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A Parameter Estimation Approach to Time-Delay 
Estimation and Signal Detection 

Abstract-Present techniques that estimate the difference in arrival 
time between two signals corrupted by noise, received at two separate 
sensors, are based on the determination of the peak of the generalized 
cross cordation between the signals. To achieve good resolution and 
stability in the estimates, the input sequences are first weighted. Invar- 
iably, the weights are dependent on input spectra which are generally 
unknown and hence have to be estimated. By approximating the time 
shift as a fmite impulse response fdter, estimation of time delay 
becomes one of determination sf the filter coefficients. With this for- 
mulation, a host of techniques in the well-developed area of parameter 
estimation is available to the timedelay estimation problem-with the 
possibilities sf reduced computation time as compared with present 
methods. In particular, it is shown that the least squares estimation 
of the fdter coefficients is equivalent to estimating the Roth processor. 
However, the. parameter estimation approach is expected to have a 
smaller variance since it avoids the need for spectra estimation. Indeed, 
experimental results from two examples show that the Roth processor, 
found by least squies parameter estimation, has a smaller variance 
than the approximate maximum likeiiihaod estimator of Hannan- 
Thomson where spectral estimation is required, A detector that uses 
the sum of the estimated parameters as a test statistic is also given, 
together with its receiver operating characteristics. 

T 
I. INTRODUCTION 

HE estimation of time difference (or delay) between 
signals corrupted by noise, received at  two sensors located 

at a known distance apart, have applications in many fields 
[ 1 ] , A familiar use is in passive sonar where the bearing of a 
signal source is related to the time delay 123 , [3] . Other not 
so well-known examples make use of the time delay and 
known sensor separation to compute the speed of a ship, or 
the rolling speed of hot steel, or the flow rate of solids through 
a pneumatic conveyor [4] . 

The generalized correlation method [ 2 ]  , which unifies many 
of the existing time-delay estimators into a two-prefilter cross- 
correlator configuration, performs a weighting on the inputs 
through the prefilters. To compute the weights, the input 
spectra at the two sensors should ideally be known. The same 
is true of the method in [3] I Since the input spectra are not 
h o w n  in many problems, they must first be estimated in 
order to establish the weights prior to the estimation of time 
delay. Due to the inaccuracies associated with estimating 
spectrum and coherence [SI ,  and hence the weights, these 
time-delay estimators fail to achieve in practice, where data 
length is finite, their theoretical performance (based on known 
spectra)-a difficulty recognized in [Z] . 
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This paper presents an alternative approach to time-delay 
estimation by modeling the time delay as a finite impulse 
response filter (FIR). With this formulation, time-delay esti- 
mation becomes a parameter estimation problem, that of esti- 
mating the coefficients of the FIR filter. The literature on 
parameter estimation is extensive in the areas of control, 
economics, and speech [6]  , [7] . Many existing techniques are 
directly applicable to the present problem and it will be shown 
that the least squares estimation of the parameters is equiva- 
lent to the R ~ t h  processor in [ 2 ]  . However, since spectra esti- 
mation is avoided in the least squares estimator, it should, in 
practice, have a lower variance than those realized via the 
method in [2 J . While this claim is not proven in theory, it is 
at least substantiated by experimental results which show in 
two examples that for equal data length (1024 points) the 
Roth processor, realized by parameter estimation, has a smaller 
variance than the Hannan-Thomssn processor [Z] . The latter 
processor is a maximum-likelihood estimator, if the input 
spectra are known. 

Section I1 contains the derivation that relates the time delay 
to the coefficients of the FIR filter. The delay is, in general, 
assumed to be a nonintegral multiple of the sampling period, 
otherwise the formulation is trivial. The least squares solution 
that gives the Roth pxacessor is described in Section 111, 
together with the experimental results. Section IV shows that 
the estimates themselves can be used in a detection scheme 
and goes an to present the development for a receiver operat- 
ing characteristics (ROC) curve. The conclusions are in Sec- 
tion v. 

11. PROBLEM FORMULATION 
Let x ( t )  andy(t) = x(t + T )  represent, respectively, the signal 

and its delayed version, the delay being T, Their corresponding 
sampled values are x(iT)  and y( lT) ,  and if the sampling inter- 
val T is adequately small for the bandwidth sf x@), and assum- 
ing x@) is band limited, then [8] 

where 

Without loss s f  generality, let T =  1 and T = ( I  + f )  T where I is 
any integer and 0 <f< 1, Le., T is a nonintegral multiple of T .  
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ADJUSTMENT ESTIMATOR 

Fig. 1 ,  The sinc ( t  + e + f) function. Fig. 2. Parameter estimation of time delay. 

The delayed signal y ( t )  can also be reconstructed from the 
samples x(iT)  by 

Now with x@) as the signal, let B ( t )  and $ ( t )  be the corrupt- 
ing noise sources at the two sensors with the usual assumptions 
that the signal and noise sources are real, jointly stationary 
and independent random processes. The time-delay problem 
is as depicted in Fig. 2, where 

00 

so that fox any integer k 

00 

y ( k )  = x ( i )  sinc ( k  + Z + f -  i). (4) 
i -  ,-m 

With the change of variable k - p2 = i, (4) becomes 
00 

y ( k )  = x ( i )  sinc (n + I tf). (5) 
k - n = - m  

On defining 

Sn sinc (n + E +f) (6) 

and letting y k  = y(k)  and x k  = x(k),  (5) can be written as 

W 

Y k  = cnXk-n* (7) 
k -n -  ,100 

Since k is finite in (7) and the summation is from --oo to +-, 
(7) simplifies to 

Qo 

Y k  = L3Xk-n.  (8) 
pz- ---oo 

and 

are the samples (assuming an adequate sampling frequency) of 
z ( t )  and w(t), respectively. The estimator computes the esti- 
mates cn, n = --oo to +=, using zk and wk, so that the delay T 
can be obtained from either (9) or (1 1). 

Clearly, it is not practical to estimate an infinite number of 
coefficients. However, since the function sinc (n + E + f )  ap- 
proaches zero for large values of y1 + I ,  and since the maximum 
delay to be estimated (hence the largest possible value for I ) ,  
is normally known, the series summation in (8) can be trun- 
cated at some predetermined, finite number p *  Thus (8) 
changes to 

A 

P 
Thus, the time series xk is related to its delayed version y k  
through a filter whose coefficients are fn ,  the values of which 
are dependent on T. 

From (B), it is clear that cn are the samples of the function 
sinc ( t  + I +f), with the maximurn at t + I +f= 0, as shown in 
Fig. 1. Hence, given the coefficients Cn, the delay T is the 
value of f at which the maximum of t ( t )  given by 

n = - p  

which models the time delay as an FIR filter. The modeling 
error introduced by (1 6)  is examined in [ 9 ] ,  which shows that, 
for an ideal low-pass [ 101 x k  and for p = 4, I = 0, the differ- 
ence between the true delay and that produced by (1 6)  varies, 
depending on the value of f, from a maximum of -0.0231T 
at f= 0.25T (about a 10 percent error) to a minimum of 
-0.0004T at f =  0 . K  Similar results can be expected for se- 
quences whose spectra are not ideal low pass. As an example 
in choosing p ,  suppose the desired accuracy is 10 percent and 
the maximum t h e  difference that the estimator may encoun- 
ter is -t- 3T. Then p = 4 + 3 = 7. It should be emphasized that 
the 2 0 percent error is the worst case, occurring at r = 0.25T. 
If T = 1.25T, the error is only 0.0231T/1.25T X 100 percent = 
1.85 percent. Quite often, the errors due to the approxima- 
tion in (16) are insignificant compared with the variances of 
the estimator. 

00 

s(t> = Sn sinc ( t  - n) 

occurs. Alternatively, since 

- (- l y + l  sin nf 
- n(n 4- Z + f )  9 

the maximum value of cn occurs at either 5 - 1  (iff< 0.5) or 
(iff> O S )  (see Fig. 1). Let c j  be the maximum value of 

cn ( i s . ,  j = - E  or - I  - 1); then it is easy to verify,'by direct sub- 
stitution from (IO), that 
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biased [ l l ]  , Le., f is not a consistent estimator of {. To con- 
firm this, take the probability limit, as N approaches infinity, 
denoted by p limN,, , of (23). On using a corollary of 
Slutsky's theorem [].I] ,  the result is 

To proceed with the estimation of 3;2 using zk and wk, their 
relationship is first developed via (1 5 )  and (8) to yield 

Substituting ( I  4) into ( I  7) gives 

then, where 

-p-1 

n -  ,--oo n = p +  1 

is the disturbance that contains the noise terms and the model- 
ing errors. For k = p to N ,  (1 9) exmnds to the matrix eauation which is the covariance matrix of the sequence z k .  Similarly, I L 

w=Z<+U'  

where N4co fV 

¶ z =  
5 d =  W =  

I J 

Thus, from (24), The estimation problem is: g m n  the measurements vector w 
and matrix 2 and (21), find the estimates f such that f is close 
to { in sume sense. 

While (21) is a familiar equation in parameter estimation, it 
possesses some properties that are not normally present. The 
first one is that the measurements zk are related with the dis- 
turbances d k ,  so that E{ZTd} # 0. Secondly, the disturbance 
sequence is not white, so that E{ddT} is not a diagonal matrix. 
Literature on parameter estimation refers to the first property 
as correlation between observation and disturbance and the 
second as nonspkerical disturbances [ 111 . Together, they add 
complexities tu  the estimation of r. But, if the final objective 
is estimating 7 and not 5 ,  analysis in the next section reveals 
that the standard parameter estimation procedures are still 
applicable. 

111. THE  TIME-DELAY PARAMETER ESTIMATOR 
As mentioned earlier, many techniques are available tu solve 

the problem posed in Section TI. Among them, the simplest 
one chooses f n  to minimize {ETzp (wk - Z g Z m p  t n z k W n ) } ' ,  
i s . ,  it minimizes the square of the differences between the 
output of the FIR filter and the observations wk. This well- 
known solution [ 111 is given by 

h 

s: = (zTz)-' 2%. (23) 

Now because E{ZTd} # 0, the estimate f is asymptotically 

Next, from (26), (1 71, and (14), and the fact that the signd x k  
and the noise sources are uncorrelated with each other, one 
obtains 

00 

and, for sufficiently large p ,  

Kf =-p 

where 

&x - A 
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is the covariance matrix of xk. From (14), (X), and (26),  one O0 a 2 { G z z ( 4  G,,(w) - I G z w ( 4 1 2 1  
easily deduces d u  

G,2,(4 
L E  = L x  + %e (34) var { I ; )  = 

where Zoo is the covariance matrix of Ok. Finally, the combi- Tl 

nation of (29, (34), and (32) yields 
(41) 

showing that, in general, # unless 2 0 8  = 0. 
If xk and O k  are samples from ideal low-pass processes, Xxx 

and Zoo become diagonal matrices with diagonal elements 
equal to oi, the signal power, and cli, the noise power, respec- 
tively. Then, (35) simplifies to 

Thus, although f # <, the use of f, in (1 1) to estimate T will 
be unbiased in the asymptotic sense because the factors 
o:/(ui + 0;) cancel each other in (1 1). Of course,.the assump- 
tion of x k  being an ideal low-pass process is not always valid. 
To use (1 l), unbiased estimates of < must be obtained by some 
of the more complex estimation procedures (the instrumental 
variable method [ 111 for example). However, fur purposes of 
time-delay estimation, it will next be shown that using the 
estimates from (23) in (9) will suffice. 

First, recall from (29) that 

(37) 
n = - p  

where f H  is the nth element of f ,  But (37) is also an approxi- 
mation to the discrete solution of the unrealizable Wiener- 
Hopf equation [ 121 

where h, are the coefficients of the unrealizable fdter that 
minimizes E{(wk - X,"=-m hnzk - n ) 2 } .  Further, since [ 121 

(39) 
...-- - 

with &(a), C,,(w), and G,,(o) denoting the cross and 
auto spectra of zk and wk, the coefficients h, are samples, at 
t = nT, of the function 

The function h( t )  is recognized as the output of the Roth 
processor [2]. Noting the similarity between rn in (37) and 
h, in (38), we conclude that the rn are samples of the Roth 
processor and fn from (23) are estimates of h,. The time 
delay ? is naw found from (9) by substituting f, for tn, yt = - p  
to p ,  and computing the value of t that maximizes (9). The 
Ruth processor is unbiased [2] , but this method of realization 
has modeling errors as discussed in the paragraph following 
(16). The theoretical variance is [2] 

where TI is the record length. 
The computational requirement fur the time-delay parameter 

estimator (TDPE) is rather modest. A recursive algorithm 
[ 131 is available for the  implementation of (23). At the Nth 
sample, let f(N) be the estimate of and Z ( N )  and w ( ~ )  be 
the measurement matrix and vector. Then at (N + l), with 

#+ 1) - = k 2 ,  +N+ 1 0 . .  Z N + 1 1 ,  (42) 

the new estimate is 

where 

m 

u 

At the start of the algorithm, is a diagonal matrix with 
elements equal to some large numbers, lo6 fur example, and 
t ( O )  = 0. This algorithm eliminates the need fox matrix inver- 
sion and the requirement for storing a large quantity of data. 
In addition, because of its recursive nature, it is well suited for 
applications where data arrive sequentially, such as in sonar. 

To determine the value of t that maximizes (9), a Newton- 
Raphson iterative scheme was used. In all the experiments 
below, the search converged to within a 0.0001 resolution in, 
at most, six iterations. 

As an assessment of the TDPE, experiments were performed 
on a PDP 1 1/34 computer using Fortran IV and single precision 
arithmetic. Three random number, generators produced the 
independent ideal low-pass sequences x k ,  &, and Gk. Then xk 
was shifted via (1 6)  to give y k ,  with p = 16, so that the error 
due to truncation of series is negligible. The sp1 in (16) were 
computed according to (6)  to realize the desired delay. The 
estimator used an FIR filter of p = 4 in (21) to model the time 
delay which had a value of either 0.25T or OSOT. The mean 
and mean-squased errors (MSE), with respect to the time delay 
quoted below, were based on 50 independent runs. 

Experiment 1: Since x k  is ideal low pass, after obtaining tn, 
the time delay 3 can be estimated from either (9) or (1  I). 
Table 1 summarizes t he  results for r = 0.25T and T = OSUT. 
Comparisons between the mean values in the tables confirm 
that the error in using p = 4 is largest for r z= 0.25T at -0.0231T 
and smallest for T = 0SOT at -0.0004T. ' I t  was this error at 
7 = 0.25T that caused large  MSE, compared with the theoret- 
ical values, at a signal-to-noise (SIN) ratio of 4. At lower S/N 
ratios, when,. the estimator variances dominate, the experi- 
mental MSE agrees well with the predicted values from (41). 

Experiment 2: The signals xk and yk used in this expewi- 
rnent were nonwhite sequences obtained from their ideal low- 

A 
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TABLE II 
TDPE, x k  NONWHITE 

I ‘  I t 

1 1 

t ’  0.125 ,515 9 2 x 1 r 2  

I 

I. 3x10-’ , 247 3 ,  2x1K4 

9.6~10‘~ 266 2,5x10h3 

5.2~10-~ .223 1.5~10-~ 

2.0xlQ-’ ,347 4.6x10-‘ 

4 .  3 x W 3  .497 3.2~10“~ 

1.1x1U-2 ,507 2.5~10-~ 

1 I I L I I HT estimator N=1024 I TDPE N = l O O O  t 

pass counter parts by passing each of them through the filter which was computed according to [l] . For spectral estima- 
tion, the program divided BO24 points into 7 segments of 256 

Hanning weighting to each segment before taking the fast 
where bk is the input to the filter and ak is its output. The Fourier transform h d  producing 128 Fourier coefficients. 
resultant xk and y k  sequences have the nonwhite spectrum The nonwhite signals were produced In the same manner as 
1141 [sin2 a] /[sin2 (w/2)] . Since Ok and $k remained described in experiment 2 .  Results in Table 111 show that, 
white, the S/N ratio was no longer constant across the spec- although the €IT estimator has theoretical variances equal to 
trum and was taken as the ratio of total signal power-tu-noise (when x k  white) or less than (when x k  nonwhite) the TDPE, 
power. The results are in Table 11- In comparison with the latter has smaller experimental MLFE. This, as conjectured 
Table 1, the nonwhite case has higher MSE, as predicted, in Section I, is because the TDPE avoids the need for spectral 

Experiment 3.- This experiment compares the performance estimation. Mean values in Table III also indicate that the HT 
between the TDPE and the Mannan-Thornson (HT) estimator, estimator exhibits a larger bias. 

ak = bk + bk-1 (46) points each (hence a 50 percent overlap). It then applied a 



Several comments are in order on the experimental results. 
First, it is well-known [ 1 1 ] that the sample, or experimental, 
‘MSE are  unbiased and have a variance equal to u4/25 for 
Gaussian distribution and 50 independent samples, and a theo- 
retical (or population) MSE of 02.  Thus, in 68 percent of the 
time (for one standard deviation = a2/5) the experimental 
MSE is within k20 percent of the theoretical value. Second, 
in experiment 3, the choice of 128 Fourier coefficients in the 
HT estimator is ad hoc. This choice is taken to cover a reason- 
able variation in the signal spectrum. I f  it were known a priuri 
that the signal spectrum was white, for example, a much 
smaller number of coefficients, say eight, could have been 
used. The resultant experimental MSE would be much closer 
tu the theoretical value because more segments would then be 
available for averaging. Of course, in practice, the shape of 
signal spectrum is unknown and a reasonable number of fre- 
quency points have tu be used to ensure a sufficient resolution 
in frequencies. Finally, it should be noted that the experirnen- 
tal MSE in the €IT estimator is in part caused by a large bias. 
This bias could possibly be due to the bias associated with 
coherence estimation [ 161, which would then bias the location 
of the maximum of the cost function [ 1 ] used in the HT 
estimator. 

IV. THE DETECTOR 
The development of the signal detection scheme is rather 

straightforward. This scheme is nonparametric with the test 
statistic 

(47) -. 
y1 = - p  

Assuming that xk and the noise sources are ideal low pass (an 
assumption necessary for the derivation of the ROC curves) so 
that the SIN ratio is constant over the band, then it follows 
from (36), for large N ,  

2 P 

In addition, for large N ,  the estimate f is Gaussian [ 111 with 
the covariance (see Appendix I) given by 

I 1 + 2 r  
2 (1 +p.)2 ’ 

where I is an identity matrix. Thus the f n  are independent of 
each other and the variance of A is 

where cr,/ae = r is the SIN ratio and is equal tu zero when no 
signal is present. 

Let All  denote the test statistic when a signal is present and 
A/O when not; then (50) and (49) give 

2 2  

E{A/O} = 0,  
2 p  + 1 

var {A/O} = 
N 

and 

E{A/l} = var {A/l} = 
r ( 2 p  + I )  (1 + 2r) 

1 t r ’  N ’ (1 +r)2  (52) 

With the mean and variance of the Gaussian random variable A 
known, the probability of false alarm PFA and detection PD 
are given by 

which is independent of the ambient noise levels and 

(54) 

The detection threshold is TH, Le., A > T .  is a detection and 
f(-) denotes the probability density function. 
We have computed, for p = 4 and N = 1000, the values ofPD 

and PFA as a function of P, The results are in Table IV and the 
ROC curves are plotted in Fig. 3. 

This detection technique is easily extendable tu a linear 
array of 2R receivers. The spacings between receivers can be 
arbitrary, but cannot be too close to invalidate the assumption 
of independent noise sources at the receivers. The test statistic 
for 2R receivers, 7 ,  is simply the sum of the Aj statistic from 
each pair of receivers. Thus, 

Any two receivers can form a pair, but each is used only once 
to ensure the independence of the Aj* Since the signal is ideal 
low pass and the noise sources are independent, the Aj are 
independent Gaussian random variables so that, for constant 
SIN ratio in each receiver in the array, y has mean 

R 
E{y}  = E{Aj} =RE{A}  

j = 1  

and variance. 

( 2 p  + 1) (1 + 2r) 
Iv (1 + r)2 var {A} = 

It is shown in [ 1 51 that E;=-.- tP1 = 1 and for as given by The ROC curves fox the y statistic can be established with the 
(6)  with p = 4, I = 0, direct evaluation of the series x:=-, Sn same procedures as before. 
gives a sum of 0.992 for f = 0.5 and 0.997 for f = 0.25. Hence, 
with negligible error, (48) becomes v. CoNCLUsroNs 

This paper has introduced a new formulation of the time- 
delay estimation problem by modeling the delay as an FIR 
filter. This formulation is most useful when the largest ex- 

(50) 
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Fig. 3.  ROC curves. 

pected delay does not exceed several (3 or 4, say) times the 
sampling period, for then the order of the FIR filter can take 
on a reasonable number. While there are many methods avail- 
able t o  estimate the coefficients of an FIR filter, only the least 
squares method is considered and is shown to be equivalent to 
the Roth processor. The effectiveness of. this least squares 
algorithm has been demonstrated by experiments which also 
compare the TDPE with the HT estimator. The TDPE acheves 
better performance than the HT estimator in two examples in 
which one has a white input sequence and the other a non- 
white sequence. We attribute this outcome to the additional 
variances created by spectral estimations in the HT estimator. 
We have not given a comparison of computational times be- 
tween the TDPE and those estimators in [Z] . This is because 
the real time requirement can be very dependent on the special 
features of computing equipment. The choice of an- estimator 
may well be decided by the particular application. 

APPENDX X 
THE ASYMPTOTIC COVARIANCE OF f 

€n [ 111 the asymptotic covariance (ACV) of E, as estimated 
from (23), is given for the case E(ZTd)  = 0. When elements 
of the measurement matrix Z are correlated with the distur- 
bances dk in (21), the derivation for the ACV Is considerably 
more complex and is not available in the literature. The ACV 
for f is needed for the construction of the ROC curves in Sec- 
tion IV, where it is assumed that xk and the noise sources are 
all ideal low pass. Without this assumption, the development 
for the ACV off  would be untractable. 

From [ 113 , the ACV sf f is defined as 

A C V ( ~ )  A - limit ~ { f i  (r - fl (f - c)T} (A.0 
1 

N N+.. 

where f is given by (36). Note that, since 5 # c, this variance 
of f is in respect to its own mean and not the true value. The 
evaluation of (A. 1) is rather tedious and the reader is referred 
to [15] for complete details, The procedures involve consid- 
ering the asymptotic distribution of the terms in fi (' - r) 
and frequent use of the assumptions that signal and noise 
sources are white and are uncorrelated with each other. The 
result is an ACV(f) which has dl diagonal elements equal to 

1 1 + 2 r  
N (1 +r)' 
- 

and all off diagonal elements equal to 

1 Y 

where r - A 2  lis the SIN ratio. It is further shown in [ 1 51 
that E;=-- cntn+l = 0. For p = 4 and f =  0.5, direct evalua- 
tion of 5&+l g ives 0.052. Hence, with negligible 
error, ACV(f) is a diagonal matrix with diagonal elements 
equal to 

To verify this theoretical ACV@), we have computed in 
experiment 1 the covariance of f for N =  1000, f =  0.5, and 
r = 4 and 1, and are reproduced below. Only the upper tri- 
angular elements are given because ACV(t) is a symmetric 
matrix. 
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1 1 + 2 r  I P P 
r = 4 ,  - = 3.6 X - cncfi+l = 8.3 X 

N (1 +r)2 N (1 + r)2 pt=-p 

Experimental ACV(f): 

4.8 X 10-4 1.9 x 10+ 2.9 x 5.6 x -7.7 x 10+ -1.9 x -2.3 x 6.5 x 10+ 1.9 x 1 w 5  
4.2 X 10-4 -2.3 x 10-5 -5.3 x 10-5 -6.0 x 10-5 -3.4 x 10-5 -2.9 x 10-5 -2.2 x 10-5 -3.5 x 10-5 

2.5 x 10-4 6.4 x 10-5 4.ox 10-5 -1.1 x 10-5 -3.4 x 10-5 4*6 X 10-5 -3.4 x 10-5 

4.6 X 10-4 1.1 x 10-4 -4.3 x 1 0 - 5  -4.0 x 10-3 6.5 X 10-5 3.3 x 1 0 - 5  

3.4 x 10-4 1.3 x 10-5 9.5 x 10-6 -2.4 x 10-5 1.5 x 10-5 

3.9 x 10-4 -3.5 x 10-5 6.1 X loM5 9.4 X lom5 

3.1 x 10-4 3.4 x 10-6 
3.7 X 10-4 

2.2 x w 4  -9.4 x 10-5 3.7 x 10-5 

Experimental ACV(f): 

8.7 X 4.0 X lo-’ 4 . 6  X lW4 -9.5 X -2.0 X IOm4 1.7 X lom4 9.6 X loH5 -9.2 X loh5 -5.7 X lo-’ 
7.9 X loM4 -3.0 X lom5 7.9 X lW5 -3.4 X low5 -1.2 X lW4 -8.8 X low5 3.7 x 10-5 7.5 x 10-5 

9.6,X lo-“ 5.0 X IO-’ 1 . 1  X -7.5 x 1~ -3.7 x 10-5 -6.2 X 1.5 x 1 0 - ~  

8.4 x - 2 . 0 ~  -9.3 x 1.3 x -1.1 X 10-4 2 . 2 ~  10-4 

6.2 x 10-4 -1.1 X 10-4 - 1 . 1  x 10-4 1.3 x 10-4 -9.3 x 10-5 

7.9 x 1 0 - ~  -3.5 X 1 0 - ~  -7.1 x 1 0 - ~  1.5 x 1 0 - ~  

6.9 x 9.9 x 10-5 -1.8 x 10-4 

7.3 x -3.9 x 1 0 - ~  

8.7 x 10-4 

111 

123 

[31 

t41 

I91 
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Two-Dimensional Recursive 
pectral Fact roac 

ECENT technological advances admit the potential s f  
using dedicated computer systems (or special-purpose 

hardware) to perform two-dimensional (2-D) signal processing 
tasks previously requiring large-scale scientific computers. In 
achieving this potential, such processing would be accessible to 
an enormously broad spectrum of applications. The principal 
characteristic sf these applications is their need for “timely9’ 
data manipulation with affordable (small-scale) hardware. 

In many aspects, recursive processors seem ideally suited to 
fulfill this need. Because of their reduced computational 

As a consequence, t h e  issues of prime importance in recursive 
filtering, that of stability testing and filter design, are sub- 
stantively less-tractable problems in the 2-D case 131 . 

While much progress has been made recently in developing 
stability theorems and practical tests based on these theorems 
[4] - 161, advances in recursive fdter design have been less 
satisfying. The available literature features two prominent 
design approaches, those involving spectral transformations 
[7] - [9 ]  and parameter optimization [ 101 - [I21 . For the 
most part, these contributions have employed constrained 
filter forms (e,g., second-order, quarter plane) and addressed 
quite specific design problems (e.g., circularly-~y~metric, low- 
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