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Abstract

The quantitation of the variability in cardiovascular signals provides information about
the autonomic neural regulation of the heart and the circulatory system. Several factors
have an indirect effect on these signals as well as artifacts and several types of noise are
contained in the recorded signal. The dynamics of RR and QT interval time series have
also been analyzed in order to predict a risk of adverse cardiac events and to diagnose
them.

An ambulatory measurement setting is an important and demanding condition for the
recording and analysis of these signals. Sophisticated and robust signal analysis schemes
are thus increasingly needed. In this thesis, essential points related to ambulatory data
acquisition and analysis of cardiovascular signals are discussed including the accuracy
and reproducibility of the variability measurement. The origin of artifacts in RR interval
time series is discussed, and consequently their effects and possible correction procedures
are concidered. The time series including intervals differing from a normal sinus rhythm
which sometimes carry important information, but may not be as such suitable for an
analysis performed by all approaches. A significant variation in the results in either intra-
or intersubject analysis is unavoidable and should be kept in mind when interpreting the
results.

In addition to heart rate variability (HRV) measurement using RR intervals, the dy-
namics of ventricular repolarization duration (VRD) is considered using the invasively
obtained action potential duration (APD) and different estimates for a QT interval taken
from a surface electrocardiogram (ECG). Estimating the low quantity of the VRD vari-
ability involves obviously potential errors and more strict requirements. In this study,
the accuracy of VRD measurement was improved by a better time resolution obtained
through interpolating the ECG. Furthermore, RTmax interval was chosen as the best QT
interval estimate using simulated noise tests. A computer program was developed for the
time interval measurement from ambulatory ECGs.

This thesis reviews the most commonly used analysis methods for cardiovascular vari-
ability signals including time and frequency domain approaches. The estimation of the
power spectrum is presented on the approach using an autoregressive model (AR) of
time series, and a method for estimating the powers and the spectra of components is
also presented. Time-frequency and time-variant spectral analysis schemes with applica-
tions to HRV analysis are presented. As a novel approach, wavelet and wavelet packet
transforms and the theory of signal denoising with several principles for the threshold
selection is examined. The wavelet packet based noise removal approach made use of an
optimized signal decomposition scheme called best tree structure. Wavelet and wavelet
packet transforms are further used to test their efficiency in removing simulated noise
from the ECG. The power spectrum analysis is examined by means of wavelet transforms,
which are then applied to estimate the nonstationary RR interval variability. Chaotic
modelling is discussed with important questions related to HRV analysis.

Keywords: Autonomic regulation, heart rate variability, RR interval, ventricular
repolarization duration, ambulatory data, time and frequency domain, wavelet
transforms, denoising
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1. Introduction

1.1. Background

Variabilities in cardiovascular activity, such as RR interval and ventricular repo-
larization duration (VRD), have been widely used as a measure of cardiovascular
function. It is typical for these signals that they fluctuate on a beat-to-beat basis
around their mean value and the fluctuation are associated with autonomic neural
regulation of the heart. Monitoring the fluctuations observed in heart rate and
VRD thus provides information concerning their autonomic regulation and distur-
bances. For example, heart rate fluctuates due to factors such as age, respiration,
cardiovascular and neurologic diseases, medication, as well as physical and mental
stress (Malliani et al. 1991, VanRavenswaaij-Arts et al. 1993, Pagani et al. 1995).

To predict a risk of adverse cardiac events the primary analytical measurements
have been heart rate variability (Moser et al. 1994, Tsuji et al. 1994) and QT anal-
ysis (Decker et al. 1994). Abnormalities in heart rate fluctuation have been shown
to precede the spontaneous onset of ventricular tachyarrhythmias (Huikuri et al.
1996). For example, low heart rate variability predicts increased mortality after
acute myocardial infarction (AMI) (Malik et al. 1990). Clinical and experimental
data have shown that prolongation of the QT interval measured from the stan-
dard 12-lead ECG is a risk factor for ventricular arrhythmia and sudden cardiac
death in patients with or without previous AMI. The increased risk due to QT
prolongation is independent of age, history of AMI, heart rate and drug use. The
variability of successive RR intervals traditionally has been used to access the risk
in patients in terms of future mortality. Recently, emphasis has been directed to-
wards understanding the dynamic changes in the repolarization phase of the heart
(Extramiana et al. 1997, Huikuri 1997). It is probable that there are dynamic
changes in the ventricular repolarization duration (QT interval) throughout the
24-hour period (Merri et al. 1993).

The autonomic nervous system (ANS) regulates the functioning of the heart
through its sympathetic and parasympathetic parts. It is of interest to quantify
the amounts of signal fluctuation related to these two parts of the ANS separately
and also their balance in the neural regulation of the heart. For instance, heart
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rate is affected by factors such as respiration, the thermoregulatory system and
mechanisms regulating blood pressure (Hainsworth 1995).

Autonomic regulation of the heart and the cardiovascular system has been in-
vestigated widely, but no uniform concept exists regarding the function of neural
mechanisms. Furthermore, there is a lack of standardization of the parameters
and their meaning in signal variability analysis. For example, the analysis of the
frequency spectrum is made using several approaches such as Fourier transform
and AR-modelling based methods with several variations.

The quantification of neural regulation is a demanding task, because interpreta-
tion relies on an indirect measurement, i.e. the observed fluctuation in cardiovas-
cular variability signals. The heart rate signal includes noise from various sources
and information not related to autonomic regulation of the heart summed with
the relevant information. There are technical and methodological limitations in
the measurement of the QT interval, for example, due to artifacts, low sampling
frequency, and inaccuracies in the definition of the end of the T wave in the am-
bulatory ECG recordings. Measurement of monophasic action potential (MAP)
with a contact electrode have been confirmed as an accurate method for analysis
of local ventricular repolarization duration (Franz 1991).

Heart rate variability (HRV) has been studied extensively during the last few
years. The analysis of the frequency spectrum of the heart rate signal has at-
tracted attention mainly due to its ability to expose different sources of fluctua-
tions (Baselli et al. 1987, Bianchi et al. 1993, Kamath & Fallen 1993, Malliani et al.
1991) and its power to illustrate the balance of the autonomic neural regulation.
There also exist several widely used time-domain parameters representing fluctu-
ations in heart rate (Kleiger et al. 1992). Lately, more emphasis has been placed
on the non-linear analysis of heart rate variability (Huikuri et al. 1996, Signorini
et al. 1994).

The analysis of variability in cardiovascular signals is applied widely and there
are thus many differences in experimental setups. In addition, the parameters used
for quantifying variability vary from one area of research to another. The meaning
of some parameters may remain unclear, and the understanding of the applications
of novel methods can also be imperfect. Sometimes, these factors can make it
relatively difficult to interpret the results and compare them among the projects.
Data are commonly recorded in a laboratory, where the conditions are strictly
controlled and the effects of disturbing factors are minimized. The recording of
ambulatory data is affected by many outside disturbances, and therefore, special
interest must be taken in the quality of the recorded data and the characteristics
of the analytical methods. Neglect of such matters can lead to serious errors in
interpreting the results.
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1.2. Aims and the outline of the thesis

This study is a methodological approach to deal with the analysis of short term
fluctuations in the cardiovascular variability signals. In this context, the periods
of the oscillations observed in signals vary from a few seconds to tens of seconds.

The thesis includes the development of analysis schemes and studies of the
dynamics of RR interval, ventricular repolarization duration (VRD) and action
potential duration (APD) time series. Some emphasis will be on the ambulatory
data with discussion of the accuracy and the reproducibility of the measurement
as well as the effects of artifacts. A computer program for the measurement of
RR and QT intervals from the ambulatory electrocardiogram (ECG) is described.
Furthermore, the accuracy of the different QT interval estimates will be obtained
through simulated noise tests. The invasive measurement of APD variability is
used to emphasize the requirements needed for the VRD variability estimation
and to study the factors determining the VRD dynamics. The novel wavelet
transform approaches are proposed to remove noise from ECG and the denoising
performances are quantified by simulations. The spectral estimation using wavelet
transforms will be presented for RR interval data obtained from healthy subjects
during a drug injection and from ordinary cardiology patients prior to the onset
of ventricular fibrillation. Overall, the stress is more on the demonstration of the
signal analysis schemes than the larger data analysis settings.

A review of the signal analysis methods applied to cardiovascular variability
signals is provided. Furthermore, the limits and advantages of the methods are
discussed. An important point is to present the mathematical background of
the methods and demonstrate their application using some experimental data.
It is worth noting that there often exist a correlation between the results and
some phenomena, but the analysis method may not be a suitable one to describe
these phenomena. To obtain relevant results and a correct diagnosis, a deeper
understanding of the nature of applied methods would be necessary. There are
often some basic assumptions and rules for the methods and signals, which should
be taken account in order to make the analysis more useful. As the evaluation of
the results is made with deeper understanding of the methodological aspects, one
can better say “what is actually possible to show by our results”.

First the physiological and medical background is briefly reviewed in order to
give some basis for the application of the analytical methods. Extraction of the car-
diovascular variability signals is presented and important aspects of measurement
techniques are pointed out. The mathematical and methodological background
is presented for time and frequency domain analysis methods. The estimation of
the power spectrum is considered important especially the parametric methods
and the autoregressive (AR) approach. Time-frequency and time-variant spectral
analysis methods are reviewed and a novel wavelet approach is introduced. The
wavelet section includes discussions of the continuous and discrete wavelet trans-
form with a subband filtering scheme as well as a more recent application of the
wavelet packet transform using an optimized signal decomposition. The use of
chaotic modelling is also considered and important issues related to HRV analyses
are presented.



2. Cardiovascular variability signals

2.1. Physiological background

The sinus rhythm fluctuates around the mean heart rate, which is due to continu-
ous alteration in the autonomic neural regulation, i.e. sympathetic-parasympathetic
balance. Periodic fluctuations found in heart rate originate from regulation related
to respiration, blood pressure (baroreflex) and thermoregulation.

Parasympathetic (vagal) regulation to the heart is inhibited simultaneously with
inspiration, and the breathing frequency coincides with fluctuations observed in
heart rate (Eckberg 1983). Furthermore, thoracic stretch receptors and periph-
eral hemodynamic reflexes also result in respiratory arrhythmia (Akselrod et al.
1985). Respiratory arrhythmia are consequently due to parasympathetic regula-
tion and can be excluded by atropine or vagotomy (Akselrod et al. 1985). The
maximal amplitude of respiratory related heart rate fluctuation is found at breath-
ing rate of 6 cycles per minute, because the fluctuation increases as respiration rate
achieves the frequency of the intrinsic baroreflex-related heart rate fluctuations
(VanRavenswaaij-Arts et al. 1993).

The fluctuations due to blood pressure regulating mechanisms originate from
self-oscillation in the vasomotor part of the baroreflex loop (VanRavenswaaij-Arts
et al. 1993). These fluctuations coincide with synchronous oscillations in blood
pressure called Meyer waves (Kitney & Rompelman 1987). Increase of sympa-
thetic nerve impulses strengthen (Pagani et al. 1984, Pomeranz et al. 1985) and
sympathetic or parasymphatetic blockade weaken these fluctuations in heart rate
(Pomeranz et al. 1985).

Changes in peripheral resistance produce low frequency oscillations in heart
rate and, for example, in systolic blood pressure. Thermal stimulation given on
the skin can be used to stimulate the oscillations, which are originally due to
thermoregulatory adjustment of peripheral blood flow (VanRavenswaaij-Arts et al.
1993). These fluctuations are controlled by the sympathetic part of the autonomic
nervous system.

The overall autonomic function is controlled by a central command from the
brain. However, the autonomic nervous system operates as a feedback system, and
heart rate is thus regulated by many reflexes which may increase or decrease the
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sympathetic or parasympathetic activity or both of them (Hainsworth 1995). Re-
flexes can act simultaneously and their interactions may be complex. The arterial
baroreceptor reflex originates from receptors located in the arteries such as carotid
sinuses and aortic arch. The increase in blood pressure excites baroreceptors pro-
ducing an augmented efferent vagal and reduced sympathetic activity. Peripheral
arterial chemoreceptors located in the carotid and aortic bodies produce, most
often, an increase in the rate and depth of respiration. Because this reflex in-
fluence on heart rate through respiration, the effects may be covered by other
respiratory responses. The coronary chemoreflex (Bezold-Jarisch reflex) can cause
bradycardia and is significant in pathological states such as myocardial ischemia
and infarction. Atrial receptors streched by the increase in atrial volume and some
of them by atrial contraction, the response being linked directly to atrial pressure.
These volume receptors cause an increase in heart rate and operate through the
sympathetic nerves producing their response very slowly. There exist also other
cardiovascular reflexes coming from receptors located e.g. in pulmonary arteries,
lungs and muscles.

The physiological importance of heart rate can be demonstrated by an axiomatic
relation in which cardiac output (CO) can be defined by a product between heart
rate and stroke volume (SV) as CO = HR - SV. Because heart rate and stroke
volume are not independent of each other, the definition of cardiac output is not
always so straightforward in terms of physiological adjustment.

The rate of depolarization of the cardiac pacemaker defines heart rate. The
sinoatrial (SA) node, the atrioventricular (AV) node and the Purkinje tissue can
be regarded as potential pacemaker tissues in a heart. As the fastest depolariza-
tion rate is found in the sinoatrial node and the depolarization impulse spreads
through the conduction system to other pacemakers before they spontaneously
depolarize, the sinoatrial node usually defines the heart rate. However, failing to
produce a normal pacemaker impulse, other pacemaker tissues can act as a cardiac
pacemaker.

Autonomic neural regulation of the heart is determined by its sympathetic and
parasympathetic parts. The parasympathetic nerves are connected to the sinoa-
trial node, the AV conducting pathways and the atrial and ventricular muscles
as well as coronary vessels (Kamath & Fallen 1993). Sympathetic nerve fibers
innervate the SA node, the AV conducting pathways, coronary vessels and the
atrial and ventricular myocardium (Kamath & Fallen 1993, Hainsworth 1995).
Both divisions of the autonomic nervous system always have some activity which
continuously regulates the function of the heart. Heart rate response therefore
presents a balance between sympathetic and parasympathetic (vagal) regulation
which can be considered also as an antagonist function.

Heart rate has a major effect on ventricular repolarization duration (VRD),
but the autonomic nervous system also regulates directly the repolarization of the
ventricles. In addition, electrolytic factors, age and gender have an effect on it.
It has been shown that when the autonomic nervous system regulates VRD there
are similar periodic fluctuations as seen in heart rate (Merri et al. 1993).
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2.2. Changes of signal variability connected to specific
diseases

A decrease in vagal neural activity into the heart may result in diminished HRV
after myocardial infarct (MI) leading to the prevalence of symphatetic neural reg-
ulation and to electrical instability (Task Force of ESC & NASPE 1996). Reduced
heart rate variability is also associated with an increased risk for ventricular fibril-
lation and sudden cardiac death (Farrell et al. 1991, Casolo et al. 1992). Huikuri
et al. (1996) concluded that changes in long term RR interval dynamics with beat-
to-beat RR interval alternans is likely to precede the spontaneuous onset of sus-
tained ventricular tachyarrhythmias. Results obtained using spectral analysis of
HRYV suggest a change of sympatho-vagal balance toward a symphatetic dominance
and a diminished vagal tone in patients surviving an acute myocardial infarction
(Lombardi et al. 1992, Task Force of ESC & NASPE 1996). Cardiac diseases
such as congestive heart failure, coronary artery disease and essential hyperten-
sion are also associated with a reduced vagal and an enhanced sympathetic tone,
which change heart rate varibility dynamics (VanRavenswaaij-Arts et al. 1993,
Malliani et al. 1991). Because HRV analysis can be regarded as a noninvasive,
reproducible and an easy to use method reflecting the degree of autonomic control
of the heart (Bellavere 1995), it has been widely used to diagnose the autonomic
dysfunction due to diabetic neuropathy (Pagani et al. 1988a, Freeman et al. 1991,
Bernardi et al. 1992). It has been generally observed, that overall HRV is reduced
and sympatho-vagal balance may be altered during tilt maneuver or standing in
diabetic patients (Malliani et al. 1991, Kamath & Fallen 1993).

Although HRYV is used in a wide range of clinical applications, diminished HRV
has only been generally accepted as a predictor of risk after acute myocardial
infarction and as an early warning of diabetic neuropathy. Diminished HRV can
predict mortality and arrhythmic events independently of other risk factors after
acute myocardial infaction, and long-term HRV analysis have proven to be a more
definite predictor compared to a short-term analysis (Task Force of ESC & NASPE
1996). Heart rate variability analysis should also be joined with other risk factors
so as to improve the predictive use.

Any heart disease (left ventricular hyperthrophy, heart failure, etc.) can modify
repolarization duration (Coumel et al. 1994). Anomalies in repolarization duration
are signs of electrical instability in the heart and can lead to malignant arrhythmias
such as ventricular fibrillation and Torsades de Pointes. Analysis of ventricular
repolarization duration dynamics provides essential information on a propensity
for ventricular arrhythmias, because some life-threatening arrhythmias arise in
myocardial tissue (Huikuri 1997). Altered dynamics of the VRD, and the events
of the alternating T wave amplitude particularly in patients with the long QT
syndrome as well as with structural heart disease at fast heart rates, suggest that
the analysis of the ventricular repolarization dynamics may provide an important
clinical tool (Huikuri 1997).
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2.3. Other events modifying signal variability

Several pharmaceutical interventions can be used to modify heart rate dynamics as
shown by human (Selman et al. 1982) and animal (Adamson et al. 1994) studies.
Atropine administration has been used to prove the connection between vagal
neural activity and high frequency (respiratory related) fluctuation in RR interval
time series (Pomeranz et al. 1985). Scopolamine significantly augments heart rate
variability (Ferrari et al. 1993) which suggest an increasing coincident vagal activity
into the heart. The effect of G-adrenergic receptor blockades has been studied after
myocardial infarction (Molgaard et al. 1993, Sandrone et al. 1994). There are also
studies on the effect of antiarrhythmic drugs such as flecainide (Zuanetti et al.
1991, Bigger et al. 1994) and propafenone (Zuanetti et al. 1991, Lombardi et al.
1992), as well as encainide and moricizine (Bigger et al. 1994) on the heart rate
dynamics. Merri et al. (1993) studied the effect of S-adrenergic blocker (nadolol)
on ventricular repolarization duration and its dynamics. Their finding was that
the length of repolarization duration was shorter, the signal variance was greater
and the spectral pattern was shifted to higher frequencies due to this medication.
A change of the dynamic relationship between ventricular repolarization duration
and heart rate has been observed as a consequence of nadolol administration with
normal patients (Merri et al. 1992).

Heart rate variability has been employed to investigate the short and long term
autonomic responses to physical and mental exercise. It has been observed that
the increase in respiratory related fluctuation, the total HRV reduction and the
recorded signal become more nonstationary as the intensity of the dynamic physical
exercise increases (Malliani et al. 1991). Heavy physical exercise has been shown
to augment low-frequency (LF) fluctuations in heart rate, and the recovery of the
spectral pattern may last even 48 hours after finishing exercise (Furlan et al. 1993).
The sympatho-vagal balance seems to change towards sympathetic dominance e.g.
in hypertensive patients (Pagani et al. 1988b). Long term physical exercise has
positive effects on hemodynamics and neural control mechanisms, for example, by
lowering the arterial pressure in hypertensive patients (Pagani et al. 1988b) and
increasing baroreflex gain in patients with ischemic heart disease (Rovere et al.
1988). An overall observation, also related to dynamic mental stress, is an increase
of the sympathetically- and a decrease of vagally-mediated fluctuations in heart
rate (Pagani et al. 1995).

2.4. RR interval time series

The basic procedure used for determing the heart rate and its fluctuations is
described below. An electrocardiogram (ECG) is measured, using appropriate
data acquisition equipment. The time elapsing between consecutive heart beats is
defined as that between two P waves, when a P wave describes the phase of atrial
depolarization. In practice, it is the QRS complex that is used to obtain the time
period between heart beats. This complex is detected in the R wave, because it
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has a very clear amplitude and better frequency resolution than the P wave, and
a much better signal-to-noise ratio. The time interval between the P and R waves
can be assumed and has been shown to be constant (Kitney & Rompelman 1987).

Defining the times of occurrence of two concecutive R waves as s(t) and s(t+1),
t =1,...,N, the expression x(t) = s(t + 1) — s(t) is obtained for a time period
in milliseconds. This z(t) is called the RR interval time series or else the times
to which it refers are simply called RR intervals. A heart rate time series [min~!]
can be obtained by y(t) = 1000 - (60/x(t)) and the mean heart rate is simply
HR = N7! Zivz 1Y(t). These formulae indicate a nonlinear relationship between
the values in a given time series, which should be taken into account when com-
paring the results obtained by time and frequency domain approaches (Sapoznikov
et al. 1993). At the moment, RR intervals seem to be the more frequently used
time series in heart rate variability (HRV) analysis. For a discussion of the choice
between different time series (tachograms), see Janssen et al. (1993).

2.5. VRD time series

QT time interval in electrocardiographic signals has been used to perform both
static and dynamic analyses of the duration of the ventricular repolarization.
There exist difficulties in the detection of the onset of Q wave and the offset of T
wave due to poor signal-to-noise ratio and varying ECG morphology. For these rea-
sons other estimates, such as RT .« interval, has been widely used. Moreover, this
provided a motivation to investigate and compare the noise sensitivity of different
QT interval estimates. Because Q-S time interval is a result of the depolarization
period of the ventricles, it is actually more correct to measure the time interval
between the R and T waves as one is interested in the changes occurring within
the ventricular repolarization period (Merri et al. 1989). R wave has been used to
estimate the start of the repolarization period because searching for the offset of S
wave can be difficult. The maximum (apex) of T wave has been often regarded as
a more reliable estimate for the end of the repolarization period than the T wave
offset. The total repolarization duration, i.e. time interval between the offsets of S
and T waves, can further be analysed with respect to early and late repolarization
duration as well as repolarization area (Merri et al. 1989, Merri 1989). In this
work the objective will be on the measurement of the repolarization duration in
the ambulatory ECG.

The 24-hour ambulatory ECG has certain problems and drawbacks because the
signal is corrupted by noise from various sources and also several conditions may
alter the ECG morphology. The ambulatory ECG is usually acquired with a sam-
pling frequency of 128 Hz giving a time resolution of 7.81 ms for each sample,
which is too low for QT interval variability measurement. It has been suggested
that the QT interval should be determined at least with resolution of 1 ms (Sper-
anza et al. 1993), which would require 1 kHz sampling frequency for ECG signal.
In an ambulatory measurement setting, with data acquisition times lasting up to
24 hours, the sampling frequency can not be that high, because then the amount
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of the stored data rises rapidly. In present ambulatory ECG analysis systems the
possibility of exporting a beat-to-beat QT time series extracted with high time res-
olution is also lacking. These problems have been solved by exporting raw ECG
data and, by oversampling ECG signal (Speranza et al. 1993) or by interpolat-
ing waveforms (Merri et al. 1991) a better time resolution for the time interval
measurement results.

2.6. APD time series

The local ventricular repolarization duration can be measured by placing a con-
tact electrode in a ventricular muscle. Rate-dependent dynamics of VRD obtained
from the right ventricular apex provides an example. This approach can solve the
above mentioned problems related to the ambulatory QT measurement. However,
measuring monophasic action potentials (MAP) is an invasive procedure. The du-
ration of repolarization phase, which is termed as action potential duration (APD),
is estimated as a time interval between the onset and offset of the action potential.
The offset is defined as the maximal positive derivative of the upstroke phase of
the action potential waveform. The offset can be defined at time points where
the waveform has come down 15, 30, 50 and 90 % from the maximal amplitude
of the MAP. Most often used definitions are 50 and 90 % points. The APD time
series are extracted from the consecutive waveforms and the beat-to-beat analysis
is performed.

2.7. ECG waveform detection

The RR and QT interval measurement (paper IT) was based on an implementation
of an algorithm described previously (Laguna et al. 1990) and the detection scheme
will be briefly reviewed here. The basic concept of the algorithm is to look for the
zero crossing points, the crossings of certain experimentaly-determined threshold
values, as well as the local maximum or minimum values of the differentiated ECG
signal d(t) and its low-pass filtered version f(¢).

The differentiator and the low-pass filter described by Laguna et al. (1990) were
modified according to the sampling rate in order to obtain an optimal frequency
response. The sampling rate of the analysed ECG was one parameter of the
waveform detection procedure, and in this way, the preprocessing filters and the
algorithm itself can adapt to the different sampling rates.

The flowchart of the implemented waveform detection procedure is shown in
Figure 1 in paper II. The first step is to calculate the signals d(t) and f(¢), which
is done for the whole period of the ECG selected for analysis. The waveform
detection procedure continues by determining the initial value of the threshold
value H, used to search the maximum absolute value of the QRS in the signal
f(t). The threshold value H,; is continuously updated (Laguna et al. 1990)
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during the waveform detection using the equation
H,;; =08 -H,+(0.16 - | f(PK,)|) , (2.1)

where |f(PK,)| is the absolute value of the signal f(¢) at the detected fiducial R
wave position of the beat n.

The initialisation of the average of RR intervals RR,, and the first RR interval
value are then obtained. The RR,, value is later used to check the calculated value
of a new RR interval and thus provides a basis for identifying the QRS complex.

The initial position of a QRS complex is detected using an adaptive threshold
method determined by the RR interval average value, as shown in Figure 1 in
paper II. After that, the algorithm continues to search the position of the R wave.
In the present approach, the fiducial point of the R wave was detected using three
methods: at the maximum amplitude upwards or downwards from the baseline,
or at the zero crossing point of the signal f(¢) during the QRS complex. The last
technique was implemented in the original algorithm by Laguna et al. (1990). It
was found that, in some cases, a more accurate definition can be obtained, if the
fiducial point of the R wave is defined at the maximal upward amplitude of QRS.
With this algorithm, an accurate determination of the R wave is an absolutely
necessary condition for a reliable Q wave detection.

After detecting the R wave position and updating the threshold H, and RR,.,
the onset of Q wave is searched keeping the R wave position as a reference point.
Here it should be mentioned, that examining the pattern of the Q wave is made by
analysing the differentiated signal d(t) and not the signal f(¢), because the signal
d(t) includes the high frequency components of the Q wave.

Next the T wave maximum and T wave end are detected from the signal f(t).
The following definition for the limits of a search window calculated from the R
wave position was used:

(bwind, ewind) = (a - RRgy,b- RRgy) (2.2)

where a and b are parameter values in the procedure. This definition is a slightly
different one from the given by Laguna et al. As the threshold for T wave end was
used the value Hy = f(T;)/2, T; denoting the position of the maximal downward
or upward slope after the T wave maximum.

Finally, a value of QT interval is calculated using the relation QT'(n) = Tena(n)—
QTonset(n), where Tenq(n) and QT ,pset(n) are the positions of T wave end and the
onset of the QT time interval during the beat n. The analysis of the next cardiac
beat is started 150 ms after the last T wave end is defined.

The effects of the four alternative definitions of the QT interval onset on the
analysis of QT interval dynamics were compared: true QRS onset, R wave maxi-
mum, ascending or descending maximal slopes of the R wave. One reason for this
was quite practical: in some circumstances dealing with ambulatory ECG, the
determination of the QRS onset seems to be uncertain e.g. because of a missing Q
wave and the relatively low sampling rate. In the original implementation of this
algorithm, the Q wave onset found is rejected if the difference between Q wave
and R wave fiducial points is larger than 80 ms (Laguna et al. 1990). In that case,
QRS onset is defined in the onset of R wave.
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2.8. Ambulatory HRV data

The aim of recording RR intervals has been to gain information about the neural
regulation of the heart and the circulatory system. Observing the changes occur-
ing over long periods of time (i.e. several hours) requires ambulatory recording,
which is usually performed using standard commercial equipment (Holter devices).
This provides procedures for ECG signal acquisition and analysis, extracting the
RR interval time series from the ECG signal and analysing them. The sampling
frequency typically used for an ECG signal with Holter devices is 128 Hz, which
means a timing accuracy of 7.81 ms for R wave detection. Thus a low sampling
frequency produces inaccuracies in RR interval measurement and bias in the anal-
ysis. A timing accuracy of the order of 1 ms would be desirable for the assessment
of chaos, for example.

One factor affecting ambulatory HRV measurement is circumstances that vary
with time, i.e. the fact that external conditions can be far from stable. This may
produce nonstationary changes in a time series and make the assessment of the
physiological events more difficult, or even impossible, than under stable laboratory
conditions. A method for separating non-periodic (nonstationary) changes from
periodic ones has been proposed by Sapoznikov et al. (1994). Variable conditions
may also produce periodic fluctuations which become summed in the time series,
making it difficult to distinguish the regulatory processes from each other. This
can obviously lead to misinterpretations in some circumstances.

2.8.1. Accuracy of HRV measurement

The accuracy of spectral estimates performed on RR intervals obtained from am-
bulatory Holter systems has been studied by Pinna et al. (1994). It has been
observed that the centre and dispersion of the estimation error changes from one
Holter system to another. There are large inter-recorder differences and variable
spectral distortion among selected spectral bands. Use of the Fourier spectral es-
timate gave more stable results than did the AR spectral estimate in ten minute
ECG sequences. The main factor limiting the accuracy of the RR interval mea-
surement was the low frequency with which the ECG signal was sampled, a topic
discussed theoretically by Merri et al. (1990). Pinna et al. (1994) concluded that
spectral analysis of RR interval time series with very low variability may be seri-
ously altered when performed on an ECG signal acquired using a Holter system.

The accuracy of spectral estimates of HRV was investigated by generating a
simulated RR interval time series of variable length (180-540 seconds) using an
autoregressive model from a set of recordings and adding Gaussian noise (Pinna
et al. 1996). The accuracy of Fourier (Blackman-Tukey) and AR spectral estimates
could then be evaluated in terms of the normalized bias and variance. The results
showed that the bias (systematic error) of the estimate was a less important factor
than the variance (random error). Both decreased as the length of the time series
increased, but the variance decreased more rapidly. The power estimate was most
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stable in the HF band, while that in the VLF band had the highest variance.
No minimum length was proposed for a time series, but it was concluded that
even with the shortest record the bias made a less significant contribution to the
estimates. It was pointed out that a relative high variability in spectral parameters
is typical of RR interval time series, and that this should be noted in the analysis
of the short time series.

2.8.2. Reproducibility of HRV measurements

There are a number of factors that affect HRV measurements, and obtaining pre-
cisely controlled conditions is problematic. Furthermore, variability is always seen
between repeated measurements. From this point of view, it is essential to study
both short-term (over several days or couple of weeks) and long-term (over 6-7
months) reproducibility of the analyses, even though this can be a tedious task.
A few published investigations on the reproducibility of HRV exist, e.g. references
Dimier-David et al. (1994), Kamalesh et al. (1995), Pitzalis et al. (1996), Pomeranz
et al. (1985) and Ziegler et al. (1992).

Kamalesh et al. (1995) investigated the short-term reproducibility of HRV mea-
surements in patients with chronic stable angina and found no significant changes
in the time or frequency domain parameters between two 24 hour ambulatory ECG
recordings. The short-term and mid-term (over one month) stability of spectral
parameters was studied in healthy young subjects by Dimier-David et al. (1994),
who observed that the intra-observer and inter-observer reproducibility of spectral
analyses are high under controlled conditions. They did not employ any standard-
ization for breathing frequency or volume.

Pitzalis et al. (1996) studied the short and long-term reproducibility of HRV
measurements in normal subjects. They concluded that time domain parameters,
as evaluated over the whole 24 hour recording, can be expected to be reproducible
during relatively stable conditions but frequency domain parameters calculated
for ten minute ECG sequences were reproducible only under known stable condi-
tions, as factors of other than neural origin can greatly alter the spectrum. The
measurement of total power needed resting conditions to produce reproducible re-
sults. Respiratory oscillations in the spectrum (high frequency component) can be
measured reproducibly during controlled breathing. The low frequency component
was reproducible, particularly at rest and during tilt, which indicates that these
fluctuations are quite stable. The reproducibility of the power estimates when
normalized by reference to the total power seemed to be no better than that of
the real values. It should be noted that the time domain parameters were not re-
producible if they were evaluated from ten minutes sequences instead of the whole
24 hour period.

The results of analyses performed on signals of short (e.g. five to ten minutes)
and long (possibly 24 hours) duration seem to differ. Pitzalis et al. (1996) suggest
that analyses of long signals may homogenize the results and give better repro-
ducibility of the frequency domain parameters. In analyses performed on 24 hour
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recordings, the results have often been calculated for short sequences and then av-
eraged over the whole recording. The authors also conclude that frequency domain
parameters should be evaluated from short signals and under controlled conditions
to minimize the effects of disturbing factors (Pitzalis et al. 1996). Recording the
respiratory activity would probably help to explain the RR interval fluctuations.

It should be mentioned that the amount of heart rate variability depends on
the subjects. Thus, the reproducibility observed in the case of normal subjects, for
example, cannot be assumed to occur in patients with cardiac diseases (Pitzalis
et al. 1996).

2.8.3. Artifacts in RR interval time series

When the activity of the autonomic nervous system (ANS) is evaluated in terms of
HRV, variations in the sinus rhythm of the heart and the RR interval time series
analyzed should contain only normal RR intervals. The RR intervals obtained from
ambulatory recordings, however, often include abnormal intervals, which do not
represent the sinus rhythm and differ in length from normal RR intervals. These
can arise from rhythm disturbances (ectopic beats) or errors in the detection of
QRS complexes of technical or physiological origin. These artifacts lead to spurious
transient spikes in the resulting RR interval time series. The computation of HRV
indices can be unfavourably affected by the presence of even a small number of
such transients. In addition to high-frequency transient spikes, non-periodic low-
frequency changes in the sinus rhythm, i.e. normal physiological or emotional
responses of the heart, which are easily encountered in long-term recordings, can
have adverse effects on some HRV indices.

As the interest in HRV increases, more efforts are being made to understand
the effects of artifacts and artifact processing techniques on HRV measurements
(Lippman et al. 1994, Malik et al. 1989b, Sapoznikov et al. 1992). If the number
of transient spikes in a RR interval time series is small, it is possible to reject them
or correct for them, and thus to obtain a smooth signal consistent with normal
RR intervals. Data segments containing frequent artifacts, however, should be
rejected from further analysis. Detrending can be used to remove the effects of
non-periodic low-frequency changes in RR intervals. The amount of rejected data
and the artifact detection criteria and correction techniques used should be taken
into consideration when discussing the reliability and reproducibility of different
HRV approaches.

2.8.3.1. Errors in the detection and classification of QRS complexes

The detection of QRS complexes (R waves) always precedes the further processing
of a RR interval time series. Achieving an accurate, artifact-free RR interval
time series requires optimal electrode positioning. Ambulatory ECG recording
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is exposed to many technical and physiological disturbances which are not easily
prevented or controlled, and consequently errors in the automatic detection of
QRS complexes cannot always be avoided. That is, the accuracy of QRS detection
can be affected, the detector can miss normal QRS complexes or spuriously detect
additional events within normal RR intervals. A missed R wave will lead to an
interval, which is approximately twice as long as the average interval, while a
detection of an additional event within a normal interval will lead to two shorter
intervals, the sum of which equals the real interval. Unfortunately combinations of
missed and false detections exist, resulting in difficulties in artifact identification.

It can be impossible to tell on the basis of RR interval data alone whether the
cause of an artifact is physiological or technical. In addition, information is needed
on the underlying shape of the ECG signal. Considering the activity of the ANS
system, however, the origin of the artifact is not important, since all abnormal RR
intervals are not useful for further analysis. A review of software QRS detection
in ambulatory monitoring has been published by Pahlm & Sérnmo (1984).

Along with detecting QRS complexes, most algorithms used with commercial
long-term ECG devices attempt to classify them according to type, as “normal”
(i.e. originating from sinus rhythm) or “abnormal” (ectopic). Randomly occur-
ring ectopic (extra) beats are frequently encountered in normal subjects; but if an
ectopic beat is mistakenly analyzed as normal, an artifact is induced into the time
series, since the RR intervals connected with an abnormal beat differ in length
from normal intervals. Thus the role of this classification can be very important.
Errors in QRS classification are not rare, however, as noted in Malik et al. (1993)
and Sapoznikov et al. (1992). Therefore systems including QRS classification may
require effective artifact correction in the same way as systems without this clas-
sification. While single ectopic beats can be corrected to allow further analysis,
segments containing pathological rhythm disturbances are usually rejected. The
classification of ectopic beats can, according to their occurrence in time relative to
surrounding beats, form the basis for the selection of the correction method (Mul-
der 1992). Ectopic beats can be interposed extra-systoles, compensated extra-
systoles, or phase-shifted extra-systoles.

Disturbances of physiological origin

Errors in QRS detection arise from disturbances and extraordinary waveforms in
the measured ECG signal (Pahlm & Sérnmo 1984, Thomas et al. 1979). Abnormal
initiations of the heart beat (ectopic beats) can lead to a variety of morphologies
of QRS complexes and cause difficulties in both their classification and their de-
tection. Potential physiological sources of errors also include: abnormally large
P or T waves, and myopotentials similar enough to QRS complexes in amplitude
and frequency content to cause spurious detection. Variations in the position of
the heart with respect to the measuring electrodes and changes in the propagation
medium between the heart and the electrodes, both being dependent on the po-
sition and breathing of the patient, can cause: sudden changes in the amplitude
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of the ECG signal and morphology of the QRS complex, leading to missed QRS
complexes, as well as low frequency baseline shift. The ability of the QRS detector
to tolerate variations in ECG waveforms depends on the recognition criteria them-
selves and the pre-processing of the raw ECG data, of which the most essential
part is filtering (Friesen et al. 1990, Hamilton & Tompkins 1986).

Disturbances of technical origin

Like physiological changes in the ECG signal, the tolerance of different QRS de-
tection procedures can vary with respect to technical disturbances (Friesen et al.
1990, Hamilton & Tompkins 1986). These include movement of electrodes (rela-
tive to the skin and heart) or other changes in conductivity between the electrodes
and the skin, which can result in rapid baseline shift. Capacitively or inductively
coupled disturbances, e.g. power line interference and extra peaks originating from
the movement of wires or discharges of static electricity when clothes, skin, elec-
trodes and wires chafe against each other in the presence of dry air and skin can
also cause disturbances.

Problems at the electrode-skin interface

Most of the disturbances in automatic QRS detection are connected with electrode-
skin impedance, since poor conductivity between the electrodes and the skin both
reduces the amplitude of the ECG signal and increases the probability of dis-
turbances. Along with pathological arrhythmias, problems at the electrode-skin
interface are the most common reasons for having to reject large segments of RR
interval data in HRV analyses. The need to take account of the interaction of
the skin with the electrodes is commonly described in the literature dealing with
the non-invasive recording of surface potentials, but the mechanism of the distur-
bances caused by rapid impedance changes has been not described. The reason
may lie in the fact that problems with electrode contacts can be avoided if the elec-
trodes are correctly attached, electrode paste is used and the tests are performed
at rest. Even at normal activity levels, electrode paste usually improves conduc-
tivity between the skin and the electrodes enough to prevent problems. Movement
of the electrodes relative to the skin and the heart, caused by rapid motion on the
part of the subject, can give rise to sudden changes in electrode-skin impedance
and consequently a baseline shift in the measured ECG signal. These problems
due to unavoidable movement of the electrodes are especially frequent in exercise
tests, and are accentuated further if the electrodes are loose or the subject has an
unusually high skin impedance.

The larger the electrode-skin impedance, the smaller the relative impedance
change needed to cause a major shift in the baseline of the ECG signal, and if
the skin impedance is extraordinarily high, it may be impossible to detect the
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QRS complexes reliably in the presence of body movement. In such cases the sud-
den baseline shifts may be of such an amplitude that they lead to the saturation
of the voltage amplifier or confuse the automatic gain control (AGC). The exact
electrode-skin impedance depends largely on the electrode and the type of elec-
trolyte used, the properties of the subject’s skin and the measurement frequency.
If the skin is dry, the electrode-skin impedance can be as high as several hundred
kilo-ohms at frequencies below 100 Hz. Three-electrode leads are usually better
than two-electrode ones, since a separate ground electrode is available.

If the electrode-skin impedance is high, a distribution of charges and subsequent
potential difference can be generated on both sides of the interface or between the
electrodes. The origin of such a potential difference can be electrode offset po-
tential or an unequal local distribution of charges on the skin surface generated,
for example, by static electricity. When an impedance change takes place at the
electrode-skin interface, the potential differences drive a current over the electrode-
skin-tissue-skin-electrode circuit, or parts of it, and a shift in voltage is measured
by the differential amplifier. Due to the transient form of the current and the
high-pass property of the ECG amplifier, the baseline returns to normal after some
time. Once the skin impedance becomes lower due to sweat gland activity, baseline
shifts are no longer generated. Besides eliminating these impedance changes, the
improved conductance puts an end to the unfavourable effects of static electric-
ity, because the charges are rapidly equalized over the body surface and on the
electrodes. When the sweat glands are filled with conducting sweat (sweat can be
considered the equivalent of 0.3 % saline), many low-resistance parallel pathways
result, thus significantly reducing the electrode-skin impedance and alleviating the
problems (Malmivuo & Plonsey 1995). A further lowering of the impedance takes
place due to hydration of the skin.

2.8.3.2. Non-periodic changes in RR intervals

Conventional mathematical analysis methods such as standard deviation, corre-
lation and power spectrum analysis presuppose that the data are stationary in
the wide sense. This means that in the case of HRV analysis the sinus rhythm
of the heart can be approximated as stable. This approximation holds best over
a short period and under steady-state conditions. In addition to the transient
spikes mentioned earlier, non-periodic changes in the heart rhythm can impair the
stationarity of the signal and have adverse effects on HRV indices. Non-periodic
changes can be induced in a RR interval time series by normal responses of the
heart to physical activity, emotional stimuli or reflexes of various kinds.

The question might arise as to whether it is permissible to correct an RR inter-
val time series for abnormalities if their background is physiological. As discussed
earlier, a correction procedure should be employed for ectopic beats, since they
do not carry information on the sinus rhythm, but the need to correct for non-
periodic changes in the sinus rhythm, e.g. by removing the changes in the HR
trend, depends largely on the application and on the mathematical HRV indices
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used. When day-to-day variation is to be studied in a single subject, for exam-
ple, it is important to detrend the data series so that the statistics regarding
frequently-occurring parameters can be compared. If conventional methods are
used, the correction of non-periodic changes in heart rhythm should be preferred,
since rough nonstationary sequences in the RR interval data can bias the results
of the analysis. Detrending is usually applied to cut down on the effects of non-
periodic low-frequency changes in RR intervals.

2.8.4. Limitations and effects of artifacts

In view of the non-periodic nature of the artifacts in RR interval time series, it
is clear that spectral domain methods in general and time domain methods based
on the calculation of standard deviations and mean values are sensitive to arti-
facts in the automatic measurement of RR intervals. Malik et al. (1993) have
shown experimentally that pNN50 and indices based on the calculation of stan-
dard deviation are more sensitive to artifacts than the HRV index (the number of
normal-to-normal intervals of modal duration) or TI NN (triangular interpolation
of the normal-to-normal histogram). A comparison of methods for the removal of
ectopy is presented by Lippman et al. (1994).

Mulder (1992) describes the effect of artifacts in considerable breadth, plac-
ing emphasis on spectral methods. The impulse-like deviation in RR interval time
series caused by errors in QRS detection, both missed R waves and additional trig-
gers, and also interposed ectopic beats have a similar effect on the power spectrum
in that power is increased at all frequencies. The effect of a phase-shifted ectopic
beat is similar in form but smaller in amplitude. As the number of corrupted beats
(not consecutive) increases, the total spectral variability grows linearly, while in
the case of more consecutive artifacts, e.g. intervals of twice the normal length the
Fourier transform of an artifact complex is no longer flat but follows the form of a
sinc-function, adding more power to the lower frequencies. As can be observed in
Figure 2.1, the effect of compensated ectopic beats is markedly different, i.e. their
contribution is large at higher frequencies and small at lower frequencies.

Responses of the heart to physical activity or emotional stimuli clearly affect
the mean values, standard deviation and low frequencies of the RR spectrum (see
Figure 2.2). Detrending is usually used to remove low frequency baseline shifts by
subtracting a fitted polynomial. Another method, based on the ratio between the
peak power and bandwidth of the LF range in the power spectrum, is described
by Sapoznikov et al. (1994). A wavelet filtering approach is used to remove very
slowly oscillating components from RR interval data (Wiklund et al. 1997). In long
term measurements, stationarity can be achieved better if the data are first divided
into shorter segments which are analyzed one by one and then averaged. When
using Fourier transform-based approaches, however, compromises must be made
between the requirements of stationarity and good frequency resolution, since the
frequency resolution of the FFT algorithm is better if longer segments are analyzed
at a time.



1600

1400

1200

1000

x(t) [ms]

32

800 R
600 Il Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500 550
t
6000 1600
__ 5000 1400
N
T 4000 )
~ £ 1200
1)
2 3000 —~ .
¥ 1000
Q 2000 =
)
o
1000 ; b 800
\ [\ ) \
/< - < <
Y e 600 +
0 01 02 03 04 05 600 800 1000 1200 1400 1600
f [Hz] x(t) [ms]

Fig. 2.1. RR time series obtained from a healthy young subject when asleep
(top). The ECG signal includes a compensated ectopic beat, producing the
sequence normal-short-long-normal in the RR intervals. Power spectrum esti-
mated by the modified covariance method with a model of order 20 (bottom
left). The estimate include the sum spectrum (solid line) and the spectra
of the separate components (dashed lines). First-order difference plot of the
RR intervals (bottom right).

2.8.5. Correction of abnormal RR intervals

The decision as to whether a deviating interval should be corrected or not usually
forms the most difficult step in the removal of abnormal intervals. A segment of an
RR interval time series is accepted for further analysis if the number of qualified
intervals exceeds a preset acceptance percentage which varies widely according to
the application and the patient group, a typical figure being around 95 % as in
Mulder (1992) and Pitzalis et al. (1996). There are no specific recommendations
in the literature as to the maximum number of artifacts one can interpolate or
accept.
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Fig. 2.2. RR time series obtained from a healthy young subject, including an
abrupt change in RR intervals due to physical activity (top). Power spec-
trum estimated by the modified covariance method with a model of order 20
(bottom left). First-order difference plot of the RR intervals (bottom right).

2.8.5.1. Detection of artifacts

Error detection algorithms attempt to distinguish normal intervals from abnormal
ones. The optimum would be for the algorithm to adapt to the data and derive
the error detection criteria from the distribution indices of the normal-to-normal
intervals. An algorithm which automatically identifies artifacts and corrects them
in a RR interval time series is presented by Berntson et al. (1990). It can be noticed
from the literature, however, that relatively simple detection criteria supported by
additional visual verification are still being used in computerized artifact detection
in connection with HRV measurement. This is explained by the fact that results
obtained with simple procedures are not distinctively poorer than those arising
from more complex solutions (Mulder 1992). As the normal intra-subject and
inter-subject variability in heart rhythm is large, automatic adjustment of the
criteria can be difficult. Short and sudden surges are usually treated successfully
by most methods, but the decision on whether deviating intervals resulting from
non-periodic physiological fluctuations should be corrected is more problematic.
So far, researchers have wanted to solve the most critical questions during the
visual verification after computerized detection.
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The simple artifact detection criteria described in the literature include absolute
upper and lower limits for acceptable intervals (e.g. 300 - 1500 ms), absolute or
relative differences from the previous RR interval (e.g. 20 - 40 %), from the
following RR interval, from the previous accepted interval, from the mean, from
the mean updated by previously accepted intervals or from a fitted polynomial
representing the baseline. Malik et al. (1989b) used four simple detection criteria
and found none of them to be significantly better than the others. As a single
detection criterion always has its particular weaknesses, a combination of criteria
should be preferred (Sapoznikov et al. 1992).

2.8.5.2. Correction of artifacts

There are two basic methods for removing individual artifacts from an analysis:
total exclusion of abnormal intervals or substitution of a better matching value.
The exclusion approach is widely used, suits well for time domain analysis, and
can also be used with frequency domain analysis if only a few beats are to be
excluded, where as the substitution approach is used relative widely with both
time domain and frequency domain analysis. The substitution can take the form of
simply replacing the abnormal value with a local mean or median value, but more
sophisticated procedures include linear, non-linear or cubic spline interpolation
methods or more complicated predictive modelling (Lippman et al. 1994).

The substitution approach can be used with good justification in a physiogi-
cal sense if the artifact is known to be of technical origin, while if it is due to a
physiological or mental factor, both approaches can be used with success. The
comparison, by Lippman et al. (1994), of methods for removing ectopy from 5-
minute RR sequences showed that the simple deletion method and the more com-
plex non-linear predictive interpolation method gave the best results. In general,
the removal of abnormal intervals tends to increase the low frequency component
of the spectrum and reduce the standard deviation, but it should be noted that
the sum of the intervals after correction does not always equal the sum of the
original intervals. A correction procedure, presented by Mulder (1992), attempts
to retain the total time, and this approach can be successful if the sinus rhythm is
not disturbed during a period of disturbances; however, short intervals connected
with phase-shifted extra systoles can make it impossible to preserve the sum of
the intervals.



3. Analysis of signal variability

3.1. Interpolation of the ECG signal

In paper II, the ECG was interpolated in order to increase the sampling rate of
the measured signal. That is important because of the relatively low sampling rate
(often 128 Hz) of the ambulatory ECG. The objective is to increase sampling rate
to obtain, for example, a more accurate measurement of the end of the T wave.
Speranza et al. (1993) utilized this technique in order to gain an improved resolu-
tion of the RT interval variability measurement. They checked the performance of
the technique and showed that the interpolation caused a distortion in the QRS
complex, but did not affect the T wave. The difference was less than 3 % of the
peak-to-peak amplitude of the original signal, when the ECG was sampled at 250
Hz and interpolated to 1 kHz, and was comparable to the signal digitized at 1 kHz
(Speranza et al. 1993).

Interpolation is the process of increasing sampling rate by an integer factor M,
that is, upsampling by M. First, the time base of the signal is changed so that
M — 1 zero valued samples are placed between each sample pair of the original
signal x(t) (t =1,2,...,N). This new sequence is defined by
Ja(E), t=0,£M,+£2M,...

v(t) = {0, " otherwise (3.1)

For instance, when having a signal sampled at 128 Hz and interpolating it to
1024 Hz sampling rate (interpolation by factor 8), 7 zeros are placed between each
sample pair. Thus, the time interval between each sample pair changes from 7.81
ms to 0.98 ms.

A symmetric, linear phase, FIR digital filter was used. This filter resamples
data at a higher rate using low-pass interpolation. This allows the original data
x(t) to pass through the filter unchanged and interpolates M — 1 values between
data samples such that the mean square error between them and their ideal values
is minimized (Oetken et al. 1979). The length of the designed filter is 2M L + 1,
where M is an integer factor used to increase sampling rate and L is an integer
factor determining the degree of the filter. The cutoff frequency « was given in
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radians (0 < a < 1.0), so that the input data is assumed to be band-limited with
the frequency am/M.

The increase in sampling-rate obtained by the addition of M — 1 zeros between
successive values of z(t) results in a signal y(¢) whose spectrum Y (w,) is a M-fold
periodic repetition of the input signal spectrum X (w,) (Proakis et al. 1992). Since
only the frequency components of z(¢) in the range 0 < w, < wM are unique, the
images of X (w) above w, = w/M should be rejected by passing the sequence v(t)
through a lowpass filter. The frequency response of the filter can be ideally given
as
C, 0<|wy| <m/M

0, otherwise ’ (3.2)

Hust) = {

where C is a factor required to normalize the sequence y(t).

3.2. Time domain analysis

Time domain analysis of RR interval time series covers histogram and scattergram
analysis, and the calculation of several common statistical indices. In many studies,
these indices are compared with frequency domain parameters, and the correlations
between these parameters are also calculated.

When dealing with the interpretation of parameters such as histograms, it
should be pointed out that they do not in general contain any information on
periodic fluctuations in RR intervals. Respiration frequency, for example, cannot
be observed on the basis of these parameters, nor can the variance related to a
specific frequency band (i.e. spectral component) be measured by these indices if
RR intervals without any band-pass filtering are concidered. Time domain indices
tend instead to rather measure the average variability in time series or maximum
amplitude of the variability, depending on the nature of the index considered. See
Kleiger et al. (1992) and references therein, for a more detailed discussion on the
use of time domain parameters.

3.2.1. Time domain indices

There are several statistical indices which have been used to describe heart rate
variability, e.g. average, median, deviation between maximum and minimum val-
ues (range), standard deviation (SD) and root mean square of successive differences
(RMSSD). The formulation of these is well known and they do not require complex
calculations.

The statistical properties of a time series x(t) are often described using basic
indices such as the mean ¥ and standard deviation s,., which can be obtained from
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the given data as follows:

N
T=Y x(t)/N , Se = | >_(@(t) = T)?/N . (3.3)

t=1 t=1

The variance is the square of the standard deviation, var(z(t)) = s2. The coef-
ficient of variation and the range, i.e. the deviation between the maximum and
minimum values in a time series, are formulated as

CV, = 100 s,/7 | (3.4)
d, = méxx(ac(t))—mgn(x(t)) . (3.5)

The mean square of successive differences (RMSSD) is calculated for the purposes
of HRV analysis by

RMSSD, = _1(x(t)—:v(t+1))2/N . (3.6)

t=1

Certain “modified” indices also exist, such as “the percentage of difference be-
tween adjacent normal RR intervals greater than 50 ms computed over the entire
24 hour ECG recording” (pNN50) or “the mean of the standard deviations of
all normal RR intervals for all 5 minutes segments of a 24 hour ECG recording”
(SDNNIDX) (Stein et al. 1994, Ori et al. 1992).

3.2.2. Analysis of distribution

The distribution of RR intervals can be analysed in terms of a histogram of the
time series (Baselli & Cerutti 1985, Hoopen & Bongaarts 1969), in which the
“frequencies” in the histogram bins may be expressed in absolute numbers or
as relative “frequencies” of the time series values. The histogram has also been
presented either by drawing a line between the bins or by giving the portions of
the time series values numerically (Baevskij et al. 1984).

A few parameters generated for the analysis of RR interval histograms are
introduced in Baevskij et al. (1984). The bin having the largest “frequency” is
termed the mode of histogram and the “amplitude” of this mode has also been
observed. The width of the histogram base, i.e. the maximal deviation in time
series values, has been proposed as another basic measure of RR interval variability.
Several parameters may be constructed from these three elementary measures.

Casolo et al. (1989) used the width of the histogram base as a measure of
total variability, and defined the width at levels of 10% and 50% of the maximum
height of the histogram. Odemuyiwa et al. (1991) approximated the shape of the
histogram as a triangle in order to reduce the effect of less marked variabilities.

The results produced by the histogram naturally depend on the bin width used.
If a large bin width is chosen, the histogram will be vague in shape, while a small
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bin width will accentuate unimportant details. It is worth noting that the bin
width of a histogram should remain constant in order to allow rational comparison
of the absolute results. A simple estimate for bin width is given by Scott (1979)

hy =349 —% (3.7)

where s, is the standard deviation of N time series values. The estimate takes the
variability in time series into account by using the standard deviation. This ex-
pression can be used successfully with approximately Gaussian data (Scott 1979).
In practice, the bin width can be selected to be near the estimate hy. The esti-
mation of frequency distributions has been studied in Willard & Connelly (1992),
where different non-parametric methods using both simulated and real data are
compared and improvements to the histogram are proposed.

3.3. Frequency domain analysis

3.3.1. Interpretation of spectral estimates

Spectral estimates can be studied by integrating over a given frequency band or by
decomposing the spectrum into components. The first approach can be performed
with Fourier and autoregressive (AR) techniques, but the latter is possible only
with AR techniques.

One problem affecting integration of the spectrum is definition of the frequency
bands. Doing this signal by signal would be quite a laborious task, because it
would mean checking all the estimates manually. Frequency ranges can be defined
by an experimental procedure or obtained from the literature and kept constant,
but problems will arise when the locations of components vary between signals.
The definition of frequency ranges has been studied experimentally by Jaffe et al.
(1993), where the aim is to optimize the ranges to some extent.

Use of the spectrum decomposition procedure gives estimates for the component
spectrum and powers. In addition, the central frequencies as well as the power
estimates can be utilized to search for the appropriate components. Use of the
maximum of component spectrum and the band width of the component to detect
periodic fluctuations is discussed in Sapoznikov et al. (1994). The mean, median
and central frequency has been used to obtain the characteristic frequency of a
specific band in Korhonen (1997). Several definitions exist for the frequencies
of the components in a RR interval time series spectrum, as summarized in the
following short description:

e The very low frequency (VLF) component is found at frequencies f < 0.04
Hz (Kamath & Fallen 1993). These fluctuations in RR intervals are due to
thermoregulation mechanisms (VanRavenswaaij-Arts et al. 1993). Some low
frequency trends or nonstationarities may also exist, which can be observed
in the form of increased power at low frequencies in the spectrum.
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e The low frequency (LF) component is usually observed around f = 0.1 Hz.
This is mainly due to the systems regulating blood pressure (Kamath &
Fallen 1993, Kitney et al. 1985) and reflects the autonomic sympathetic tone
in heart rate regulation (Malliani et al. 1991, Pagani et al. 1986), although
it has also been suggested that parasympathetic regulation plays some role
in it (Akselrod et al. 1985, Pomeranz et al. 1985).

e The high frequency (HF) component will be often found in the frequency
band 0.15 < f < 0.40 Hz, which is related to the frequency of respiration
(e.g. cycle length T =4 s, f = 0.25 Hz) (Baselli et al. 1987, Kitney et al.
1985) and is often called respiratory sinus arrhythmia (RSA). The amplitude
and frequency of this component are closely related to the respiration volume
and frequency (Novak & Novak 1993, Novak et al. 1993). The HF component
has been considered a measure of parasympathetic neural regulation of heart
rate (Katona & Jih 1975, Pagani et al. 1986, Pomeranz et al. 1985).

Sometimes an ultra low frequency (ULF) component is defined with a frequency
band of f < 0.0033 Hz (Kamath & Fallen 1993). The balance between sympathetic
and parasympathetic neural regulation is often measured by the ratio of the power
estimates for the LF and HF components (LF/HF ratio) (Malliani et al. 1991,
Pagani et al. 1986). An RR time series for a healthy young subject is shown in
Figure 3.1, together with a spectrum estimated using an AR model, showing the
components of spontaneous RR fluctuation described above and a pole diagram
representing the locations of the poles of the parametric model on the complex
z-plane. In this example, the model order was selected by visually examining
the spectrum when the order 16 gave a reasonable result. The power spectrum
estimate represent the sum spectrum (solid line) and the spectra of the separate
components related to respective pole pairs (dashed lines).

3.3.2. On the use of spectral analysis

The use of frequency domain analysis in different clinical circumstances has been
extensively reviewed in Rienzo et al. (1993), Malliani et al. (1991), Kamath &
Fallen (1993) and Ori et al. (1992). Spectral analysis has been often performed for
RR interval time series including 256 or 512 values, the recording lasting several
minutes depending on the heart rate. Analyses of this kind can provide information
on short term fluctuations in RR intervals.

Short term fluctuations and their changes over several hours can be studied
with ambulatory recordings (24 hour Holter recordings), a long recording being
segmented into shorter RR interval time series of 512 values, as for instance de-
scribed in Cerutti et al. (1989) and Furlan et al. (1990). Such a short time series
can be assumed to conform better with the stationarity requirement for the rel-
evant spectrum estimation. Circadian variation in spectral parameters has been
studied in Guzzetti et al. (1991) and Huikuri et al. (1992), and long term RR in-
terval recordings in Bianchi et al. (1993), Rienzo et al. (1989), Malik et al. (1989a)
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Fig. 3.1. RR time series obtained from a healthy young subject under rest-
ing conditions (top). Power spectrum estimated by the modified covariance
method with a model of order 16 (bottom left). The corresponding pole
diagram (bottom right).

and Saul et al. (1987).
Long term variation in autonomic neural regulation has been studied using the
VLF and ULF components mentioned above, and the spectrum has been calculated

from the whole 24 hour recording. The spectrum has been reported to have the
shape 1/f (Kobayashi & Musha 1982, Saul et al. 1987).

3.3.3. Mathematical background to spectral analysis

The RR interval time series includes information of wide origin and its nature
will hardly allow an assumption of wide sense stationarity in the strict statisti-
cal sense under any conditions. The RR intervals should rather be understood
as being approximately stationary at most, whereupon the analysis would give
relevant results in a medical sense. There may exist sections which can very well
be assumed to be (almost) stationary, and also sections that are far from allow-
ing such an assumption. It is often necessary to divide a recording into shorter
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stationary sequences. Nonstationarities include transient phenomena and slowly
varying changes (trends), the identification of which is more difficult. The theory
of many approaches is nevertheless based on the assumption of signal stationarity.
In this context a calculated spectrum for a RR interval time series, for exam-
ple, is understood as a “model” for periodic fluctuations rather than as a “true”
spectrum.

Let z(t) be a stationary process defined at discrete values ¢t = 0,4+1,+£2,....
The autocovariance function will be written as (Priestley 1981)

r(k) = E{(x(t) — p)(z(t+ k) —pn)} , k=0,4+1,4+2,... (3.8)

and the autocorrelation function will then be p(k) = r(k)/r(0). Here the mean
value of the process z(t) is defined, using the expectation operator p = FE{xz(t)}.
For a wide-sense stationary process, the mean value is constant and the autocor-
relation satisfies the property p(ni,n2) = p(n1 — na2) = p(k).

Let us then assume that x(t) is a zero mean stationary process. There must
then exist an orthogonal process Z(w) such that (Priestley 1981)

x(t) :/ exp(iwt) dZ (w) (3.9)
and E{|dZ(w)|*} = dH(w), where dH (w) = h(w)dw, —7 < w < 7 and w = 27f.
This is called the spectral presentation of a discrete stationary process.

The autocovariance sequence is

r(k) = /7T exp(iwk) h(w) dw (3.10)

—T
and the power spectral density is

o0

h(w) = % > (k) exp(—iwk) —r<w<T . (3.11)
k=—oc0

3.3.4. Spectrum estimation using a periodogram

Let us divide the N-point process z(t) into K non-overlapping segments, each
having M points. The Fourier transform of the p:th segment can be written as

M
XP(w) =) x(t) exp(—iwt) , —nm<w<Tm . (3.12)

The periodogram estimate of the spectral density function of a single data
segment is given by

PP(w)=MYXP(W))® , p=1,...,K . (3.13)

x
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If the periodograms of K segments are averaged, the estimate is called a Bartlett
averaged periodogram. It should be noted here that the periodogram is only one
way of estimating the spectrum of the process, and is by no means a “definition”
of the spectrum.

Modifications of the averaged periodogram also exist, among which the Welch
periodogram is introduced. In this method, data segments are allowed to overlap
by 50% or 70%, for example, and each data segment will be weighted with a
window function before calculating the periodogram. As a result, one has for the
periodogram of each segment

M
~ 1
PP(w) = il ;ac(t)w(t) exp(—iwt)* . (3.14)
The factor U = M~} Ztﬂil w(t)? is a normalization factor for the power in the
window function w(t). The Welch periodogram estimate will be then an average
of these periodograms:

PY(w) = -

il

L
SPI) (3.15)

The statistical properties of periodograms are discussed by Priestley (1981) and
Kay (1988).

Sometimes one may need to approximate a periodogram more closely, which can
be done by using the zero padding procedure (Kay 1988). This is performed by
extending the data set with zeros, and taking the Fourier transform of the whole
data set. This operation does not achieve any better resolution in the spectrum,
however, although the frequency spacing will be denser. Zero padding actually
interpolates the values of the measured spectrum at more frequencies, producing
a smoother spectrum.

3.3.5. Parametric modelling of time series

Parametric modelling of time series has some advantages over non-parametric
(Fourier) methods. Here only autoregressive (AR) models are examined and the
focus is on spectral estimation, which has been the main object of interest in HRV
analysis. There are many algorithms for obtaining estimates for AR parameters,
e.g. methods based on estimation of the autocorrelation sequence (Yule-Walker),
the Burg algorithm, and least squares linear prediction algorithms (including the
modified covariance method) (Kay 1988, Marple 1987). There are also adaptive
algorithms such as least mean square (LMS) and recursive least square (RLS),
which update the parameter estimates as a new data sample becomes available
(Marple 1987).
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3.3.5.1. AR spectrum estimate

Estimation of the signal spectrum with AR models enables the frequencies of
spectral components to be determined more exactly than by non-parametric esti-
mation. The frequency estimates can be calculated after determining the poles of
the parametric model. Tracking of the pole locations in the complex z-plane can
be utilized when monitoring spectral changes in time series, for example. Further-
more, the powers of the spectral components and their balance can be estimated
more accurately. Estimation of the AR spectrum does not need windowing of the
time series as can be the case with the Fourier spectrum.

Let us define an autoregressive model for a stationary time series x(t) as follows:

Zak:c(t —k)=e(t) , ap =1, (3.16)
k=0

where aj are the model parameters to be estimated, e(t) is the residual time
series or error process, and p is the model order. The estimates for the model
parameters, ag, can now be regarded as the “components” observed in the power
spectrum estimate, which are to be fitted into the time series z(¢) in order to
minimize the process e(t) in some sense.

The power spectrum of the process x(t) is given as P, (z) = H(2)H(1/z)P.(2),
which can be written

0.2

AA]Z) (3.17)

where the Z transform of the above recursion is

P.(z) =

1 1
H(z) = = 3.18
(2) L+ 30 jarz™®  A(z) (3.18)
and P.(z) = 02 denotes the spectrum of the residual time series.
Let us estimate the power spectrum of z(¢). Assuming an AR process of order
p, it can be written:

(3'2

Par(z) = e , 3.19
AT Py (319

where 62 is the estimated variance of e(t), and py are the poles of the model. This
can also be given by using the estimates a; and denoting z = exp(iw):

2
— Ue
|1+ > "%y ar exp(—iwk)|?
The spectrum of the single component can be estimated by the following ex-
pression:

Pagr(w) (3.20)

Py (z) ~ , (3.21)
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assuming that w &~ wy, and z = exp(iw). For the constant ¢, can be written

~2
Oc

Hj;ék(z —pi)(z=t = pp)
Now the f;equency wy is related to the pole pg. It is assumed that a part of the
estimate Pag(z), cx, will be constant when w & wy. The AR spectrum estimate

should follow the relation Pap(z) ~ ok Py.(2), i.e. the spectrum is the sum of the
spectrum estimates of the components.

cp ~ , 2 = expliwg) . (3.22)

3.3.5.2. Estimation of the powers related to components

It was defined, above, the spectrum estimate of a single component related to the
pole pi. It may sometimes also be useful to estimate the power associated with
a component. In HRV analysis, powers are estimated in order to evaluate the
strength and balance of autonomic regulation.

The power of a component observed at frequency wy can be estimated by uti-
lizing the residue of the function analyzed (Johnsen & Andersen 1978, Marple
1987)

Plwp) = ¢ %{Rpgs{PA%(z)

o (3.23)
where the residue of P4g(z)/z is determined for the pole py. The operation R{-}
denotes the real part of the function. The total power associated with the spectrum
and the residues of the function are related as follows:

1 n

— dz = R . 3.24

ey SICLE > Res () (3.24)
Furthermore, the total power of the signal should be equal to the sum of the power
estimates of the components, Pyt = >, P(wy). Finally, the estimated power of a
single component is calculated by

A (z — pr)az
Plwg) = ¢R{————= 3.25
(on) = aR(GEEY (3.25)
where z = p;, and A(z) = Hkpzl(l —prz~1). Now g = 1 for a real pole and q = 2
for a complex pole. 62 is the estimate for the prediction error variance at the given
model order.
In HRV analysis, the power estimates are sometimes presented in normalized

units [n.u.] instead of absolute units [ms?]. The power estimate in normalized
units will be (Pagani et al. 1986)

A P(wg)

P(wi)nu = 100 — 3.26
(e Piot — By (3:26)
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where P, represents the power estimate of very low fluctuations in a signal (f <
0.03Hz) and P, the total power of the signal. It is obvious that 0 < P(wg)n.u. <
100.

3.3.5.53. Model order selection

It is essential to choose an appropriate model order, but the task can be a problem-
atic one. The order of the AR model has a major effect on the spectral estimate
for a time series. Too low an order will result in a smoothed spectrum, and too
high an order will increase the resolution of the spectrum and may introduce spu-
rious peaks. The estimate for the power associated with a single component is
also dependent on the order that is selected. The orders p = 15 — 20 are often
satisfactory with RR interval time series, giving a meaningful spectrum.

Minimization of the prediction error variance is alone not a sufficient method
for model order selection in the case of AR models, since 62 decreases as the order
increases (Choi 1992), but this decrease should smooth out after a certain order,
indicating that the optimum has been reached. The autocorrelation function of
a residual time series can also be studied, and if the model order is correct the
residuals should be uncorrelated. The locations of the poles in the complex z-plane
should then be quite stable.

Several penalty function methods for model order selection exist that utilize the
prediction error variance, e.g. FPE (final prediction error) and AIC (the Akaike
information criterion) (Choi 1992). It is expected that these criteria may fail in
real world time series. They provide a basis for model order selection, but the
final decission has to be made by a subjective inspection. If one can assume that
the properties of time series do not change significantly from one such series to
another, one probably will not make a serious mistake by choosing a relatively
high model order and keeping it constant.

3.3.6. Bispectrum estimation

A potential tool for future RR interval variability analysis may be the estimation of
the bispectrum. The power spectrum is based on the second order statistics of the
time series, but the bispectrum make use of third order statistics. By definition,
a gaussian random process has a zero higher-order spectrum of order two (bispec-
trum) (Nikias & Petropulu 1993), which allows the study of the deviation from the
gaussianity or to suppress gaussian noise. The method also contains information
about the phase character of the signal, which is failed with the methods based on
the second order statistics. Moreover, the bispectrum estimation can be used in
detection and characterization of the nonlinearities by analysis of quadratic phase
coupling in the frequency domain. A preliminary study on quadratic phase locking
in HRV can be found in Calcagnini et al. (1996).
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3.4. Time frequency analysis

3.4.1. Time frequency representations

There may be a need for monitoring the spectral properties of the signal as time
elapses, especially, when “long” time periods are under consideration. The tempo-
ral location of the spectral components may give more information than one single
spectrum. The short-time Fourier transform (STFT) is a linear Time Frequency
Representation (TFR) used to present changes in the signal that vary with time.
The Fourier transform does not explicitly show the time location of the frequency
components, but some form of time location can be obtained by using a suitable
pre-windowing window (Hlawatsch & Boudreaux-Bartels 1992). The STFT can
be defined for z(t) as

SI(t,w) = /x(s) g% (s —t) exp(—iws) ds . (3.27)

S9(t,w) is a local spectrum of the signal x(s) around the analysis time s, be-
cause multiplying by the short window ¢g*(s — t) suppresses the signal outside the
neighbourhood around the time s = ¢. The properties of the window ¢g*(s) also
have an effect on the calculated STFT (Hlawatsch & Boudreaux-Bartels 1992,
Rioul & Vetterli 1991).

The time-frequency resolution of the STFT is limited by the time-frequency
product, i.e. having a small time resolution means poor frequency resolution, or
vice versa. The resolution is also constant as a function of the frequency, which is
due to the window chosen for the STFT (Rioul & Vetterli 1991).

As an example of quadratic TFRs, the Wigner distribution (WD) is given:

Wy(t,w) = /:E(t +v) 2 (t —v) exp(—iwt)dr , v=7/2 . (3.28)

Detailed reviews of several types of time frequency representation and their appli-
cation can be found in Cohen (1989), Hlawatsch & Boudreaux-Bartels (1992) and
Loughlin (1996), for instance.

3.4.2. Time-variant spectral analysis

Techniques have recently been developed and demonstrated that allow the track-
ing of spectral parameters as time elapses. Approaches of this type have also been
called time-variant spectral analysis or time-frequency analysis. For a detailed
description of the algorithms and methodologies proposed and for some experi-
mental studies, see references Basano et al. (1995), Bianchi et al. (1993), Cerutti
et al. (1989), Keselbrener & Akselrod (1996), Lee & Nehorai (1992), Mainardi
et al. (1994, 1995), Novak & Novak (1993) and Novak et al. (1993). The advan-
tages of these methodologies are associated mainly with reducing the influence of
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nonstationarities and monitoring transient cardiac events occuring in long-term
recordings.

In Cerutti et al. (1989), a procedure of compressed spectral arrays (CSA) was
implemented which can reduce the spectral data obtained from 24 hour ambulatory
ECG recordings. The method was based on the calculation of AR spectral esti-
mates for successive RR interval segments, and checking whether a new spectrum
differs significantly from the preceding one.

Time-variant spectral analysis was introduced into HRV analysis by Lee & Ne-
horai (1992), and particularly for the analysis of 24 hour ambulatory recordings
by Bianchi et al. (1993). Here the AR parameters are estimated by the recursive
least square (RLS) approach, and the time-variant power spectrum is given as

2
Pan(w,t) = — el

Az, t)A(z1,1)
with A(z,t) = 1+ SP_, ax(t)2~* and t denoting the time index.

Mainardi et al. (1994) introduced two algorithms for recursive tracking of the
pole displacements of an estimated AR model. The procedure was formulated
and tested in more detail in Mainardi et al. (1995). The algorithms were based
on the classical linearization approach and recursive calculation of the roots of a
polynomial (Bairstow method).

The discrete Wigner distribution (DWD) was applied to heart rate variability
analysis in Novak & Novak (1993), and a modified algorithm was proposed for
auto- and cross-DWD. The cross-terms were suppressed by means of a smooth-
ing data window and a Gauss frequency window (Novak & Novak 1993). This
approach has been employed further in a study of the influence of respiration on
heart rate (Novak et al. 1993), showing its ability to estimate spectral changes in
nonstationary RR interval time series.

Keselbrener & Akselrod (1996) proposed a selective discrete Fourier transform
algorithm (SDA) for time-frequency presentation of cardiovascular time series.
This approach is very close to the STFT, and involves calculating the spectra with
short time windows, but SDA utilizes a shorter window for high frequencies in the
spectrum and a wider window for low frequencies.

Fourier transform-, autoregressive and time-frequency representation (TFR)-
based power spectral estimators applied to nonstationary time series are com-
pared in Pola et al. (1996), the results of which show that TFRs such as SPWD
(smoothed pseudo Wigner distribution) and RWED (running windowed exponen-
tial distribution) should be utilized when good time resolution or the preservation
of instantaneous power is essential. RWED has proved to be efficient in reducing
the cross-term amplitudes, but SPWD is more capable of evaluating the mean
power in the time-frequency plane. It can also be concluded that one problem
entailed in the classical estimators is the dependence of the time resolution on the
observation window, which often means a poor time resolution for the oscillations
observed in cardiovascular time series.

On the whole, increased interest is being shown in time-variant spectral analysis
or the monitoring of spectral parameters as a function of time. These techniques
seem to offer approaches for overcoming the requirement for signal stationarity.

, z =exp(iw) (3.29)
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3.5. Wavelet analysis

The wavelet transform (WT) is a fairly new approach in the field of biomedical time
series analysis, and only a few published articles exist on its use in HRV analysis,
although it seems to possess some obvious advantages over classical time-frequency
analysis methods, see Akay et al. (1993) and Tsuji & Mori (1994). The motivation
for applying the wavelet transform to the analysis of ECG signal and RR interval
time series lies mainly in the monitoring of nonstationary signals and the long-term
evolution of the power spectrum.

General and also more detailed theoretical discussions on the wavelet transform
and its applications to biomedical signal processing can be found in references
Akay (1995), Clouet et al. (1995), Cohen & Kovacevi¢ (1996), Hess-Nielsen &
Wickerhauser (1996), Karrakchou et al. (1996), Rioul & Vetterli (1991), Thakor &
Sherman (1995) and Unser & Aldroubi (1996). WT as a tool in the time-dependent
spectral analysis approach to stochastic processes has been discussed by Priestley
(1996), especially the term “frequency” in connection with nonstationary time
series.

3.5.1. Continuous wavelet transform

As a starting point, the continuous wavelet transform (CWT) is introduced and
then extended to the theory of discrete (multiresolution) wavelet and wavelet
packet transform, which are used to decompose the signal. CWT is defined for a
signal z(t) by (Daubechies 1992)

+oo
Wz(a,b) :/ x(t)hap(t) dt (3.30)

— 00
where a and b is the scaling and translation factor. Different versions of wavelet
functions 1, 5(t) are obtained from the basic wavelet by

1 —b
ap(t) =l Fyt

where a and b are real numbers (a # 0). The wavelet function 9, ,(¢) has a
constant norm in the space L?(R) of square integrable functions due to the nor-

—) (3.31)

malizing factor |a|_%. The continuous wavelet transform is invertible with (Cohen
& Kovacevié 1996)

oo oo da db
x(t)ZCLw/ Wz (a, b)a,b(t) 22 (3.32)

if the wavelet function satisfies the admissibility condition

+oo |7 2
C’w:/ de<+oo,

R

—00 —00
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where (w) is the Fourier transform of the wavelet function v, (). The constant
Cy is finite only if ¢(0) = 0 or equivalently

+oo
W(t) dt =0

— o0

To ensure that the wavelet function decays quickly to zero and is thus well localized
in the time domain, the following relation should be fulfilled (Daubechies 1992)

+oo
/ A+ )] dt < 400 , a>0 (3.33)

— 00

which is a subtly stronger condition than integrability of the function ¢, p(t). This
also satisfies the admissibility condition as |1)(w)| < Blw|? with 8 = min(«, 1), B
being a constant.

By analogy with the Fourier transform, which uses a complex exponential
exp(iwt) as its basis function, the wavelet transform utilises the function g (%)
to represent a signal as a linear superposition of basis functions. The physical
term frequency w is related to complex exponential functions and does not have
a direct interpretation when other functions such as wavelets are being considered
(Priestley 1996). Ome can observe from the above formulation that wavelets are
indexed with the parameters a and b instead of the variable w. Actually, wavelet
functions are located in time by the parameter b, while a denotes to the width
of the wavelet. This leads to the interpretation that the wavelet transform can
describe local properties of a time series z(t) in the neighbourhood of each time
point rather than global ones as the standard Fourier transform do.

It was shown earlier that the short time Fourier transform SY(¢,w) is a func-
tion of the variables ¢ and w that has a certain location in time. The width of
the window ¢(t) was constant for all w, so that all frequencies were evaluated
with the same resolution. In the case of wavelet transform, a large value of the
scaling factor a stretches the basic wavelet function and allows the analysis of low-
frequency components of the signal. The small value of a gives a contracted version
of the basic wavelet, and then allows the analysis of high-frequency components,
respectively. In other words, the wavelet transform uses a short time interval for
evaluating higher frequencies and a long time interval for low frequencies, high fre-
quency components of short duration can be observed successfully. The properties
naturally depend strongly on each wavelet function.

The frequency resolution of the wavelet transform is poor at high frequencies
and good at low frequencies, which means that the time resolution at high fre-
quencies will be good and that at low frequencies will be poor (Priestley 1996).
The time-frequency resolution even in this case cannot be arbitrarily good, but
is thus limited by the rules analogous to the well known Heisenberg’s uncertainty
principle.

Priestley (1996) derived an expression for the time-dependent spectrum of a
stochastic process:

E{|am,n|2} ~ 2mhi (W) t=n/2", wp =2m2" | (3.34)
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which allows the squared modulus of wavelet coefficients to be interpreted as a
time-dependent spectrum. It is assumed here that the mother wavelet has a com-
plex form () = exp(2mit), and its squared Fourier transform |1, (w)|? is suitably
concentrated around w = w,,. Although the term frequency should be understood
with care and in a somewhat heuristic sense, time-frequency analysis is probably
one of the most powerful features of the wavelet approach in this context.

3.5.2. Discrete wavelet transform

By choosing fixed values a = ag* and b = nboag’, m,n = 0,£1,£2, ..., we get for
the discrete wavelet transform (DWT) (Daubechies 1992):

W’Jf(m, Tl) = <l‘(t), wm,n (t)>
+oo 5 +oo 3
/ 2 omn (t) dt = a3 ™ / 2(8)(ag™t — nbo) dt

— 00 — 00

Values ap = 2 and by = 1 construct discrete wavelets 9., ,, () = 27/ 24h (27t —n)
used in multiresolution analysis constituting an orthonormal basis for L?(R).

To obtain a complete characterization of z(t) using discretized wavelets 1., ,, (t),
and further, to recover z(t) from the discrete transform in a numerically stable
manner, wavelet function should constitute a frame. The transform between the
signal and the wavelet function should be bounded above and below:

Affa(t ||2<Z| £), mn(D)* < B [lx(t)]]” (3.35)

with A > 0, B < oo. If frame bounds A and B are equal, then the frame is called
tight.

3.5.3. Multiresolution wavelet analysis

In multiresolution analysis successive approximation subspaces V; fulfill the prop-
erty V; C V1 with
Ui V;=L*R) and NI _V;=0

j*fOO j=—00

The multiresolution feature follows from the condition that all the spaces are scaled
versions of the central space Vjp:

z(t) € V; <= x(27) € V
The space Vj has to be also invariant under integer translation:

zt)eVo=z(-—n)eW
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for all n € Z. A scaling function ¢, »(t) € Vp is also required which is an or-
thonormal basis in Vp, where ¢, »(t) = 27"/2¢(27™t —n). Under these assump-
tions, the multiresolution scheme involves an orthonormal wavelet basis of L?(R),
Y (t) = 277/20h(27™t — n), so that

+oo

Pr1z(t) = Pra(t) + Z (@), Y () Pmn(t)

n=—oo
where P, is the orthogonal projection onto space V,,. The signal x(t) is conse-
quently obtained by

—+oo

z(t) = Z (@(t), Ymn (8))mn (1)

m,n=—o0

The decomposition of the signal x(t) using discrete analysis wavelet functions
;. (t) and discrete scaling functions ¢ () can be given on different scales as
follows:

(o)

Z K)vikt) + > ax(k)drr(t)

- k=—o0

||
Il Mw

where d; (k) are the wavelet coefficients (detailed signals) at scale 2/ and af (k) is
the scaling coefficients (approximated signal) at scale 2%. In Figure 3.2, the idea
of discrete wavelet analysis is presented by means of a wavelet decomposition tree.
A decomposition onto dyadic scales associates the frequency content of the signal
and scales as
27 < Aw; < 21 =i

for j =1,2,.... The signal spectrum includes the range 0 — wrad and Aw; is the
frequency band corresbonding the level j.

3.5.4. Subband filtering

Multiresolution analysis comprises a hierarchical and fast scheme to compute the
wavelet coefficients of an analyzed signal. The scheme involves the computation of
sequentially coarser approximations of z(¢) and the difference in signals between
two consecutive levels. In the subband filtering approach the computation consists
of the analysis and the synthesis steps which correspond to the decomposition and
the reconstruction stages in wavelet analyses (Strang & Nguyen 1996). The dis-
crete wavelet transform can be implemented by the scaling (lowpass) and wavelet
(highpass) filters

1
hn) = 5 (9(0). 62t =) (3.36)
and
g(n) = — (B(t), (2t — n)) = (~1)"h(1 - n) (3.37)
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Fig. 3.2. A wavelet signal decomposition presented by a tree structure.

being quadrature mirror filters (QMF) (Daubechies 1992). The estimation of the
detail signal at level j will be done by convolving the approximate signal at level
j—1 with the coefficients g(n). Convolving the approximate signal at level j—1 with
the coefficients h(n) gives an estimate for the approximate signal at level j. The
analysis step (decomposition stage) involves filtering the approximate signal and
retaining every other sample of the filter output (downsampling). The synthesis
step then involves upsampling and filtering to obtain a reconstructed signal. In
Figure 3.3, the decomposition and reconstruction stages in a subband filtering
scheme establishing a filter bank are presented.

3.5.5. Wawvelet packet analysis

If one defines the scaling function Wy(t) = ¢(¢) and the wavelet function Wi (¢t) =

¥(t), then we can write for functions Wy, (t), m =0,1,2,..., as
2N—1
W2m(t) =2 Z h(n)Wm(% - n) (3-38)
n=0
and
2N—1
Wams1(t) =2 > g(n)Wn(2t —n) . (3.39)

n=0
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Fig. 3.3. A schematic presentation of a subband filtering procedure using filter
banks. The operations | 2 and T 2 stand for downsampling and upsampling
by two.

The analyzing functions called wavelet packet atoms are given in an orthogonal
case as ‘ 4
Wimn(t) = 2792W,, (277t —n) | (3.40)

where j is a scale parameter, n is a time-localization parameter and parameter m
gives roughly the number of “cycles” included in the oscillating waveform. Wavelet
packet can be considered as a waveform whose oscillations persists for many cycles
but are still finite. With fixed value of j the function W; ,, »(t) analyzes the signal
around the position 2/ - n at the scale 27. The analyzed frequencies are roughly
given by n/2N withn=0,1,...,(2j — 1).

Wavelet packet analysis is a generalization of wavelet analysis offering a richer
decomposition procedure. Both detailed and approximated signals are split at
each level into finer components. A set of details and approximations is called the
wavelet packet decomposition tree.

3.5.6. Optimization of the wavelet packet decomposition

Wavelet (multiresolution) decomposition allows searching an optimal decomposi-
tion among L trees if a signal of length N = 2” has been decomposed at L levels.
Wavelet packet analysis involves the selection of an optimal decomposition tree
among at most 27 different subtrees of depth L. The optimization can be based
on e.g. the minimization of the entropy of analyzed signal, where the optimized
decomposition is called the best tree. The idea is to look at each node of the decom-
position tree and quantify the information to be gained by performing each split.
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Fig. 3.4. A wavelet packet signal decomposition presented by an optimized
tree structure.

The entropy can be obtained by many approaches, for example, the Shannon en-
tropy (Coifman & Wickerhauser 1992) is defined as £(z) = — >, z2(t) - log(2?(t)).
In Figure 3.4, the optimized wavelet packet decomposition tree is shown, which
schematically presents the idea of this procedure.

3.5.7. “De-noising” the signal

A possible application of the discrete wavelet analysis is to remove undesired com-
ponents (noise) from the signal through a de-noising approach (paper III). Ba-
sically the procedure includes decomposing the signal into the detail components
described above, identifying the noise components and reconstructing the signal
without those components. This is called the linear denoising approach. The linear
denoising approach assumes that the noise can be found within certain scales, for
example, at the finest scales when the coarsest scales are assumed to be noise free.
More sophisticated de-noising can be done by applying the non-linear threshold-
ing approach, which involves discarding the details exceeding a certain limit. This
approach assumes that every wavelet coefficient contain noise and it is distributed
over all scales.

The non-linear de-noising by both soft- and hard-thresholding methods can be
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performed (Donoho 1995). The soft thresholded wavelet coefficients will be

where p is the applied threshold. The wavelet coefficients whose absolute values
are lower than the threshold, are first set to zero, and then the remaining nonzero
coefficients are shrunk towards zero. With hard thresholding, the thresholded
coeflicients will be

i) = 5 g, (3.42)

which simply means setting to zero the absolute coefficients lower than the thresh-
old p.

In paper 111, the assumed model for a noisy signal was x(t) = f(t) + e(t), where
f(t) is the noise free signal and e(t) is the white or non-white noise of variance 2.
The performance of the methods was evaluated from the simulations with Lo-norm
given by the equation

1fo = &illz = O 1fo(t) = 2i(0)H)' /2, (3.43)

where f, denotes the original ECG signal being the same for all simulations, and
Z; denotes the ECG signal with added noise after noise removal.

3.5.8. Selection of the threshold

In paper III, the threshold p was selected for each signal using four threshold
estimation procedures: SURE, HEURISTIC SURE, FIXTHRES and MINIMAX principles.
The aim was to compare the performance obtained by different methods in the
noise removal of ECG signal. Stein’s Unbiased Risk Estimate (SURE) (Donoho
1993, Donoho & Johnstone 1995) is an adaptive threshold selection rule defined
as p = /2 -log,(n -loga(n)), where n is the number of samples in the signal
vector. With this approach obtaining risks and minimizing them with respect to
p values gives a threshold selection. The method is adaptive through searching a
threshold level for each wavelet decomposition level. A fixed threshold approach
FIXTHRES calculates the threshold with respect to the length of the signal and
the estimated threshold is given by p = 1/2 - loge(n) (Donoho & Johnstone 1994).
The HEURISTIC SURE approach being a variant of the first, replaces in very noisy
conditions the SURE with FIXTHRES estimate (Misiti et al. 1996). Further, the
MINIMAX procedure applies a fixed threshold p = 0.3936 + 0.1829 - log(n) (Misiti
et al. 1996) to produce the so called minimax performance for mean square error
against an ideal case (Bruce & Gao 1996, Donoho & Johnstone 1994).

The underlying signal model in paper III assumes the noise being normally dis-
tributed with zero mean and variance of 1, which means that we have to rescale the
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threshold values when dealing with unscaled and nonwhite noise. When normally
and uniformly distributed noises were studied, calculated thresholds were rescaled
by the standard deviation of noise estimated from the finest level of the decompo-
sition of each signal so that p = p - . Further, with AR(4)-noise the noise level
was estimated scale by scale to take account the obviously strong high-frequency
content. In wavelet approach, this was done by calculating § for all scales. In
wavelet packet case, § was estimated from the first node at each subdecomposition
band which gave the best statistics for the noise level estimation. As a robust
estimate of the standard deviation 6 = Median(|d;(k)|)/.6745 was used (Donoho
& Johnstone 1994).

3.6. Chaotic modelling

There are numerous investigations into fractal properties (Yamamoto & Hughson
1993, Yamamoto et al. 1995, Yeragani et al. 1993) and chaos (Babloyantz & Des-
texhe 1988, Signorini et al. 1994, Yamamoto et al. 1993) in HRV. The parameters
used to assess the latter have included spectral analysis, correlation dimensions,
Kolmogorov entropy and Lyapunov exponents. The most recent discussions have
concerned chaotic modelling as applied to RR interval time series (Cohen et al.
1996, Karrakchou et al. 1996) and especially to non-stationary time series (Kar-
rakchou et al. 1996).
Cohen et al. (1996) studied the logistic equation (Poincaré equation)

e(t) = Azt -1 —a(t—1) , 2<A<4 (3.44)

and some of its solutions as an example of a chaotic system. Here the first order
Poincaré plot (first order difference plot) was introduced by presenting x(t 4 1)
vs. z(t), and given as a measure of the degree of chaos in a system. In Huikuri
et al. (1996) an ellipse was fitted to the plot, and the centroid of this ellipse
and the lengths of both axes were determined. In some earlier studies the first
order Poincaré plot called a “scattergram”, was shown to be capable of detecting
large, abrupt deviations in heart rate (Baevskij et al. 1984, Baselli & Cerutti 1985,
Stinton et al. 1972). The second-order difference, obtained by presenting (z(t + 2)
-z(t+1)) vs. (z(t+1) - z(t)), would show the degree of theoretical chaos (Cohen
et al. 1996). The first order and second order difference plots are shown in Figure
3.5.

A quantitative measure of the degree of variability in the second-order difference
plot, the measure of central tendency (CTM), takes the form

N—25

=1 0(d(t))
CTM = == (3.45)

ote)) = { (1) gth;{\gvxlii—i_ 2) —a(t+ 1))+ (@t +1) —2(t)* <r
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Fig. 3.5. First-order difference (bottom left) and second-order difference (bot-
tom right) plots derived from the RR intervals obtained from a healthy young
subject under resting conditions (top).

and N is total number of time series values and r the radius of the central area
(dependent on the data).

Cohen et al. (1996) suggest that both the normal and diseased heart show
chaotic RR interval series when recorded using Holter devices, but that data ac-
quired from patients with congestive heart failure (CHF) and analysed by the
above methods show more chaotic behaviour than for normal patients. They also
suggest that the approach could serve as a classification method for classifying
subjects into normal cases and CHF patients.

A statistical test for chaos in time series used in real-time monitoring is pre-
sented in Karrakchou et al. (1996), the objective being to test non-linearity and
fractality separately, since both are unavoidable conditions in chaotic time se-
ries. The fractality of RR interval time series was tested by studying long-term
correlations in time series. The mean-square fluctuation of a difference function
di(t)=z(t+1)—=z(),l=1,...,N, was calculated as follows

F2() = [h@)P ~ @) (3.46)

and if F(I) ~ 1% a # 0.5, there exist “infinite-range” correlations and the time
series is fractal. The authors also pointed out that this expression corresponds
to a calculation of the standard deviation of the difference between consecutive
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R peaks for different interval lengths. Non-linearities in RR intervals were tested
using Keenan’s test (Keenan 1985) with the hypothesis of linearity vs. second-
order Volterra expansion. If any multiplicative term was found in the expansion,
the time series was non-linear. A similar procedure for analysing correlations with
the mean fluctuation function was performed by Peng et al. (1993).

Several popular methods exist for studying chaos in cardiovascular time series,
but the indices proposed for measuring it should be applied cautiously and results
obtained should be interpreted with care. The basic condition is the need for large
amounts of data which make these methods not well-suitable for real-time analysis
(Karrakchou et al. 1996). The problem also lies in discriminating a chaotic system
from a random one, calculation of the correlation dimension, for example, can give
incorrect results in a random time series (Osborne & Provenzale 1989). A random
signal having a power spectrum like 1/f*, XA > 0, for example, can erroneously
be concluded as chaotic when estimating the correlation dimension (Theiler et al.
1992). This point should be taken into account because HRV, in particular with
long data sets, has a power spectrum inversely related to frequency. A recent
development has occured in developing statistical tests for chaos identification in
HRV (Kanters et al. 1994, Karrakchou et al. 1996, Khadra et al. 1997). Kanters
et al. (1994) showed the lack of low-dimensional chaos in RR interval time series
acquired from healthy subjects and demonstrated the remarkably non-linear nature
of RR interval time series. In Khadra et al. (1997), HRV signals obtained from
the transplant patients were first detected random, but changed to chaotic as
time passed after the operation. It was concluded by Kanters et al. (1994) and
Karrakchou et al. (1996), alongside the adoption of a certain critical point of view,
that chaotic modelling could be applied to the monitoring of RR interval time
series whether these were chaotic or not.



4. Experimental settings

4.1. RR interval data

RR inteval recordings shown in paper I were made using an ambulatory heart
rate recorder, which has recently been developed and stores timed occurences of
heart beats and sequences including numerous samples of ECG signals (Ruha et al.
1997). The timing accuracy of the device is reported to be 1 ms, and it can store
the RR interval data over 24 hours. Examples on the RR interval analyses were
produced using Matlab software (The Mathworks, Inc., Natick, MA, USA).

4.2. Dynamics of the ventricular repolarization duration

4.2.1. Measurement equipment and software

The ECG was acquired in paper II by Medilog EXCEL-2 ver. 7.5 Holter Man-
agement System (Oxford Medical, Ltd., UK) using a two-channel tape recorder
(model MR-45), which contains a C60 cassette as a recording medium. The data
were replayed from the recorder by the Holter software and stored on the hard
disk of a PC computer with 128 Hz sampling rate and 8 bits resolution. The raw
ECG data on the channel 2 (lead IT) was read from a file by a program designed
specifically for the beat-to-beat measurement of RR and QT intervals.

The program was designed to operate within the Windows environment on a
standard PC. The program code was written using Borlands Turbo C++ -compiler
(Borland 1991) (Borland International, Inc., USA). The aim was to develop a
modular program structure, which is easy to maintain and can be flexibly expanded
with new features. Therefore, the program was divided into separate modules.
Options for loading the digitized ECG data and displaying data with detection
of waveforms are included. The preprocessing and waveform detection procedures
perform the analysis based on the theory described in the particular paragraphs in
this thesis. The ECG signal can be optionally interpolated in order to increase the
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precision of the waveform measurement. The resulting time series (RR and QT
intervals) can be shown on a beat-to-beat basis as a function of the beat number.
In a scatterdiagram each QT interval value is drawn as a function of the previous
RR interval value, i.e. QT(t) vs. RR(t — 1), and a regression line is fitted to the
data by minimizing the least square error. The program also offers options for
exporting the resulting time series and the analyzed ECG as well as for modifying
several program parameters.

4.2.2. Testing of the automatic waveform measurement

4.2.2.1. Real ECG signals

Ambulatory ECG was acquired from six healthy subjects to test the automatic
waveform analysis procedure. A ten minute section of ECG was selected from
each recording and analyzed by using the different options of the program. ECGs
had upward R peaks and clear T wave shapes.

The effect of the interpolation of the ECG on the interval variability measure-
ment as well as the effect of different QT interval onset and T wave end position
definitions were tested. The “QT interval” onset definitions were true QRS onset
(Q), R wave maximum (R), ascending (R,) or descending (R4) maximal slopes
of R wave. The “T wave end” position definitions were the peak (maximum,
Tmax) and end of T wave (T,). Combinating these definitions produced a set of
“QT interval” time series: QTe, QTmax, RaTe, RaTmaxs RTe, RTmax, RaTe and
RdTmax-

4.2.2.2. Simulated ECG signals

Simulated ECGs were generated by obtaining a cardiac cycle from each above
mentioned ECG strips and repeating the cycle 600 times. Simulated noise free
ECGs were then corrupted with six types of noises at different noise levels, see
Table 4.1. Simulations 1-5 were additive noise and summed with the ECG. A sine
wave with a frequency varying at 0 - 0.5 Hz (simulation 1) was constructed as

x(t) =sin(2-7-0.25-¢t—7.645- 7 -sin(2 - 7 - £/96)) (4.1)

and a sine wave with a frequency varying at 3 - 5 Hz (simulation 2) was generated
as
o(t) =sin(2-7-5-t—12.944 -7 -sin(2 - 7 - £/20)) (4.2)
witht=1,...,N.
Amplitude modulation (AM) in simulation 6 was constructed as follows (Ziemer
& Tranter 1990)
z(t) = [1+a-ma(t)] y(t) (4.3)
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where z(t) is the modulated signal and y(t) is the ECG signal. m,,(t) is a uniformly
distributed noise normalized such as the minimum value of m,(t) is -1. The
parameter a is called as the modulation index (0 < a < 1).

The objective was to measure the sensitivity of the automatic measurement of
the repolarization duration using commonly-occurring noise types. This type of
analysis is especially necessary, because the variability of the repolarization dura-
tion is very low, thus, the various disturbances on ECG can produce inaccuracies
in this time period measurement. Typically, QT interval variability is SD = 4-5
ms as RR interval variability can be sD = 60-70 ms. The noise level was defined
with the signal-to-noise ratio (SNR) in decibels (dB) as

SNR = 20 log(Zdey | (4.4)

Onoise

where ocycle is the root-mean-square (rms) value of the ECG signal obtained from
the whole cardiac cycle and oyise is the rms value of the additive noise signal,
respectively. For instance, 10 % relative rms value of the noise signal gives 20 dB
SNR value. The effects of different noise types were measured at noise levels of 5
- 50 dB.

Table 4.1. Simulated noise types used in the noise sensitivity measurement.

Simulation Noise type Simulated effect
1 0 - 0.5 Hz sine wave Baseline wander due to breathing
2 3 - 5 Hz sine wave Motion artefacts
3 50 Hz sine wave Mains noise
4 Gaussian white noise =~ EMG, motion artefacts
5 Sum of the noise Mixed effect
realizations 1 - 4
6 Uniformly distributed  Amplitude modulation

amplitude modulation due to breathing
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4.3. Denoising of an ECG signal

In paper III, fifty independent simulations were used to evaluate the performance
of the applied denoising methods. Simulations were created by adding three types
of the noise on a noise free ECG: gaussian and uniformly distributed white noise,
and non-white noise generated by an autoregressive (AR) model of order 4. The
noise amplitudes were scaled so that the signal-to-noise ratio was 5 dB for all
signals. The performances of the methods were studied by obtaining errors within
an ECG including 2600 samples and more specifically obtaining errors within six
QRS-complexes extracted manually from the whole ECG. The latter approach
allowed the investigation of the performance of the denoising methods to handle
the high frequency parts of the ECG. Matlab software was utilized with Wavelet
Toolbox to perform wavelet analysis for the digitized ECG signal obtained from
an anesthesized monkey. A 512 Hz sampling frequency was used with a resolution
of 12 bits.

When considering the compactly supported orthogonal wavelet families (Dau-
bechies, Symlets, Coiflets) with discrete transform, the Coiflet wavelet basis was
found most suitable. The denoising performances were very near between these
families, however, Coiflets showing slightly the best performance. The Coiflet
wavelet (Coif5) of order N = 5 was used which had lowest denoising error among
Coiflet functions. The error performance was measured with Le-norm given by
Equation 3.43. The Coif5 function is a near symmetrical wavelet, which is com-
pactly supported with maximum number of vanishing moments for a given support
width (6N — 1), Figure 4.1a. The analysis done by Coif5 wavelet is orthogonal.
Wavelet packet analysis was made by Coiflet wavelet packet function W; , (%)
with m = 5, see Figure 4.1b. The wavelet packet decomposition was optimized by
minimizing the Shannon entropy (section 3.5.6).

4.4. Analysis of APD time series

4.4.1. Patients

In paper IV, 12 ordinary cardiology patients (six males and six females), under-
going routine electrophysiological testing for symptomatic cardiac arrhythmias,
were included in the study. However, the intended study was not the reason
these patients were tested. None of the patients had clinical or echocardiographic
evidence of structural heart disease. The clinical indication for the studies was
symptomatic supraventricular tachycardia in all patients. All cardiac medications
had been stopped at least four days before the studies.
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Fig. 4.1. (a) A Coiflet wavelet used for a discrete wavelet analysis. (b) A
Coiflet wavelet packet used for a discrete wavelet packet analysis.

4.4.2. Study protocol

The recordings of MAP signals in sinus rhythm and during constant rate pacing
were performed after the diagnostic electrophysiological study. Quadripolar elec-
trode catheter was introduced into the high right atrium and a bipolar Ag/AgCl
electrode catheter was introduced (USCI, Division of C.R. Bard, Billerica, MA,
USA) into the right ventricle. MAPs were obtained by gently pressing the tip of
the catheter against the endocardial surface of the right ventricular apex. The
signals were recorded on a CardioLab (Prucka Engineering, Inc., Houston, TX,
USA) using 1024 Hz sampling rate with a resolution of 0.1 mV of the amplitude
of the signal. The MAP signals were amplified and filtered at frequencies of 0.05 -
500 Hz. The amplitude (>10 mV) and stability of the signals were assessed before
recordings.

The MAP signals were recorded in sinus rhythm during quiet normal respiration
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for ten minutes. After baseline recordings in sinus rhythm, the high right atrium
was paced at the cycle length of 600 ms for ten minutes. Only those patients
with 1:1 atrioventricular (AV) conduction without significant fluctuation in the
atriohisian conduction time with the atrial pacing at the cycle length of 500 ms
were included.

4.4.3. Analysis of MAP signals

The CardioLab software was used to acquire the MAP data from patients. The
MAP Analysis program was written in Pascal 7.0 language (Borland International,
Scotts Valley, CA, USA) to be used with CardioLab equipment on a standard
PC under a DOS or a Windows environment. The program processes MAPs
and calculates the amplitude, RR interval, and the 15 %, 30 %, 50 % and 90
% repolarization times producing a series of results calculated from successive
waveforms, see Figure 1 in paper IV. There is a possibility to edit manually the
automatic analysis. Changing the baseline updates all the calculated results. It
is also possible to discard a waveform distorted by noise and exclude it from the
final results.

4.4.4. Analyses of variability of RR intervals and action
potential duration

Two-dimensional vector analyses of variability of RR interval and action potential
duration (APD) time series were performed by a method described previously
(Huikuri et al. 1996). Poincaré plots were generated where each time series value
is plotted as a function of the previous value for a predetermined length of time
series. Quantitative analysis of the plots involves fitting an ellipse to the plot
and estimating the long and short term time series variability from the lengths
of the axes of the ellipse. The Poincaré plots of RR intervals and APD at the
90 % (APDgg) and 50 % (APDsg) of repolarization were generated for the two
segments of five minute periods in sinus rhythm and one segment of five minute
period at the end of the pacing (i.e., five minutes after the onset of constant rate
pacing) at which point the APD had reached its steady-state level. The segments
with ectopic beats, artifacts, and distortion of the MAP signals were edited both
manually and automatically and deleted before analyses.

Paired t-test was used to compare the measures of variability of APD and RR
intervals in sinus rhythm during pacing. Pearson correlation coefficient was used
to assess the univariate correlations between the measures of variability. p < 0.05
was concidered significant.
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4.5. Wavelet analysis of HRV

RR inteval recordings analyzed in section 5.4 were made using Medilog EXCEL-2
ver. 7.5 Holter Management System (Oxford Medical, Ltd., UK). RR interval data
was further processed using HEARTS software (Heart Signal Oy, Oulu, Finland)
to exclude inappropriate intervals. Time series were then resampled using 2.4
Hz sampling frequency to obtain an equidistantly sampled data. Analyses were
performed using Matlab software with Wavelet Toolbox (The Mathworks, Inc.,
Natick, MA, USA) at the Center for Scientific Computing, CSC (Espoo, Finland).

The Coiflet wavelet and wavelet packet functions of order 5 were used to obtain
the corresponding spectra (Figure 4.1). The optimization of the wavelet packet
decomposition was performed by minimizing the Shannon entropy (section 3.5.6).

RR interval recordings after noradrenaline injections were analyzed from eight
healthy subjects. Recordings included a baseline period before drug administra-
tion, which was continuously increased using 50, 100 and 150 ng injections. A
second set of RR interval data was collected from ordinary cardiology patients
during several hours prior to ventricular fibrillation. The wavelet analysis was
done within one hour before the event for 11 patients.



5. Results

5.1. Dynamics of the ventricular repolarization duration

5.1.1. Interpolation of the ECG

A standard Holter recording frequency of 128 Hz is not sufficiently robust to cap-
ture the low level of QT interval variability found in most patients. Therefore, a
higher sampling rate is needed to obtain precise measurements. An important aim
of this study was to test the feasibility of interpolation as a means of increasing
the fidelity of an ECG initially digitized at the low Holter sampling rate. However,
the disadvantage of the interpolation is that the features of the ECG cannot be
better resolved than the original digitized ECG allows. Interpolation of the ECG
allows a better time resolution for time interval variability measurement.

In the present study the ECG recordings were interpolated to 256, 512, 768 and
1024 Hz to illustrate the changes in the resolution of QT interval variability. For
example, in a RT .« time series obtained from an original ECG signal sampled
at 128 Hz, the natural variability can not be seen (Figure 2, top, in paper II). In
contrast, the same recording interpolated to 1024 Hz shows the existing variability
more clearly (Figure 2, bottom, in paper II). This method also provides a means
to obtain a proper time series distribution for analysis.

5.1.2. RMSSD of QT interval time series

The RMSSD value is a simple and traditional measurement of the variation in a
cardiovascular variability signal. The absolute RMSSD values (ms) of a QT time
series with different T wave end definitions (Tmax and Te) as a function of sampling
frequency for one patient are presented in Figure 5.1. The variability decreases in
all QT time series as ECG is interpolated, reaching a maximal efficiency at about
1 kHz. At 1024 Hz, the RMSSD values are 25-30 % and 40-60 % lower compared
to 128 Hz for T, and Ty.x, respectively.
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Fig. 5.1. The absolute RMSSD values of QT interval time series using (a) Tmax
and (b) T. definition. Abbreviations for the QT interval onset definition:
true QRS onset, Q (4A); ascending maximal slope of R wave, R. (0); R wave
maximum, R (+); and descending maximal slope of R wave, Rq (x).

Furthermore, at 1024 Hz sampling frequency the variability observed in time
series with Tp,a, definition is about 40 % lower than the variability with T, def-
inition. Remarkable differences in variabilities do not typically exist due to the
definition of the start of the repolarization duration. Defining the start of repo-
larization duration at the maximum or at the descending maximal slope of the
R wave, gives slightly smaller variability than the other choices. Looking for the
onset of ) wave produces the largest variability in time series. The 40% difference
between T« and T, observed in the RMSSD interpolated at 1024 Hz, may be due
to the increase in noise at T, resulting in an increase in the signal variability at
that end-point. The start-point for the measurement of QT can be defined as Q,
Ra, R or R4. For the T\,,x end-point, differences among these starting points were
observed with Q displaying the greatest variability and Rq the least.

The rRMSSD values of RT,ax and RT, time series for the six patients measured
is shown in Figure 5.2. This example demonstrates the reproducibility of the
variability measurement when interpolating the ECG signal. Defining the onset
of the QT interval at the maximum of the R wave and the offset of the T wave at
the maximum of T wave, seems to give a reproducible variability measurement.
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Fig. 5.2. RMSSD values of (a) RTmax and (b) RT. interval time series obtained
from six patients.

5.1.3. Power spectrum estimates

In order to evaluate further the applicability of our algorithm, we also used power
spectrum estimates to quantify the QT interval variability. RR, RTax and RT,
interval time series from one patient was obtained by an ECG interpolated to
1024 Hz (Figure 5.3). The power spectrum estimates are presented in Figure
5.4. All power spectra show a clear peak at f = 0.32 Hz which is probably due to
breathing. In addition to the sum spectrum the spectra of the separate components
are estimated.

The power estimates of the main component observed at f = 0.32 Hz in the
RTmax and RT, spectra were plotted as a function of the sampling rate (Figure
8 in paper IT). As was demonstrated with RMSSD, the power estimates decrease
as the sampling rate increases. At sampling frequency of 1024 Hz, the estimated
power of the main peak for the power spectrum of the RT .y time series was 56 %
of that estimated for RT, time series in terms of ms2. In this case, the total powers
in the time series were 5.7 ms? and 9.4 ms? for RT .y and RT,, respectively.
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(bottom) interval time series obtained from patient 6. The estimates repre-
sent the sum spectrum (solid line) and the spectra of the separate components

(dashed lines).
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5.1.4. Stmulated ECG signals

A critical step in the development of any QT algorithm is to determine the best
start and end points for ventricular repolarization to obtain an accurate estimate of
QT interval. To achieve this goal we compared the variability in the QT time series
using different start and end points. Simulations of six commonly-encountered
types of noise (Table 4.1) were used to ascertain which of eight possible intervals
produced the least degree of variability for each noise type. These results are
presented in Tables 2 - 7 in paper II. The lower the SD value, the greater the
precision of the measurement. Overall, the intervals using RTax and RqTmax
provided the most reliable results in most situations.

The first type of noise was at 0-0.5 Hz, simulating baseline drift due to breathing
(Table 2, paper IT). At low SNRs using T, as the endpoint of the QT interval gives
the most precise results. At levels of 25 dB and higher, it is better to use Tpax.
For the simulation of motion artefacts (3-5 Hz), electrical line noise (50 Hz) and
Gaussian white noise (Tables 3 - 5, paper II), Ty, was consistently more precise.
Summing the noise simulations 1-4 and adding them to the ECG signal produced
similar results, i.e. Tiax is the most precise endpoint (Table 6, paper II). Using
Q as a start point showed greater variability and was therefore less precise than
using R in most cases.

Noise due to breathing also contains an amplitude component and can be sim-
ulated by amplitude modulation (Table 7, paper II). The mean SD values of all
analyzed time series are given as a function of the modulation index a, see section
4.2.2.2. At values a < 0.3, defining the end of the QT interval as T,, produced
the lowest variability. The results also indicate that choosing the onset of the QT
interval at the descending slope of R wave is the most insensitive to this kind of
the simulated noise. It is interesting to note that measuring RR interval in cases
of amplitude modulation produces lower variability than QT. In fact, measuring
RR interval for each type of noise (Tables 7 and 8, paper II) overall showed less
variability compared to measurements of QT interval.

The variability of RT,.x as a measurement of QT interval among six different
patients is shown in Table 9 in paper II. In each case the sum of each type
of simulated noise was added to the signal. Coefficients of variation (Cv) were
calculated to study the amount of variability with respect to the mean value of
the analyzed time series. According to the obtained Cv values, the variability of
all QT time series were less than 11 % of the mean of each time series at all noise
levels. For example, at SNR of 30 dB, the percentage amounts of variability were
between 0.24 - 0.47 % compared to the mean cv of 0.32 %.

The simulated noises were also added to the real ECG data in order to study
the effect on the real variability. As an example, SD values of RT,,.x time series of
patient number 6 with different simulated noises are shown in Table 5.1. The SNR
refer here to the same noise amplitude as used with simulated ECGs above. SD
value of the original time series was 2.35 ms2. The signal variability with all noise
types reached this level at SNR of at least 20-25 dB. With amplitude modulation
(simulation 6), SD values were 9.63, 6.55, 3.12, 2.63 and 2.45 ms? as a function of
decreasing modulation index.
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Table 5.1. SD wvalues of the RTpq. time series measured from patient n:o 6 with
different simulated noises.

SNR 0-0.5Hz 3-5Hz 50 Hz Gaussian Sum of the noise
sine wave sine wave sine wave white noise realizations 1-4

dB ms ms ms ms ms

5 2.59 80.01 4.03 83.12 72.77
10 2.46 38.45 3.24 29.45 17.68
15 2.39 9.27 2.64 4.19 3.80
20 2.37 3.41 2.48 3.04 2.88
25 2.37 2.75 2.40 2.58 2.55
30 2.37 2.54 2.42 2.42 2.41
40 2.36 2.39 2.36 2.38 2.38
50 2.35 2.36 2.36 2.36 2.37

5.1.5. Discusstion

The analysis of the dynamics of RR or QT time series can only be performed by
observing the beat-to-beat variability in a time series. There is no “absolute” un-
biased measurement of ventricular repolarization duration because even a manual
measurement done by an experienced cardiologist is limited by the precision of the
tool used. There also exists a natural variability between manual measurements
done by different persons. All automatic measurement systems and algorithms
produce some error in interval measurement as well. An automatic algorithm,
however, rapidly analyses an ECG and the results can be reproducible. The per-
formance and reproducibility can be compared between different measurement
algorithms and against manual measurement.

In previous studies, the ventricular duration variability has been reported to be
very low compared to RR interval variability. For instance, a study by Nollo et al.
(1992) showed SD values of 2-6 ms depending on the definition of the measured time
interval. Ambulatory ECGs are commonly acquired at a low sampling rate due to
lack of the data storage capacity of the equipment. As it was shown in this study,
an ECG sampled at 128 Hz can not be used to obtain the beat-to-beat variability
in QT time series. Variability decreased as the sampling frequency of the ECG
increased, which is produced by the improved time resolution in the waveform
analysis. Due to these factors, an interpolation procedure was included in the
analysis scheme to obtain improved precision. The interpolation can significantly
improve the resolution of the ventricular repolarization duration measurement,
and the procedure can cause a minor distortion only in the QRS complex, but not
in the T wave (Speranza et al. 1993).

The noise sensitivity of the implemented algorithm was tested with several types
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of simulated noise. In this context, the testing was important, because QT interval
variability is low, and therefore a significant part of the observed variability can
be due to noise. Until now, there have been only a few publications dealing with
noise sensitivity of QRS detection (Barbaro et al. (1991), Friesen et al. (1990),
Koeleman et al. (1984) and Ruha et al. (1997)). Furthermore, there are only a
few references, where the noise sensitivity of QT interval measurement is actually
considered (Nollo et al. (1990), Nollo et al. (1992), Porta et al. (1996) and Speranza
et al. (1993)). The algorithm used in this work has not previously been systemically
tested with simulated noise.

Our noise simulations present the most common disturbances observed in am-
bulatory electrocardiogram with precision reported as SD values. Six simulated
test signals were constructed by adding noise to an “ideal” ECG. In addition, the
effect of the amplitude modulation of respiration were modelled as the uniformly
distributed amplitude modulation of the ECG. It should be noted that there may
exist different definitions of signal-to-noise ratio and the noise distribution should
be known.

Our simulations showed that, in most of the cases, defining the end of QT
interval at the maximum of the T wave gave most precise measurement of the
ventricular repolarization duration. However, when the shape of the T wave was
altered by amplitude modulation (simulation 6) choosing the end of T wave pro-
duced the lowest variability in a time series. This observation has also been made
by Porta et al. (1996). Adding a 0-0.5 Hz sine wave, using Ty,ax definition pro-
duced larger variability in time series at lowest signal-to-noise ratios (SNR < 20
dB). These findings may suggest that the apex of the T wave is especially sensitive
to the noise due to breathing.

The definition of the onset of the ventricular repolarization duration is most
precisely made on the maximum or descending maximal slope of the R wave.
The choice between R and Rq definition in this waveform analysis algorithm may
depend on the quality of the measured signal. For example, if a particular R
wave has two peaks with variable amplitudes located very near to each other, the
algorithm may produce noise in a time series due to jitter when looking for the
maximum of the R wave. The Q wave was often missing in the patient ECGs,
which produced a lot of the noise in the QT, and QT ,ax time series.

In a previous study (Speranza et al. 1993) an ECG was sampled at 250 Hz
and interpolated to 1024 Hz sampling rate. The algorithm was tested only with
Gaussian noise added at different noise levels. The coefficient of variation (Cv) was
about 1 % for RTmax and less than 4 % for the RT, time series at SNR = 40 dB.
As a comparison, the mean Cv values in our work, were 0.16 % and 0.20 %, with
mean SD values of 0.42 ms and 0.70 ms, respectively (Table 5, paper II). These
results clearly show a better precision in the QT estimate. The SNR definition is
assumed to be the same in both studies.

The analysis of dynamics of RR or QT time series can only be quantified by
observing beat-to-beat variability in time series. Furthermore, the periodic vari-
ability in RR and QT time series can be observed by using power spectrum esti-
mation. The results show that the estimated powers in QT time series are very
low compared to powers estimated in RR interval spectrum, as demonstrated in
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earlier studies (Nollo et al. 1992, Speranza et al. 1993). However, power spectrum
estimation by AR modelling seems to be capable of showing clear components also
in time series with low variability.

In this study, differences were found in the noise sensitivity of the computer
analysis of ventricular repolarization when various definitions of QT interval were
used. In most cases, RT ax or RqTmax time series can be regarded as the most
precise QT interval estimate. The results suggest that low amplitude variability
may be hidden by noise due to inadequate time resolution of the signal, breathing,
muscle activity and motion artefacts. These factors may require a more critical
assessment of data obtained by either manual or automated analysis of QT interval
dynamics.
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5.2. Wavelet transform based noise removal of ECG

Denoising performances of the four threshold selection methods are reported in
Tables 5.2 and 5.3 with optimal decomposition depths. Generally, denoising error
first decreased as the decomposition depth increased. The results were optimized in
respect of the minimum value of the error averages giving an optimal downsampling
depth, which varied between denoising approaches. Methods are compared in
wavelet and wavelet packet analyses applying both soft and hard thresholding.
First the performance within the whole ECG strip including six cardiac cycles
was measured. The results show that wavelet denoising approaches had better
overall denoising performances than wavelet packet approaches in all cases except
with the HEURISTIC SURE rule when using hard thresholding for white noises. The
wavelet methods were preferable in removing especially the AR(4)-noise, when the
errors were generally 2-5 times greater with wavelet packets (Tables 5.2 and 5.3).
With other noise types the difference varied from a few to a few tens of percents
for wavelet methods.

Table 5.2. Denoising performance of wavelet denoising approach. Values are means
and standard deviations of ||f, — &i||l2. N(0,6%) is normally distributed and zero
mean noise with variance 6%, Ula,b] stands for a uniformly distributed noise and
AR(4) is the non-white noise generated by an autoregressive model of order 4. dopt
is the optimal decomposition depth minimizing the denoising error.

Noise Thresholding Thresholding selection rule
type nonlinearity
SURE HEURISTIC  FIXTHRES MINIMAX
SURE
dopt dopt dopt dopt
N(0,6%)  soft 449.3+16.2 4457127 573.0£11.6 538.1+16.2
5 5 2 4
hard 660.8£74.0 539.9+19.8 444.5+£12.0 531.9£24.8
4 4 4 4
Ula,b] soft 445.3+13.6  444.6£13.4 576.2£10.7 532.5+17.7
5 5 2 4
hard 646.4+64.6 543.5+19.4 446.3£17.0 526.0£25.6
4 4 4 4
AR(4)  soft 363.5£20.7 363.3+14.1 394.2+13.3 390.2£13.5
4 4 2 2
hard 526.44+93.0 382.6+15.7 365.4£15.8 481.9425.2
4 4 4 4
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5.2.1. Overall performances

In the wavelet based approach, the most efficient noise removing method with
soft thresholding was the HEURISTIC SURE, which gave the lowest error averages
(Table 5.2). The FIXTHRES rule showed the best performance with hard threshold-
ing. When comparing soft and hard thresholding, the result depended upon the
threshold selection rule and the added noise. The highest errors for all noise types
with soft thresholding were produced by the FIXTHRES and MINIMAX methods and
with hard thresholding by the SURE and HEURISTIC SURE methods.

In the wavelet packet based approach, the HEURISTIC SURE and FIXTHRES rules
produced the lowest denoising errors (Table 5.3). FIXTHRES and MINIMAX ap-
proaches gave the largest errors when soft thresholding was used. Furthermore,
with hard thresholding, the SURE and MINIMAX methods had the highest error
averages except the AR(4)-noise when the FIXTHRES and MINIMAX indicated the
poorest performance. When comparing the soft and hard thresholding methods,
in all cases but FIXTHRES with all noise types and MINIMAX with AR(4)-noise, the
soft thresholding was better in denoising the ECG.

Table 5.3. Denoising performance of wavelet packet denoising approach. Values
are means and standard deviations of || f, — Z;||2. See Table 5.2 for abbreviations.

Noise Thres-  Thresholding selection rule
type holding
non- SURE HEURISTIC FIXTHRES MINIMAX
linea- SURE
I'ity dopt dopt dopt dopt
N(0,6%)  soft 466.1+22.7  447.8420.9 866.3+27.3 594.1+20.4
5 5 7 6
hard 705.4466.1 526.8+21.0 505.7+£19.5 699.1+£27.6
3 ) 5 3
Ula,b] soft 462.2+19.7  448.7+20.2 859.1£25.7 591.1+£17.7
5 ) 7 6
hard 685.3+61.5 526.8420.1 507.7+£18.9 695.5+31.4
3 4 5 3
AR(4)  soft 745.6+38.7 600.9+222.1 2074.5+114.6 1371.2+101.4
6 6 7 7
hard 903.3+23.0 650.5+144.6 1416.1+117.5 1020.5+45.3
6 6 7 6
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5.2.2. Performances within QRS-complex

The ability of denoising methods to remove noise from the high frequency parts
of ECG was studied by determing the error values within QRS-complexes, see
Tables 5.4 and 5.5. The wavelet methods were more efficient to remove the AR(4)-
noise, when the errors were upto 4 times greater with wavelet packets. However,
wavelet packet approaches showed better performances than wavelet approaches
in removing normally or uniformly distributed noise within QRS-area especially as
hard thresholding was used. The SURE method produced the lowest proportional
error for the wavelet denoising using hard thresholding method for all noise types.
With soft thresholding, except the AR(4)-noise, the FIXTHRES had the lowest
proportional error within QRS-area. In the wavelet packet approach, the lowest
proportional error was indicated most often by SURE or HEURISTIC SURE rules.
Generally, denoising errors seem to concentrate on the QRS-area when the pure
wavelet approach is employed. The QRS-complex area included proportionally less
error when hard thresholding was used, except the FIXTHRES rule as the wavelet
decomposition was used.

Table 5.4. Denoising performance of wavelet denoising approach measured within
QRS-complexes. Values presented are means and standard deviations of ||f, —
Zi|l2. The decomposition depths are the same as in Table 5.2. See Table 5.2 for
abbreviations.

Noise Thresholding Thresholding selection rule
type nonlinearity
SURE HEURISTIC  FIXTHRES  MINIMAX
SURE
N(0,6%)  soft 286.2+21.4 300.5+18.5 258.5+10.6 445.8418.4
hard 274.6+25.4 259.9+12.2 319.7+16.7 287.94+17.9
Ula,b] soft 283.6+19.6 297.3+19.0 259.1+11.9 439.54+19.2
hard 269.5+20.0 262.1+12.3 321.7+£18.1 289.1£17.5
AR(4)  soft 208.6+13.9 230.0+£9.9  214.3+7.7  200.7+8.4
hard 221.9428.2 209.7+£10.0 224.4+10.1 226.24+22.6

When comparing the performance within QRS-complexes using absolute er-
ror measurement, HEURISTIC SURE or FIXTHRES gave most often the lowest error
values for the wavelet approach. In the wavelet packet approach, the best perfor-
mances were found by SURE and HEURISTIC SURE rules. Further, hard thresholding
method gave lower absolute errors with all variations of denoising methods, when
the wavelet packet approach was used. With pure wavelet denoising, results were
the same except with FIXTHRES, when soft thresholding gave lower error. SURE
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Table 5.5. Denoising performance of wavelet packet denoising approach measured
within QRS-complexes. Values presented are means and standard deviations of
[|fo — Zill2- The decomposition depths are the same as in Table 5.3. See Table 5.2
for abbreviations.

Noise Thresholding Thresholding selection rule
type nonlinearity
SURE HEURISTIC  FIXTHRES  MINIMAX
SURE
N(0,0%)  soft 271.2419.1 301.8+28.7 607.1£22.4 381.3+19.4
hard 270.9427.6 253.9+17.0 272.4+16.6 287.6%+23.4
Ula,b] soft 267.1+18.0 300.5+27.7 602.7+23.2 377.5+18.6
hard 264.9424.8 264.4+16.4 276.5+16.1 286.6+18.2
AR(4)  soft 324.0434.1 308.8439.9 866.2+61.6 562.54+32.2
hard 320.84+23.2 258.3+42.7 493.8+£36.9 391.4433.7

and MINIMAX showed also better denoising performance for the AR(4)-noise with
soft thresholding.

5.2.3. Checking the error signals

Because numerical error measures do not necessarily tell everything about noise
removal, it is useful to check the denoised signals visually. There probably exist
such strange signal patterns which can not be predicted from error values. It
is important to see the error signal between the noisy and the denoised signal,
because then one can observe how the error is localized within the cardiac cycle.
In Figure 5.5, the successful result of denoising ECG with normally distributed
noise by wavelet approach using the MINIMAX method is shown. The error between
the original and denoised ECG is mainly concentrated within the QRS-complexes.

Sometimes performing the signal denoising does not mean that only the added
noise has been removed. ECG can be very clean after denoising and the error
signal has a large amplitude, which means that the denoising method has not
only been robust in removing added noise but also has seriously altered the ECG
signal (Figure 4, paper III). This result was observed particularly with wavelet
packet approach when the FIXTHRES approach was applied. With the wavelet
based denoising hard thresholding showed spiky patterns in the error signal which
are seen also in the denoised ECG, which was typical with all noise types when
the SURE and MINIMAX rules were used (Figure 5, paper III). The wavelet packet
based approaches had difficulties in removing the noise as can be seen in Figure
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Fig. 5.5. (a) ECG with added normally distributed white noise. (b) The result
of the noise removal performed by wavelet based approach using MINIMAX
thresholding selection rule with soft thresholding nonlinearity. (c) The error
signal between the original and denoised ECG. (d) The error signal in an
enlarged scale.

5.6, where the error signal includes a large random component due to non-white
noise. This was common particularly when SURE and MINIMAX were applied, and
also often with other rules with hard thresholding.

5.2.4. Discussion

In this work new wavelet and wavelet packet based noise removal schemes were
studied using ECG with simulated noises. The performances of several variations of
denoising including thresholding rules and the type of non-linearity were compared.
A level dependent scaling of the thresholds was used for adjusting to the non-white
noise structure.

Wavelet and wavelet packets showed different results which is mainly due to
the different division strategies of the signal decomposition structures. Further-
more, these analyzing functions also differ in shape. The wavelet-based approach
produces the dyadic decomposition structure constant for all signals. Correspond-
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Fig. 5.6. (a) ECG with added noise generated by an autoregressive model
of order 4. (b) The result of the noise removal performed by wavelet packet
based approach using SURE thresholding selection rule with hard thresholding
nonlinearity. (c) The error signal between the original and denoised ECG.
(d) The error signal in an enlarged scale.

ingly, the wavelet packet approach is an adaptive method using an optimization of
the best tree decomposition structure independently for every signal, which can be
quite irregular and reach very fine features. Generally, this kind of adaptivity did
not offer an improved overall denoising performance compared to a more simple
wavelet approach. Only HEURISTIC SURE rule with soft thresholding produced a
superior result. Inside the high-frequency parts of the ECG the situation varied
more. The visual examination of the error signal was remarkable showing the lo-
calization of the error within the cardiac cycle as well as its nature. The obtained
error values can not directly indicate the improvement for the ECG waveform de-
tection. However, a large error within a certain area suggest an impaired accuracy
of the waveform measurement, which can only be quantified by the appropriate
tests.

The performance of the wavelet packet based noise removal may be improved by
adapting the signal decomposition structure to the changing signal characteristics
as presented by Xiong et al. (1997), where the signal was divided into segments
of variable lengths using dynamic programming setting. The approach involves
calculating optimized wavelet packet decompositions independently for each seg-
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ment. This procedure would probably be useful for ECGs, which are corrupted by
different types of noises with time varying magnitudes.

Bruce & Gao (1996) studied soft and hard non-linearities and derived a theo-
retical result that soft thresholding has higher bias, but lower variance than hard
thresholding. This was also supported by their experiments. This is probably due
to the basic properties of these two approaches: the hard thresholding function
has a discontinuity, and the soft thresholding function shrinks all big coefficients
towards zero. Their results were obtained for FIXTHRES and MINIMAX rules as
wavelet denoising approach was applied.

The observations found in this work support those findings partly, as with these
two threshold selection rules soft thresholding tend to give higher overall error
values. Nevertheless, hard thresholding gave constantly bigger errors within QRS-
area as FIXTHRES rule was used. The wavelet packet approach showed different
results indicating larger error rates in all cases for soft than hard thresholding
within QRS-complexes. With SURE and HEURISTIC SURE rules, the soft thresh-
olding non-linearity tends to give a more acceptable overall denoising result com-
pared to hard thresholding. However, it should be noted that with using soft
non-linearity, the error between the original and denoised ECG was concentrated
within the QRS-complexes. In that case, the absolute error values were generally
bigger than using hard non-linearity. Only FIXTHRES rule with hard non-linearity
showed with wavelet approach proportionally higher error within QRS-area than
soft non-linearity. It is apparent that soft and hard thresholding cause different
high-frequency balances. This is due to fact that the soft thresholding in general
produces proportionally a larger error within QRS-area by rounding off towards
zero the coefficients bigger than the threshold, which obviously touches the coef-
ficients including a remarkable amount of information about the original ECG.
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5.3. Analysis of APD variability

Examples of Poincaré plots of RR interval and APDygg time series in sinus rhythm
and during steady-state pacing are shown in Figure 2 in paper IV. The plots of
RR intervals and APDyg typically showed similar comet shaped plots characterized
by increased next interval differences of long R intervals and APDyg, respectively,
relative to short ones in sinus rhythm. Only minimal fluctuations of RR intervals
were observed during steady-state pacing due to subtle fluctuation in AV nodal
conduction, but the plots of APDgy showed clear long-term fluctuations.

Results of quantitative analyses of Poincaré plots of RR intervals, APDgy and
APD5g in sinus rhythm and the end of constant rate pacing are presented in Table
5.6. In sinus rhythm, the ratio between instantaneous and long-term variability
(SD1/SD2 ratio) of RR intervals and APD did not differ, but the standard devia-
tion of all APD intervals was only 8 % of the standard deviation of all RR intervals.
Both SD1 and SD2 of APDgy and APDs5q were significantly smaller than SD1 and
SD2 of RR intervals in sinus rhythm (p < 0.001 for both). A correlation was ob-
served between the SD1 of RR intervals and SD1 of APD in sinus rhythm (r = 0.64,
p < 0.05), but the SD2 of RR intervals and SD2 of APD did not correlate with
each other (r=0.32, NS). During constant rate atrial pacing, quantitative analysis
revealed only minimal variability of RR intervals. Similarly, no clear instantaneous
beat-to-beat variability was observed in APD, but the long-term variability (SD2)
of APDgg and APDj5o were larger than the SD2 of RR intervals (p < 0.001 for
both) (Table 5.6, Figure 2 in paper IV).

Table 5.6. Quantitative analysis of Poincaré plots of RR intervals and action
potential durations in sinus rhythm and during steady-state pacing. Values are
means and standard deviations. SDiot 1S standard deviation of all intervals; SD1 is
standard deviation of short term variability; SD2 is standard deviation of long-term
variability; SD1/sSD2 is ratio between short-term and long-term standard deviation.

Mean SDtot spl SD2 sD1/sD2
ms ms ms ms
Sinus rhythm
RR intervals 785+89 35+13 15+9 46+17  0.30£0.11
APDgg 270+ 17 28+08 12403 39+15 0.33+£0.16
APDsg 229+12 38+£24 11403 43+2.0 0.33+0.23
Steady-state pacing
RR intervals 6000 14+£07 13+£08 1.6+£08 0.79+£0.21
APDyq 2274+14 1.74£05 09+£03 22+0.7 0.45+0.16

APDsg 194+11 19+£09 08+03 24+1.0 0.39+0.16
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5.3.1. Discusstion

Duration of the ventricular repolarization depends on the complex interaction be-
tween the HR and fluctuation of autonomic tone. There is an immediate cycle
length dependency of the duration of repolarization and there is also a hystere-
sis effect of previous cycle lengths on the duration of subsequent repolarization
(Lau & Ward 1989). In addition to rate-dependent effects, autonomic tone has
direct influences on ventricular repolarization phase. All these influences have dif-
ferent temporal feedback loops, which control the duration of repolarization. A
two-dimensional vector analysis described here is able to quantify the temporal
dynamics of repolarization time by separating the instantaneous and long-term
variability from each other without a requirement of stationarity of the data or
periodicity of variability, which are essential requirement in spectral analysis meth-
ods. In sinus rhythm, the shape of the plots of repolarization time resembled the
plots of successive RR intervals showing that the dynamics of HR and APD have
similar temporal characteristics.

The sD of all APD intervals was only 8 % of the sD of all RR intervals, when
analyzed from the 5-minute segments in sinus rhythm. These results suggest that
due to a small overall variability, an accurate measurement with a high sampling
frequency and a high quality of the signal are essential for reliable quantitative
analysis of variability of the repolarization time. These requirements may be dif-
ficult to achieve by analyzing the QT interval dynamics from ambulatory ECG
recordings. It should be noted, however, that there are potential technical errors
in the measurement of MAPs caused by poor electrode contact and the effects of
fluctuations in blood pressure and contractility of the ventricle on the signal. The
sampling frequency and filtering may also influence the analysis of signal charac-
teristics. Careful automatic and manual editing of the questionable portions of
the signals performed here should, however, minimize the effects of artifacts on
results.

Instantaneous beat-to-beat variability of the APD was related to the short-term
fluctuations of RR intervals in sinus rhythm, indicating that respiratory vagal mod-
ulation of HR has significant indirect effects on the dynamics of ventricular repolar-
ization. In addition to subtle instantaneous beat-to-beat fluctuations, there were
clear long-term oscillations in the duration of ventricular repolarization. These
fluctuations were not strongly related to HR variability, suggesting that there are
intrinsic low frequency fluctuations in repolarization time. This was confirmed by
observation of clear long-term fluctuation of APD during constant rate pacing.
The observation of clear long-term repolarization variability reduced significantly
during constant rate pacing, suggesting that long-term HR fluctuation still has
a major influence on repolarization variability in sinus rhythm. This concept is
also supported by results of Merri et al. (1993), who demonstrated a significant
coherence between spectral measures of HR variability and QT interval variability
measured from Holter recordings.
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5.4. Spectral estimation using wavelet transforms

This section presents the spectral estimation of the RR interval time series using
wavelet and wavelet packet transforms. These results are not given in any of the
original papers enclosed in the thesis. An objective was to look spectral changes
linked to some cardiac events. The analyzed signals last approximately an hour,
when the purpose was to quantify the short term variation in RR intervals. As it
was suggested in a theoretical section above, wavelet transforms are presented by
the squared magnitudes of the transform coefficients.

In discrete wavelet transform a signal decomposition was made on six levels us-
ing the Coiflet function of order 5. The decomposition conforms to dyadic splitting
of the frequency spectrum to the wavelet scales. For example, in Figure 5.7, the
discrete wavelet transform of RR intervals obtained from a healthy young person
during a noradrenaline administration is shown. The transform clearly shows the
spectral evolution in HRV due to continuous and increasing drug injection. Lev-
els 2 and 3, which contain information from respiratory related HRV, indicate a
variability augmenting as the dose of the drug administration increases. Level 4,
which mostly includes variability linked to blood pressure regulation, shows less
variability in the course of the injection than the level 3. The amplitudes on the
levels 3 and 4 diminish notably toward the end of the recording. Overall, HRV
responses varied largely between the persons, and time series were nonstationary.
The discrete wavelet transform using other wavelet functions, such as Daubechies
function of order 12, gave very similar results. This suggests that choosing between
the wavelet functions of the same kind is not a critical task.

Further examples are given from the analysis of RR intervals obtained from
patients with ventricular fibrillation (Figure 5.8). The analysis was made for sig-
nals recorded one hour before this serious event in order to monitor the spectral
changes possibly predicting the event. The discrete wavelet transform is capable
to show the spectral changes also in these recordings. Some transient events in
a time series altered the wavelet spectrum practically on all levels (Figure 5.8a).
However, these changes disappear rapidly which support an idea of monitoring the
time evolution of the wavelet spectrum.

As a comparison, RR intervals were analyzed using the wavelet packet transform
with an optimized division of the frequency spectrum to wavelet packet scales. The
decomposition was made on six levels using the Coiflet wavelet packet function of
order 5. In Figures 5.9 and 5.10 the wavelet packet transforms of RR intervals
are shown. The presentations show integrated wavelet packet spectra matching
the low frequency (LF) and high frequency (HF) bands in RR interval time series.
The wavelet packet spectrum is slightly smoother than the above discrete wavelet
spectrum, but it can also show similar spectral changes. Also with this approach
replacing the wavelet packet function with a nearly similar one did not alter the
results.

Due to preliminary stage of the study it was not possible to point out figures
which might regularly predict ventricular fibrillation using either wavelet or wavelet
packet transform. However, in some cases RR interval variability recognizably
diminished at the end of the analysis period (Figure 5.8b, Figure 5.10b) and thus
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Fig. 5.7. RR intervals recorded during a noradrenaline administration (top).
The squared wavelet coefficients on levels 2-5 (lower panels). The start and
end of the injection is marked by arrows.

prior to the onset of ventricular fibrillation. Burst-like patterns were observed in
many cases, which result mainly on levels 2 and 3 in the wavelet transform (Figures
5.8a,b) and is also visible on the HF band in the wavelet packet transform (Figures
5.10a,b).

5.4.1. Discussion

The study of RR interval spectrum was presented by means of wavelet and wavelet
packet transforms. The analysis involved a time-dependent estimation of short-
term fluctuations of RR intervals. In analogy with Fourier analysis the aim was to
present the signal as a linear superposition of basis functions called wavelet and
wavelet packet functions. The basis functions differ from complex exponentials
connected to Fourier analysis so that they do not oscillate infinitely. Many signals
obviously correlate better with a finite waveform which make wavelets and wavelet
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packets more capable for the analysis of nonstationary signals. In this approach
the analyzing functions are as well often properly localized in time.

The wavelet approach made a dyadic division of the frequency spectrum of the
signal. The wavelet packet scheme utilized an optimized division. The wavelet
packet analysis is a flexible approach, because the division of the frequency spec-
trum can be regular, performed using optimized schemes or it can be made also
manually. In pure wavelet method the division need not be dyadic with a dilation
factor a = 2, but values a > 2 are also possible. A noninteger rational value, for
example a = %, can provide a sharper frequency localization for the wavelet base
(Daubechies 1992). However, choosing the value a = 2 provides the simplest con-
struction of wavelet bases, and multiresolution scheme can work only with rational
dilation factors (Daubechies 1992). Wavelet packet transform has been made to
adapt to the signal characteristics by calculating an optimized decomposition for
the whole RR interval time series (Wiklund et al. 1997). Further, it might be
useful to adapt the decomposition continuously by obtaining a new decomposition
as signal properties change significantly (Xiong et al. 1997).

Time-frequency analysis was discussed earlier in this thesis. Wavelet methods
have improved resolution properties compared to short time Fourier transform
(STFT). Wavelet methods differ from AR spectral estimation methods so that
the model order need not be estimated, which can sometimes be a difficult task.
Matching pursuit (MP) approach was suggested superior to wavelet method in
Akay & Mulder (1996), where MP method was applied to fetal heart rate vari-
ability (FHRV) analysis demonstrating its advantages for time-frequency analysis
of nonstationary signals. Overall, wavelet and wavelet packet approaches have
been introduced for interpretation of nonstationary signals (Akay 1995, Priestley
1996). According to theory these methods monitor and detect signal properties in
time-scale domain instead of time-frequency domain.

The discrete wavelet transform has been applied to HRV analysis during a
simulated stress test (Tsuji & Mori 1994) and during carotid surgery (Akay et al.
1993). The wavelet packet transform with an optimized decomposition was used to
analyze HRV during a set of consecutive autonomic function tests and compared
to discrete cosine transform and short-time Fourier transform by Wiklund et al.
(1997). A wavelet filtering scheme may be used to eliminate very slowly oscillating
components (detrending) from RR interval time series (Wiklund et al. 1997). Yang
& Liao (1997) used a wavelet approach to simulate RR interval time series and to
construct a decomposition scheme. In this study, the emphasis was on monitoring
HRYV along with noradrenaline injection and predicting ventricular fibrillation. The
results demonstrate that both discrete wavelet and wavelet packet transform can
successfully analyze the RR interval spectrum. The advantages of wavelet and
wavelet packet methods for the analysis of nonstationary signals were also shown.
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Fig. 5.8. Two RR interval time series recorded during one hour prior to the
onset of ventricular fibrillation (top panels). The squared wavelet coefficients
on levels 2-5 (lower panels).
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Fig. 5.10. Two RR interval time series recorded during one hour prior to
the onset of ventricular fibrillation (top panels). The wavelet packet spectra
matching the high frequency (HF) and low frequency (LF) bands (middle
panels), and the LF/HF-ratio (bottom panels).



6. Summary and conclusion

Quantifying the variability in cardiovascular signals provides information about
autonomic neural regulation of the heart and the circulatory system. Neural reg-
ulation due to the sympathetic and parasympathetic divisions of the autonomic
nervous system involve responses to respiration, blood pressure regulation and
thermoregulation. Many cardiovascular diseases, medication and physical and
mental stress alter the degree of neural regulation. It is the amount and balance
of the sympathetic and parasympathetic regulations which is often being quanti-
fied. Several factors thus have an indirect effect on these signals. Artifacts and
several types of noise are also contamined together with a useful information. All
these data can be observed in the dynamics of both heart rate and ventricular
repolarization duration.

The ambulatory measurement setting produces a further demand on the record-
ing and analysis of signals. However, there is an increasing need for extending the
ambulatory recording and increasing the duration of data acquisition. This trend
naturally leads to a greater mass of data and a need for the development of more
sophisticated and robust signal analysis schemes.

RR interval recording, which is used to describe heart rate variability (HRV),
involves a noninvasive and easy approach to gain information on cardiovascular
function. Accurate recording equipment has been developed for this technique.
The variability in RR intervals is often so large that most of the analysis methods
may be resolved fairly well in noticeably noisy conditions. Nevertheless, there are
important factors which should be taken into account when RR interval measure-
ment is used. The accuracy of HRV measurement is a consequence of the sampling
accuracy of an ECG and the properties of the method quantifying the signal vari-
ability. For example, spectral analysis methods may not fit conditions where some
time domain methods can be used. The reproducibility of the measurement is
affected by the lack of precisely controlled conditions and variation of the results
thus appear among repeated recordings. This kind of variation is characteristic for
an indirect acquisition of information from a biological system. Overall, the varia-
tion is an unavoidable condition and has to be kept in mind when interpreting the
results between repeated recordings made for a single person as well as compar-
ing the results obtained from different patient sets. RR interval recordings often
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include abnormal intervals, which may be due to heart rhythm disturbances or er-
rors in signal detection of a technical or physiological origin. Time series including
data points differing from a normal sinus rhythm sometimes carry important in-
formation, but may not be, as such, suitable for an analysis performed by all HRV
indices. Furthermore, non-periodic changes in RR intervals due to physiological
responses can also impair the stationarity of the signal. Several approaches for
correcting artifacts from time series and eliminating their effect on HRV indices
have been developed.

The above points also concern ventricular repolarization duration (VRD) mea-
surement, which has additional requirements. The detection of the onset of Q
wave and the offset of T wave has turned out to be a difficult task due to poor
signal-to-noise ratio. To solve this problem and, when the interest actually lies
on the measurement of the ventricular repolarization duration, RT,.x interval has
been chosen for a QT interval estimate. In addition, VRD time series has a much
lower variability than RR intervals, which places higher requirements on the sam-
pling frequency of the ECG. The variability of VRD time series has been more
frequently extracted from an ambulatory ECG with an interpolation procedure to
obtain an adequate time resolution for time interval measurement. There is thus a
need for data acquisition equipment, which can collect and store ambulatory ECG
with a higher sampling frequency than ordinary Holter devices do. It was shown
by the experiments in this study that VRD variability measurement involve po-
tential noise sources and errors, which should be kept in mind during the analysis
phase.

An improved accuracy of VRD variability estimation can be attained by the
measurement of action potential duration (APD) variability, which is an invasive
procedure. However, there may exist technical problems in monophasic action po-
tential (MAP) measurements mainly due to poor electrode contact and the effects
of fluctuations in blood pressure and contractility of the ventricle. APD inter-
vals showed a low variability compared to RR intervals, which further support the
requirements given for the VRD variability estimation. The study of the instan-
taneous APD variability related to the short-term RR interval variability in sinus
rhythm, indicated that the respiratory vagal modulation of heart rate modify indi-
rectly the ventricular repolarization duration. Intrinsic long term fluctuations were
observed in APD variability, but the constant rate pacing experiment showed that
the long-term heart rate fluctuation is still the most essential factor determining
the VRD dynamics in sinus rhythm.

The most simple parameters describing the variability in a time series are statis-
tical indices in time domain, which has traditionally been widely used. The indices
referred in this study as time domain methods contain scarcely any information on
periodic fluctuations, but rather measure the average or maximum amplitude of
the variability. On the other hand, when the information content of these indices
may be limited, they suffer less from nonstationarities in a time series.

The periodic fluctuations in cardiovascular variability signals have been ana-
lyzed using spectral estimation performed by Fourier and parametric (autoregres-
sive, AR) techniques. The main objective has been to decompose the periodic
fluctuations due to various sources into well separated components in the power
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spectrum. Furthermore, some emphasis has been placed on the estimate of vari-
ability (power) included in a single component and of the central frequency of the
component. The main components in the power spectrum have been linked to
the neural regulation of the heart due to autonomic nervous system through its
sympathetic and parasympathetic parts. In this thesis, the stress was on the esti-
mation of the power spectrum using an AR model of a time series. An approach
for estimating the powers and the spectra related to components using residue
calculation was also presented.

Observing the evolution of the spectral properties of the signal is of more cur-
rent interest. The temporal location of the spectral components has often been
shown to give more information than a single “average” spectrum. Time-frequency
methods include short-time Fourier transform and Wigner distribution, when ap-
proaches based on the parametric time series modelling are referred to time-variant
spectral analysis methods. The objective has also been to take account existing
nonstationarities in time series.

Wavelet transforms are fairly novel approaches in cardiovascular signal analysis,
where they may be suitable for processing of nonstationary signals. In this study
the basic theory of wavelet methods was briefly introduced including multiresolu-
tion, subband filtering and wavelet packet analysis schemes. The theory related to
signal denoising with several principles for the threshold selection was presented.
The methods were then applied to remove simulated noise from ECG. The ex-
periments showed that wavelet packet approaches with adaptation by means of
the optimization of the best tree decomposition structure were not generally more
efficient than the basic wavelet approach. Denoising errors seemed to concen-
trate on the high-frequency parts of the ECG when the pure wavelet approach
was employed. Furthermore, the soft thresholding nonlinearity tend to produce
proportionally a larger error than the hard thresholding nonlinearity within the
QRS-complex.

The motivation of estimating the spectrum of RR interval time series using
wavelet transforms was based on the idea of a more suitable basis function com-
pared to Fourier transforms and that any assumptions concerning signal station-
arity was not made. In addition, wavelet transforms have flexible resolution prop-
erties which means, for example, that they can detect high frequency components
with a good time resolution. The results show that wavelet transforms were capa-
ble to estimate the evolution of the spectrum of RR interval time series obtained
by an ambulatory recording in conjunction with a drug injection and prior to the
onset of ventricular fibrillation. In this application wavelet transforms are closely
related to time-frequency and time-variant spectral analysis methods.

There is an obvious need of standardization and definition of the measurement
and analysis schemes of the cardiovascular variability signals. The meaning of some
variability measures is more complicated than often regarded which sometimes
result in variable and erroneous conclusions. The Task Force report (Task Force
of ESC & NASPE 1996) can be seen as a step along this way, although it contains
chiefly a report of performed investigations without deeper arguments for methods
and their application.

The development of analysis procedures for cardiovascular variability signals
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will continue and novel methods will be applied in this field. It is probable that
approaches for the analysis of nonstationary signals will be more extensively used
in the future. As these signals can only be assumed stationary within some pe-
riod, there is also an interest to analyze data obtained under varying conditions
like autonomic function tests. Detecting nonlinearities is also of growing interest
as some approaches were reviewed in this thesis. Novel analysis schemes may of-
fer additional and valuable information when the characteristics of methods are
sufficiently described.
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