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SUMMARY

The problem considered is that of measuring the delay between the receipt
of a signal at two sites where noise, incoherent between the two sites and
with the signal, is also received at each site. In the case where the signal is
dispersive the delay will be a function of frequency. The optimum solution
involves a proper weighting of the phase shifts at each frequency, the
weighting being dependent only on the coherence. The asymptotic
distribution of the estimate is given. The method is worked out in detail
for various special cases and is illustrated by an oceanographic example.
The case where there are more than two sites is briefly discussed. A
discussion is also given of the virtues of the method, of some possible
variations to it and of some practical considerations.
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1. INTRODUCTION

WE shall discuss the problem of estimating the time delay between signals received
at two recording sites, together with noise, incoherent with the signal. This has
applications in many fields and we shall give an example using oceanographic data
in Section 4. Other examples will be found in Fedor (1967) and Krause et al. (1972).
The first of these deals with the determination of the velocity of drift of ionospheric
clouds and the second with the speed of propagation of an impulse along a nerve
fibre.

We use the term “non-dispersive” for any case where the time delay is expected
to be independent of frequency. In such a case, only one parameter (“‘the” time
delay) is to be estimated. More generally, time delay between two recording sites
will be frequency dependent due, usually, to varying speed of propagation. This is
the dispersive case and requires the estimation of more than one parameter.
Interpretation of the parameters in the dispersive case will depend on the problem
being studied and is outside the scope of this paper.

We consider the signals to be at least quasi-stationary. In particular, we do not
consider the estimation of dispersion occurring in the path between a point source
(in space and time) and a single recorder. In such cases, information on the dispersion
is usually obtained by using the fact that different frequencies arrive at the recorder
at different times (see, e.g., Dziewonski and Hales, 1972, for a review of this problem
in the field of seismology).

It should be noted that we have in mind situations where the two records would be
perfectly coherent were it not for uncorrelated noise at the two recorders. We discuss
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in Section 6 the complexities and possible misrepresentations that could arise with
two or more sources whose signals might interfere at the two recorders.

We assume that the computations are digital so that the records are sampled at
equal intervals of time. A standard method for estimating the lag, in the non-
dispersive case, is to compute the cross-correlation (serial correlation) between the
two records for a range of lags (necessarily integral multiples of the interval between
sample points). This is used to locate the maximum of the serial correlation function
which location validly estimates the delay, if the noise is incoherent between the two
recorders. This method, which we further discuss below, is not usually efficient.
We shall introduce an efficient procedure in Section 2 using the cross-spectrum
between the two records and making optimum use of the signal-to-noise information,
in each frequency band, as measured through the coherence function. The method
extends to the dispersive case and has other advantages, which we shall discuss in
Section 6. In Section 3 we discuss special cases of the method corresponding to
special models for the nature of the dispersion. We shall also give simple procedures
for determining the accuracy of the estimates and for testing hypotheses. These
procedures are asymptotically valid under fairly general conditions where by this
we mean that their validity increases as the length of record increases. We hope later
to report simulations checking the rate of approach to the asymptotic situation.
We shall discuss such questions further in Section 6. An asymptotic formula for the
variance of the estimate of the velocity of propagation of a signal was given by
Banerji (1960) and was used in Fedor (1967). The circumstances differ considerably
from those of the present work and in particular commence from a very special model
for the true serial correlation function.

Hoping that the techniques we introduce will be useful to research workers in
many different fields, we have sought to make the present account widely accessible.
We do not give proofs. A closely related but somewhat more special (and non-
dispersive) situation is considered in Hannan and Robinson (1973), while in Hannan
and Thomson (1973) proofs for the non-dispersive case are given, though there the
concern is mainly with the estimation of group delay (see Section 6 of the present
paper). The second author of the present paper will later publish a complete theoretical
account including the general case of recorders at more than two sites. To indicate
what is the nature of the situation with more than two sites we have, in Section 5 of
this paper, included a brief account for the non-dispersive case and three sites. In the
interests of wide accessibility, we do not assume any considerable (classical) statistical
expertise but we do assume a knowledge of standard methods for the Fourier analysis
of data.

2. METHOD

We assume that we have two records which have been sampled at equal time
intervals. We take these intervals to be the time unit for convenience. Because of
the nature of our estimation procedure we lose no generality in taking the series to
have zero mean. We indicate the two series by x(n), y(n), n = 1,2,..., N. We assume
the series to be stationary and to be composed of a signal and noise components,
the latter being incoherent with each other and with the signals. Let f,(w),f,(w), f,z(®)
be the true spectra and cross spectra, where w is angular frequency so that 0<w <.
We begin by estimating these spectra at M +1 mid-band frequencies A, = wu/M,
u=0,1,..., M. We shall not use the estimates for A, = 0,7. In Section 6 we shall
discuss other choices of these mid-band frequencies but continue to discuss these
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customary choices in this section, for simplicity. We call the estimates
FoADs £,(AD, fy(A).  An advantageous method for the computation of these
estimates is that based on the use of the discrete Fourier transform (DFT), namely

1 X . 1 X .
Walwy) = N 21: x(n)exp (inwy), w,(w;) = N ? y(n) exp (inwy,)
for wy, = 27k/N, k = 1,...,[1N], where [a] is the largest integer not greater than a.
If 3, is a sum over m~ N/(2M) of the w,, nearest to A, then we use

fx(/\u) = m—l % I wa:(wk) 12, fy:t(/\u) = m_l % wy(wlc) w:c(wlc)

with an analogous expression for fy(/\u). However, any of the standard methods for
estimating spectra (or for that matter the use of a “fader” or “taper” in the definition
of w,,w,) may be used. For a discussion of these methods we refer the reader to
Hannan (1970, Chapter V). A value of M chosen, in the usual way, as a compromise
between resolution and stability of the estimate will generally be satisfactory but the
point is discussed in more detail later. We shall in fact be using only the estimates of
phase, 8(},) and coherence, 6(2,), obtained from the estimates of spectra and cross-
spectra. We define these by

FoeA) =1 e exp i)}, 80 = eI (X)) £}

We use O(w), o(w) for the true quantities.

If the signal received at the y-recorder is obtained merely by delaying that received
at the x-recorder by 7 time units then 8(w) = 7w, i.e. the phase will be a linear function
of frequency passing through the origin. However, at this stage, we assume a more
general expression for 6(w) which is to be a known function of p parameters 7y, ..., 7,
We require 6(w) to be a reasonably regular function of these parameters, for example
twice differentiable with continuous second derivative. We return to the simple
time delay case later as a special case. We shall consider a band, B, of frequencies
contained in [0, w]. This might be the whole interval but it might also be some smaller
subinterval. (Indeed it need not be a continuous interval.) We return to this point
later. It is essential, however, that there be no aliasing of frequencies, for the signal,
with frequencies in the band B. In future we shall write X for the sum over u such
that A,€B. We introduce a weighting function W(},), defined by W(a,) = 6%(},)/
{1—-6%,)} and then the expression

M3 W (A,) cos{B(A,)— 0. o))

As we have earlier indicated B will always exclude A,=0,w, for which
8= 0(1,)=0. In (1) 6(},) is regarded as a known function of ,...,7,. Our
object is to give optimum estimates, 7, ..., 7, of these parameters, and to find their
(asymptotic) distribution. The #; are found as the values of 7; that maximize (1).

Under rather general conditions on the nature of the random mechanisms
generating x(n), y(n) (and certainly without any assumption of a Gaussian distribution
for these random variables) we may show that as N—->oo, M—oo, M/N->0, the
probability law of the #; behaves in such a way that we may treat the #; as jointly
normal with means #; and with covariance matrix estimated as N~1V~1 where the
p xp matrix V has vj;, in row j, column k and

v = M0/, B, (A) WL @)
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Here 9;.()\“) is found by differentiating 6(w) with respect to 7; and evaluating the
result for w = A, and ;= 7, i=1,...,p.

The weight function W(,) is optimal in the sense that any essentially different
choice would replace V-1 (or more properly the matrix V-1 that it estimates) by a
larger matrix, A let us say, where by larger we mean that x’Ax>x'V-1x for all
vectors x and strict inequality holds for some. The choice of W(A,) is a natural one

since we are basically weighting inversely with the variances of the 8(A,) (see Hannan,
1970, p. 256).

3. SpPECIAL CASES
We shall illustrate the formulae of Section 2 in some special cases.

(i) Simple time delay: 6(w) = Tw
This is the most important case of a non-dispersive wave form. The maximization
of (1) is now with respect to the single parameter 7. The variance of 7 is

NTM X WA ©)

(i) dw) =1+ 1w

This model is difficult to justify physically in any strict sense, but might be a
useful approximation for A.C. coupled recorders with slightly different low frequency
responses. It is fairly easily checked that the maximization of (1) with respect to
7, and T, is equivalent to first choosing 7, to maximize

| M1 S pexpi{BA,) — 7 A} WA @

and then using that maximizing value, 7,, to estimate 7, as #; = arctan (§/p) with
M Z lexpi(f(A,) ~ 2,0, W] = p+id.
The variance of 7, is increased compared to the case 7; = 0 and is estimated as
NAM A E (A, =7 WAYI™

where A = [ 5 A, WA/I[Z5 W] To test 7, = 0 we form

(N/M) Zplsin {0A) — 2, 0,3 WA
and treat it as normal with zero mean and variance

M -1 EB W(Au)

(iii) O(w) = 7+ Ty +T5w?

This form might be expected to provide a useful fit when 6(w) is not quite linear
in w. Again it is not easy to justify 7,50 on purely physical grounds. Again also we
need to maximize an expression in 7,, 75 only, even when 7, # 0, the relevant expression
being

| M1 S pexpi{B(N) — 75 Ay =75 22 W(A). ()
Then again
4, = arctan§/p
where p and § are the real and imaginary parts of the expression under the modulus
sign in (5), evaluated at the maximizing values 7,,75. The matrix V now has entries

Ujp = M13Yg A{j‘k—z W), jk=1,2,3.
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The diagonal entries of N~ V! give the variances of the 7; so that confidence intervals
may be individually allocated to them in the standard fashion using these variances.
If a joint (two-dimensional) confidence region for 7,, 74 (for example) is required this
may be constructed using the bottom right hand, 2 x 2, submatrix of N-1V-1 (see
Johnson and Leone, 1964, p. 422). Of course 7, = 0 may be tested using the first
element in the diagonal of N-1V—! as the variance of 7,. If the test shows that ; is
not significantly different from zero it may be better to set 7; = 0 and find 7,, 73 by
maximizing

MY glcos{B(A,) — 74 A, — 75 A2} W(X,)]

since this will reduce the variances of #,, 7.

4. AN EXAMPLE

The spectral method discussed above has been applied to data on mean sea level
(adjusted to fixed atmospheric pressure) for Sydney and Coff’s Harbour (east coast
of Australia). These data had previously been examined by cross-correlation, which
showed that the Coff’s Harbour record lagged the Sydney record by 1 time unit
(1 day). The phase and coherence are shown in Fig. 5 of Hamon (1962), which is
redrawn here as part of Fig. 1.

The same phase and coherence data have been re-examined by the present methods.
We used the model §(w) = 75w+ 73w?, since it seemed reasonable in this case to
assume 6(w)—>0 and w—>0. N and M were 548 and 30 respectively. B consisted of
the 25 estimates centred at j=/30, j = 1,2, ...,25, so that we excluded the five highest-
frequency estimates, because of possible aliasing effects and low coherence.

Fig. 1 shows the phase and coherence data used and the fitted phase curve. The
estimated values (41 standard deviation) were found to be 7, = 0-03+0-13 day,
73 =076 + 0-08 rad—1day?. (The estimates were found in this case by hand contouring
a field of values of (1), evaluated at suitable intervals in 7, and 74, but in general a
computer subroutine for finding the maximum of a function of several variables
would be used.) A separate calculation with the model 6(w) = 7,+7,w showed 7,
significantly different from zero, confirming that in this case a simple time delay is
not an adequate fit to the data.

The shape of the fitted phase curve is consistent with the dispersion expected
theoretically in this case for free waves (Buchwald and Adams, 1968), but more
detailed physical interpretation is complicated by the fact that the waves are almost
certainly not free (i.e. they are receiving energy from the wind stress) between Sydney
and Coff’s Harbour. Further discussion would be outside the scope of this paper.

5. MEASUREMENTS FROM THREE RECORDERS

All of the techniques of the earlier sections of this paper extend to the case where
the velocity (speed and direction) is to be measured from recorders at more than two
sites, each recorder receiving a (delayed) signal and noise. For simplicity here we
shall briefly consider only the case of three recorders and only the case corresponding
to a simple time delay where the signal is not dispersive.

Let §(1), £(2), £(3) be vectors of two components giving the positions of the three
recorders, not on the same line. If a wave is being propagated in the direction of the
vector, of unit length, ¢ and with speed ¢ then the delay at the jth recorder relative
to the origin of co-ordinates will be {¢p'E(j)/c}, where we use a prime to indicate
transposition of the vector ¢. Then the phase shift between the jth and kth recorders
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will be wetd'{§(j)—E&(k)} which we call 6;(w). We shall put 7 =c1¢ in which
case 0,(w) = 7{§(j) —§(k)} w. We need therefore to estimate from the three records
the value of ¢ and the direction of the motion. We do this using the coherences
6,1(A,) and phases 0,,(},), j,k =1,2,3, between the three pairs of recorders. We
introduce the matrix S(A,) having &;,(},) in row j, column k. (Of course &;;(A,)=1.)

[Hers
o8
Ob-

o4}

COHERENCE (%)

(RADIAN )

PHASE
~N
T
\

o e 1 1 1 1 1 -t
o Y/, el

FREQUENCY ( RADIAN/DAY)

FiG. 1. Coherence (upper) and phase (lower) from adjusted mean sea level records at Sydney
and Coff’s Harbour. In the phase diagram, the smooth curve is the fitted phase curve (see text),
and the dashed line the phase corresponding to a simple time delay of 1-0 day.

Let S(A,)~! have 67%(},) in row j, column k. We consider
— M7 5| $008 0500~ B} 830 ©)
<

It is easily seen that (6) reduces to (1) for two recorders. The expression (6) is a
function of the two numbers required to specify the speed and the direction of the
wave. We estimate these two numbers by choosing their values so as to maximize (6).
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It will be simplest if we choose the parameters to be estimated as the two components
71, 7o Of the vector 7 = ¢1&. Then as N increases, with M increasing also but so
that M/N—0, the estimates 7,, ¥, may be treated as being normally distributed with
mean 7, 7, and covariance matrix N1 V-1 where V has entries

Vg =M XX, [Ek{fr(j) — &ERHED — £4R)}67(A,) ij()\u)] M

where £,(j) is the rth coordinate of §(j)), r = 1,2. Thus &,(j)— &,(k) is the distance
between the jth and kth sites in the direction of the first co-ordinate axis. The formula
(7) is the direct analogue of (3).

6. DISCUSSION
6.1. Merits of the Method

It is interesting to compare the variance of # for the simple time delay case discussed
above with the variance of the corresponding quantity estimated by the more usual
cross-correlation method. In the later case, the expression for the variance is more
complicated than (3), being

NAMA S 021 - 6% 0) oA o] / [M—lAgB{Azlfwau)l}] ®

The value of (8) can never be less than that of (3). To illustrate this, consider the case
where f,(w) =f(w) = aw™?, 0<a<w<b<7 and ¢*(w) is constant over the band
[a,b]. If we define the efficiency, E, of the cross-correlation method as the ratio of
(3) to (8) but taking the limit of that expression as N— o0, M — o0, M/N -0 we obtain

E = 3ab/(a®+ b2+ ab). ©

For example for a = 7/10, b = 9#/10 this is 0-30. This, not unrealistic, example
shows how considerable the loss in efficiency may be. The efficiency will be even
less for these f,, f,, if o®(w) increases with w. The cross correlation may be regarded,
approximately, as being equivalent to the maximization of an expression of the form
of (1) but with the (optimal) weight factor W(},) replaced by

Of course if (b—a) is small the expression (9) will be near to unity as it evidently
must be since the band, B, is now very narrow and any fairly smooth weight function
will give almost the same efficiency as the optimal one.

The variance formula (3) is much simpler than (8). If the accuracy of the cross-
correlation method is needed, (8) must be evaluated and this requires the same
computations as the method of Section 2. The computations are not very great, by
modern standards, in any case. The method also has the virtue of flexibility since it
is easy to omit frequency ranges which are, for example, contaminated by other
sources of coherence. This is particularly easy if the DFT is used. It may also be
observed that though the method uses the phase angles 8(},) it is independent of the
arbitrariness of their determination up to a multiple of 2.

Other advantages of the method are its generality (i.e. the possibility of extending
it to the dispersive case) and the generality of the asymptotic results (these depend
only on stationarity and properties of the noise and signal processes of a not very
restrictive nature and not, for example, on their Gaussianity).
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6.2. Some Possible Variations

It is not necessary to use A, = 7u/M, u=1,..., M—1. In fact a better choice, if
= (0,m), will be A, = Qu—1)=7/2M), u =1, ..., M with w;, = 0, = omitted from the
calculations. In fact, it is not necessary to use bands of equal widths. If unequal
bands are used and the band centred at A, is of “width” 2m,, 7/N, then in (1) and (3)
we should eliminate the factor A/ ~! and insert an additional factor, 2m, /N, in each
term. Though the evidence is not strong it seems possible that the weighting
6%/(1—6?) tends to overweight bands in which &2 is low unless m, is fairly large.
Thus it may be wise to aggregate such bands into a smaller number of wider bands.
It is well known (Akaike and Yamanouchi, 1962) that if the group delay, d6(w)/dw,
is large the estimate, &, of coherence will be biased downwards. To avoid this effect
one might iterate the calculations described in Section 2 by using the estimate of
6(w) to rephase one series relative to the other before estimating coherence. Let us
use f(w) for the estimate of f(w) obtained from the initial estimates of Tiseees Ty

One would now recompute the estimate of f,(A,) as fyx(/\u) let us say, where

FuaN) = m™ () wolw) exp{ —ibi(w;)}.

Then o(,) is re-estimated using fyw()\u) in place of fw()\u) The resulting estimate is
used to form the new weight function, W(),), and the estimation procedure for the
7; is then repeated, the only change being the insertion of W in place of W. In the
simple delay case an alternative would be to delay the y(n) series by [#] and then
repeat all calculations. Since a large variation in 6(w) is required to bias badly the
estimate of coherence, the replacement of # by [#] will not matter.

6.3. Some Practical Considerations
The expression (1) estimates

l f cos {y(w) — B(w)} o¥(w)/{1 — 0¥(w)} dw, (10)
7B

where now we find it convenient to indicate the true phase shift by a zero subscript
in order to distinguish it from a trial function, 8(w). The expression (10) may have
multiple maxima though the greatest of these will be at 8(w)= 0y (w) (see Krause et al.,
1972, p. 261). There is therefore the possibility that (1) will have its greatest maximum
not near to 7, (in the simple delay case) but rather, due to chance fluctuations, near
to some other, smaller, maximum of (10). The formula for the variance of # takes no
account of this possibility. Of course, as N increases the probability that such a gross
error will occur becomes negligible, so that the accuracy of the determination of 7,
is correctly described by our formulae. It is also true that in many cases prior
information will be available that will severely restrict the possible range of values
of 7o. In this case, one will commence to search for the maximum of (1) in such a
range and this will greatly reduce the chance of the kind of gross error we have here
discussed.

A second practical problem closely related to the last one is that referred to in the
introduction, namely the possibility that the signal may come from many sources
(or even a diffuse source) so that the phase shift, f(w), is a function not only of travel
times between recorders but also of other spectral parameters. Thus, even if there
were only two non-dispersive sources with spectra fi(w), fo(w) and there was no
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noise, the cross-spectrum between the two records would be

Sya(@) = fi(w) exp (ir; w) +f5(w) exp (iry @,

where 7, and 7, are the delays for the two signals, so that the coherence is not unity
(unless 7; = 7,) and f(w) is a complicated function. It would be easy to construct
cases in which such a situation could be mistaken for a dispersive signal from a
single source. For a discussion of this problem see Gossard (1971). Munk et al.
(1963, Section 7) discuss the estimation problem for the case of a signal with a
discrete spectrum. The methods of the present work could be extended to deal with
models such as we have discussed in this paragraph but the problem is more compli-
cated than the one we have considered and in particular the computations would
become more onerous.

Beyond a certain point elaboration of the form of 8(w) will probably cease to be
profitable since increasing the value of p may merely result in an uninformative
description of the variation in #(w). One might then prefer to examine the group
delay, df(w)/dw, estimating it over narrow bands, since this relates directly to the
group velocity of the motion. We shall not discuss this further here but refer the
reader to Hannan and Thomson (1973) where the estimation of group delay is
considered.
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