Fig. 21. Maximum-likelihood  estimator  for  rangeand  bear- 
ing. 

Schultheiss [53], and Carter [14]) 

IH(w)12 = 
S(o)/N2(o)  

1 + M[  S(w)/N(o)] 

in order to  minimize  the variance of delay estimates (where 
Sand N denote signal-and-noise-power spectral densities). 
For  passive rangeand  bearingestimation thevarianceof  the 
parameter estimate 8, where 8 = 8 or 8 = B, is  more  com- 
plicated  (seeCarter[15])and  issummarized in  the  following 
subsection. 

Having selected proper  prefilters  for a specified array 
geometry, the  maximum  likelihood estimates of range and 
bearing  (that is, minimum variance estimates) is  obtained 
by coherently  processing the  outputs  of  the sensing hydro- 
phones. In particular, each hydrophone  output is prefil- 
tered to accentuate a  high signal-to-noise  ratio (SNR), then 
delayed and summed. The summed signal is fed to a filter, 
then squared and averaged for  the  observation  time. The 
output of this  network is maximized through  the  indirect 
adjustment  of  the delay parameters. The delay parameters 
are derived on  the basis of two adjustable parameters: 
hypothesized  bearing  and  hypothesized range.  Thus an 
operator need only adjust  his best estimate  of  bearing and 
range.  From these two inputs,  proper delays  are inserted 
in each hydrophone receiving  line. The process of  delaying 
and summing is a  focused  beamformer  where  the delays 
used  cause the beamformer to presume  that the source 
wavefront is curved  and not planar. The individual sensor- 
to-sensor delays inserted are directly  related to  the  hypoth- 
esized source and sensor locations. 

For a particular array type A, Carter [I51 has shown  that, 
at high output SNR, the  minimum variance of  bearing  and 
range estimates is given by 

and 

where a‘(& i s  measured in radians squared, the  effective 
array length Le = L sin B, and the constants K R  and KB for 
four array types are given in Table 3. M is  the  minimum of 

Arrav Type KG. K. 

Equispaced line 7.75 360 
Mi2, 0,  Mi2 03 

Mi3,  Mi3, MI3 6.9 144 
Mi4, Mi2, MI4 5.7 128 

W 

6 
2 
3 
4 

the  number  of sensors and the array length divided by the 
design half-wavelength; also  at high-output SNR 

where S(w) is  the signal power spectrum, N(o) is  the noise 
power spectrum, C is the speed of  sound in  the medium, 
Q is the highest source (or  receiver)  frequency, and, as ear- 
lier, T i s  the observation  time, R is  the range, and B is  the 
bearing. 

D. Discussion 

Doubling  the  number of sensors M or  the observation 
time  Twill reduce the standard deviation  of  either the bear- 
ingestimateor rangeestimate by1.4. In bearing  estimation, 
we desire to make Le large and the constant Ks small in order 
to reduce variance. Note that doubling  the array length 
reduces the variance by four. Thus  array length is a  more 
important factor in bearing  estimation  than  either  integra- 
tion  time  or  the  number  of hydrophones  when operating 
at high-output SNR. 

The four  different array types studied are an equispaced 
line array and three  line arrays with M elements grouped 
at the two ends and the  middle  of  the array. MacDonald  and 
Schultheiss [53]  have shown  that, by placing  half  of the M 
elements at  each end  of a line array in an Mover two, zero, 
M over two grouping, a bound  on bearing variance is  
obtained. This bound,  of course, is for a hypothetical array 
where the elements are collocated but  still sense indepen- 
dent noises.  The practical  implications  of  MacDonald and 
Schultheiss’ result are both  to  provide a bound  on  how 
well  bearing can be estimated  under  ideal conditions and 
to suggest how  to place a limited  number of  hydrophones 
over a large aperture. Namely, for  bearing  estimation  half 
of  the  hydrophones  should  be positioned at each end of 
the array, placed at half-wavelength spacing for the design 
frequency, and none  should be placed in  the  middle of the 
available aperture. 

I t  is noteworthy that the variance of the range estimate 
depends on  the  fourth power of the range relative to the 
effective baseline. This fourth-order dependence is  a  fun- 
damental  physical limit and makes the task of passive rang- 
ing at long range with short arrays extremely  difficult. The 
variance of the range estimate is  reduced by making the 
effective array length Le large. This  can  be done  by  making 
the array length L large or  to  a lesser degree by physically 
steering the array broadside to the source. The variance can 
also be reduced by decreasing the range to  the source. Of 
course, reducing the range to  the source can  also increase 
SNR depending upon propagation  conditions. 

The constant KR depends on  the array type. For  an equi- 
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spaced line array, KR is 360. A bound  on passive ranging per- 
formance is provided by an  array configured  with a quarter 
ofthehydrophonesateachendandhalfinthemiddle.Thus 
we see that  the  hydrophone  configuration in a line array 
desired for bearing  estimation  and  the  one  for range  esti- 
mation  differ. The bearing array should have i ts elements 
toward  the array  ends, while  the ranging array should have 
half of i ts elements in  the central  portion. However, a line 
array with a third  of i ts  elements at each end and the  middle 
will  minimize  the  uncertainty region, that is the  product  of 
the cross  range error and  ranging error (see Carter [15]). 
Thus in this sense, a line array physically segmented into 
three equal groups of elements will  outperform all  other 
arrays for passively locating an acoustic source.  This result 
is  summarized in Table 4. The optimum processor coher- 

Table 4 Optimum Sensor Configuration 

For 
Estimating Best Array Configuration 
Bearing 0 0 . 0 . .  0 . .   0 . .  

Range 0 . .  0 0 . 0 . .  0 . .  

Position 0 . 0 .  0 . 0 .   0 . 0 .  

MI2 MI2 

MI4 MI2 MI4 

MI3 MI3  MI3 

entlycombines  all M hydrophone  outputs. lf,however, only 
the beamformer output  from each  subarray is  used for 
coherent processing, a nearly optimum  technique is 
believed to  result. 

Of considerable concern  when  attempting to predict  the 
performance of a passive localization  technique are  values 
such as  SNR, number of sensors, and  integration time. It 
is interesting  that these terms, together with constant such 
as 27 ,  can all  be attributed to  the standard deviation  of  the 
bearing estimates (measured in radians). Then the relative 
range error given  by the standard deviation  of  the range 
estimate divided by the  true range is  given by a constant 
times standard deviation of  the bearing estimate times a 
term  that depends  linearly on  the range to  the source rel- 
ative to  the effective array length. In particular 

For example,  suppose  an equispaced line array had an 
inherent standard deviation  of & rad (5.7O) and was to esti- 
mate the range to a source ten times as far  away as the effec- 
tive array length. lnthat case, the relative range error is 7.75, 
or  more  than 700 percent. Hence, we see that it i s  extremely 
difficult to passivelyestimate rangeof  adistant sourceeven 
under ideal conditions  with high-output SNR. 

One  of  the advantages of expressing relative range errors 
in this  form is that  the standard deviation  of  bearing esti- 
mates is a term  familiar to sonar engineers and signal pro- 
cessors. Moreover, the ocean medium may inherently  limit 
the practical ability to estimate bearing even though theory 
predictsthatwith enough SNRor integration  time,  the bear- 
ing can be measured arbitrarily  well. The expression given 
here clearly points  out  the need to make the array length 
largewhen  thesource rangecannot be reduced. Of interest 
is that this conclusion is extremely  insensitive to  the  type 

of array, provided  the array has  some ranging capability. 
This  can be seen from  the  similarity  of  the constants given 
in Table 3. 

To  summarize, we desire to  know  how  to place a limited 
numberof hydrophonesoverabaselineoffixedlength.The 
hydrophones  should  be placed in groups, with  the hydro- 
phones in each group placed at half-wavelength spacing for 
the design frequency. For  passive bearing estimation, half 
of  the M hydrophones should be placed at each end  of  the 
array.  For  passive  range estimation, a quarter of  the hydro- 
phones should  be placed at  each end of the array and half 
placed in  the middle. For simultaneously  estimating range 
and  bearing, both passively, the hydrophones are placed 
inthreegroupsorsubarrays,eachwithMoverthreehydro- 
phones. If  the baseline remained of  fixed  length and we had 
more hydrophones to add, we would add the hydrophones 
at half-wavelength spacing approaching an equispaced line 
array. On  the  other hand, if  the  number of hydrophones 
were limited  but  the baseline were not, we  would keep the 
hydrophones at half-wavelength spacing and increase the 
distance between subarrays. By keeping the hydrophones 
at half-wavelength spacing in  the subarrays ambiguities 
would be  minimized. 

SUMMARY 

This  paper  has presented a review of research on coher- 
ence estimation and timedelay  estimation. References to 
much  of  the relevant work  in these two fields are included. 
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