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The  Shannon  Sampling  Theorem-Its  Various 
Extensions and Applications: A 

Tutorial  Review 
ABDUL J. JERRI 

Abrrmct-It has been almost thirty yeus since Shannon intmduced 
the sampling theorem to communicltions  theory. In this review plper 
we will attempt to present the v h s  contriiutions made  for the 
sampling theorems with the necessrry mathematid details to make it 
self-contained. 

We  wiU begin by a clear statement of Shannon’s  sampling  theorem 
fdlowed by its applied mterpretation for  time-invariant systems. Then 
we  will review its origiu as  Whittaker’s  interpolation series. The exten- 
sions will include sampling for functions of more than one variable, 
random  processes, nonuniform sampling, nonbmd-limited functions, 
implicit sampling, generilized functions (disQiutions), sampling  with 
the function aud its derivatives  as sllggested by Shannon in his origiual 
paper, md sampling for  general integral trmsforms. Also the condi- 
tionsonthefunctionstobesampledwillbesummlrized Theerror 
&ais of the va&u sampling  expansions, incldhg specifii error 
b o d s  for  the tnmation, dhing, jitter md parts of vaious other 
errorswillbediscussed~summnized Thispaperwillbeconcluded 
by search@ the different  recent  applications of the  sampling theorems 
in other fiikls, begides communications theory.  These  include  optics, 
crystdbgmphy, time-varying systems, boundrry value problems, spline 
apptoximation, special functions, md the Fourier and other discrete 
tT8QSfOmlS. 

I. INTRODUCTION 
HE SAMPLING theorem  that we shall discuss in detail 
was introduced  by  Shannon [ 11 to information  theory. 
However, the interest of the  communications engineer 

in the sampling theorem  may be traced back to Nyquist [2],  
As  we shall see in  Section I1 this  theorem was originated  by 
both E. T. and J.  M. Whittaker  [3]-[SI and Ferrar [6],even 
though  some  attribute  it to Cauchy [7, p. 411.  In  the Russian 
literature  this  theorem was introduced to communications 
theory  by Kotel’nikov [8],  and took  its name  from him as 
opposed to Shannon,  the  Whittaker,  or  popular sampling 
theorems  in  the English literature. In what follows we will use 
either one of the above references  or, in  brief, we will use WKS 
sampling theorem  after  both Whittakers, Kotel’nikov, and 
Shannon. We will do this with every sampling theorem  that 
involves a  band-limited signal, i.e., represented  by  a  finite limit 
(truncated) inverse Fourier  transform. WKSK will stand  for 
Kramers’s [ 9 I and Weiss’ [ 101 generalization of the sampling 
theorem  which involves more general integral  transforms  than 
the usual Fourier  transform.  Attention  should  be given to  the 
minor  variations  in the definition and/or  the  alternate use  of 
the  Fourier  transform  and  its inverse. 
As we shall illustrate  in the following sections, the principal 

impact of the  Shannon sampling theorem on information 
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theory is that  it allows the  replacement of a  continuous band- 
limited signal by a discrete  sequence of its samples without  the 
loss of any  information. Also it specifies the lowest rate  (the 
Nyquist rate) of such sample values that is necessary to repro- 
duce  the original continuous signal. 

We may stress  here that  the  Shannon sampling theorem  and 
most of its  extensions  are  stated primarily for band-limited 
functions instead of random processes which  are  more relevant 
to the  information  theorist. However,  and as we shall see in 
Section I-D-2, most of these sampling expansions can be 
extended easily to random processes. 

It is our intention to  include all possible relevant contribu- 
tions  in  communjcations,  mathematics,  and  other fields, a task 
which we hope to give the justice  it deserves. To this  end we 
have attempted to include an exhaustive bibliography to help 
the specialist and the  interested  reader of various disciplines 
(see [205]-[248]). We will attempt, whenever possible, to 
unite  the  different  notations  used,  but  attention should be 
given to such differences, especially when we quote certain 
detailed results such as estimates of various errors. 

A .  The  Shannon  Sampling  Theorem 
Shannon’s original statement [ 11  of the WKS sampling 

theorem is the following. 
Theorem I-A-1: “If a  function f ( t )  contains  no  frequencies 

higher than W cps it is completely  determined  by giving its 
ordinates  at  a series of points spaced (1/2W) s apart.” Shan- 
non’s proof starts  by  letting 

2nW 
f ( t ) = I / w F ( w ) e - i w ’ d w = -  27r -w F ( w ) e - j w r d w  

2n -2nW 

(1) 

since F ( o ) ,  the  spectrum of f ( t ) ,  is assumed to be zero outside 
the band  (-2nW, 27rW). The  Fourier series expansion of F(w) 
on  the  fundamental period -2nW < w < 27rW is 

We note  that  the  Fourier coefficient c, is proportional to 
f(n/2W),  the sample of the signal f ( t ) .  Also, {c,} determines 
F(w), hence,  by  the  uniqueness  property of the  Fourier  trans- 
form, f ( t )  is determined.  Shannon  then  constructed f ( t )  as 
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the sampling series 

This result is easily established when we use the  Fourier  ex- 
ponential series ( 2 )  for F ( w )  in ( l ) ,  exchange the  integration 
and summation, and use (3). We will see in  Section 11-C that 
the  outline of this proof and  the  method of constructing f(t) 
as in  (4) is parallel to  the work of J. M. Whittaker [4]. In fact, 
Shannon  introduced  the physics of time  and  frequency to  the 
second part of Theorem 11-C-1, where (4) is Whittaker’s 
cardinal series. This celebrated  theorem,  with  some  variations 
from  the  abovementioned Shannon statement, is discussed 
briefly  in  a  number of texts [ 11 I -[ 191  in the field of com- 
munications  with  some  detailed  illustrations. In the  Japanese 
literature,  Someya [ 191  discussed the sampling theorem  at 
about  the same time Shannon did [ 1 1. The  variations  in the 
proofs  center  around  different  methods of manipulation  in 
Fourier analysis, contour integration,  and matrices. 

Due to the  symmetry of the  Fourier  transform pairs, the 
sampling theorem is also valid for time-limited functions, i.e., 
for F ( w )  the  Fourier  transform of a  function f ( t )  which is 
zero for It I > T : 

B. System  Interpretation-Time-Invariant  Systems 
Reza [ 11, p. 3051 gave the following physical interpreta- 

tion to Shannon’s (WKS) sampling theorem.  Suppose  that 
f(t) represents  a  continuous band-limited voltage signal. Then 
f ( t )  can be sampled at  times {n /2W} ,   n  = 0, T1, T 2 ,  - . 
Here k( t )  = (sin 2nWt)/(nt)  is known to be the  impulse 
response of an  ideal low-pass filter  with system function K (a) 
and  frequency  cutoff  at 2nW (Fig. 1). So f ( t )  of (4) will be 
the  output of such  a fiter with  input  taken to be the pulse 
train defined by  the samples { f ( n / 2 W ) }  as shown  in Fig. 1. 

As we will see in  Section IV-I, Papoulis [ 131, [ 141 later  ex- 
tended  the WKS sampling theorem  in such a way that  he ob- 
tained  a physical interpretation  with  more relaxed conditions 
on the  fiter (Fig. 2 )  and with  a recognizable pulse as input 
rather  than  the  unattainable impulse. The  relaxation of the 
Titer’s condition will result in an error that can be minimized 
by sampling at a rate higher than  the Nyquist rate of (4) (see 
Section IV-I). 

11. THE ORIGIN OF SHANNON’S  SAMPLING THEOREM- 
INTERPOLATORY FUNCTIONS 

In this section we  review the  theory of interpolatory  func- 
tions, since this is where the Shannon [ 1 ] sampling theorem 
originated. As such we intend to show  that  it is also here  that 
the Weiss [ 101 and  Kramer [9] generalization of the above 
sampling theorem to other integral  transforms besides the 
Fourier  one emerged as a  natural  extension. 

A .  The Cardinal Series 
E. T. Whittaker [3] set out  to find an analytic  expression 

for  a  function  when  the values of the  function are known  for 
equidistant values a, a + w ,  . . * , a + nw, of its  argument and 
such  that  this expression is free of periodic  components  with  a 
period less than 2w. This function was called the Cardinal 

I I \  
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Fig. 1. Physical  interpretation of  Shannon’s  sampling  expansion (4). 
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Fig. 2. A more practical system  function for a filter of  a sampling 
expansion. 

Function. He showed that this  analytic expression is not  only 
an  interpolatory expression but a  representative  one as well. 
At this point, we may say that  the sampling theorem of Shan- 
non had its origin. The first thing we notice is that Whittaker’s 
problem is concerned  with  equally spaced values of the argu- 
ment so a  periodic  function is expected.  Whittaker considered 
the  tabulated values of the  function f(t), i.e., f(a), f ( a  + w ) ,  
* * , f ( a  + nw),  and  derived the final  form of the cardinal  func- 
tion as 

We note  that this  cardinal series is the  one  Shannon used for 
his sampling theorem  and is what is sometimes called the 
Whittaker sampling theorem.  There  are two references  here, 
to E. T. Whittaker [3] and  J. M. Whittaker [4] ,  [SI. This 
may be due to the  fact that  the final statement of the  above 
sampling theorem in terms of band-limited signals is very 
close to the  more refined statements of J. M. Whittaker 15, p. 
681 concerning the relation  between the cardinal series ( 6 )  and 
the  truncated  Fourier  integral  (1).  The  most  complete  recent 
treatment of Whittaker’s cardinal  function as a  mathematical 
tool was  given by McNamee, Stenger, and Whitney [ 2 0 ] .  
They  linked  the  cardinal  function to the central  difference 
through  their similarities, and  showed again how the cardinal 
function provides a link between  the  Fourier series and 
Fourier  integral.  Finally, they showed that  the cardinal  func- 
tion can be  used for solving integral  equations.  Very  recently 
Stegner [ 211  used Whittaker’s cardinal  function to  derive 
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various types of  very accurate  approximation  procedures, 
along with  error  bounds,  for  interpolating,  integrating,  and 
evaluating the  Fourier and the Hilbert  transforms of functions. 

B. Suggestions for Other Series 
At this  point  it is not surprising that we raise the  question: 

“Is it possible to consider some  expression resembling the 
cardinal  form that deals with  the samples  of a  function  at  non- 
equidistant values  of its  argument, say { t , }?” To follow the 
same procedure we know  that sin At is the simplest periodic 
function  with  period (2n/A), so for  our case  we  avoid it  and 
try a  more general kernel K (A, t )  with  a sampling function 

S,(?) = S O ,  r,) (7) 

where S(t, ,  t m ) = 6  ,p. The  explicit  expression  for  such  a 
S,(t) is given by Kramer [9] for  the generalized  sampling 
theorem  for  any  choice of K ( X ,  t , )  as an  orthogonal  set  on 
[a ,  b 1 .  So we can regard Gamer’s generalization as a  natural 
extension of  Whittaker’s  work  and the popular sampling 
theorem. 

C. The  Cardinal  Series and  the Fourier Zntegral 
In  this  section we  will  discuss J. M. Whittaker’s [4] impor- 

tant development  toward what we now know  as  the  Shannon 
sampling theorem. In particular, his explicit  theorem involves 
the  cardinal series and  Fourier and  Fourier-Stieltjes integrals. 
Hence,  he came the closest to the present  statement of the 
sampling theorem as it is given in  terms of a band-limited 
signal (i.e., a  truncated inverse Fourier  transform). J. M. Whit- 
taker’s [ 4, Theorem 21 theorem  is  the following. 

Theorem ZI-C-I: “If the series 

converges, the cardinal series 

c ( x )  = - sin nx a0 OD I - +  ( - 1 y  [.-+-I} (9) 
n x , = I  x - n   x + n  

is absolutely  convergent,  and  its sum is of the  form 

1 [cos n x t   d F ( t )  + sin nxt dG(?) ]  (10) 

where F ,  G are continuous  functions. Given any  function f(x) 
of the  form of (10)  the series 

is (C, 1) summable to f (x) .”  The (C, 1) here  stands  for 
“Cesiro  summability”  where,  according to  a  theorem  due to 
Hardy [ 221,  this means that  the series (1 1) converges if f ( n )  is 
bounded (see Section V-I). 

Previously Ferrar  [61 gave the following theorem, which  we 
consider to be even  closer to Shannon’s original statement of 
the sampling theorem. 

Theorem ZZ-C-2:  “If Z;=-- la,(P is convergent, p > 1,  and 
C(x) is defined  by 

then 

sin n ( x  - b )  (- 1)“C(b + n) 
C(X) = ‘ x - b - n  n ,=-OD 

(13) 

where {a,}€ lp  implies that  the series in (12) and  (13) are con- 
vergent.”  Here {a,} € I p  means that  the series E;=-- la, I p  is 
convergent. We also note  that,  by Hardy’s theorem,  for C(x) 
as (C, 1)  summable to be  convergent  we  need an/(x - n )  = 
O( l /n),  i.e., if C(b + n )  is bounded.  Ferrar called this  the con- 
sistency of the cardinal series. This corresponds to the repre- 
sentation of the sampling theorem  as  compared to  the  inter- 
polation  only,  in  the case  of interpolatory  theory. Again, 
J. M. Whittaker asserted that, given a  sequence ao, a l ,  * a , a,, 
. - of real numbers,  then the series (cardinal) of type  (1 l ) ,  
convergent or (C, 1) summable,  affords  a means  of  defining 
the trigonometric integrals associated with  the  Fourier and 
Fourier-Stieltjes series, respectively. For  example 

a ( x )  = f ( x )  cos x? d? J: (14) 

where f ( x )  is represented by the  Fourier series and a(x) by  the 
cardinal series. Here, we  are  led to the  truncated  Fourier 
cosine  integral in (14). At this  point we note  that  the above 
statement is another,  more precise statement of  what E. T. 
Whittaker had started,  with almost everything  centered  around 
the cardinal series. 

Now  we  may raise a  question of a  different  nature which is 
still aimed at tying the Kramer  generalization  of the sampling 
theorem to a  common origin with the  Shannon sampling 
theorem  and,  hence, is a  natural  extension of the latter. This 
question is, “What  kind  of integral  representation would a 
series other  than  the cardinal series offer?” As an  example, it 
is sufficient to consider the Bessel function Jm (x?), of the first 
kind of order m ,  instead of sin x t .  J. M. Whittaker [5, p. 711 
came close to touching  the  question of the generalized  sam- 
pling expansion when he considered the general partial frac- 
tion series [ S ,  p.  641 : 

(15) 

where the cl, CZ, * - - , is a  strictly increasing sequence of posi- 
tive numbers  such that E;=l c i z  converges  and 

In  addition,  he  noted  that  Theorem 11-C-1 does  not  apply to 
(1 5) in general, but to the special case H ( z )  = sin nz and c, = 
nn, z = cx, as the cardinal series is in terms of {sin n n x } ,  an 
orthogonal  set of functions relative to its zeros in [0, 1 1 .  At 
this  point  he  hinted  that a  theorem similar to  Theorem 11-6-1 
holds if cn = t , ,  the zeros  of J o ( z ) ,  the Bessel function of the 
fist kind  of order  zero,  and H ( z )  = z J ~ ( z )  [in (15)l. So, 
H(xc,)  is the  orthogonal set relative to  its zeros with  a weight 
function p ( x )  = (l/x). It is then  no surprise to find the Bessel 
functions  among  the  first  examples of the generalized  sampling 
theorem  (Section 111-A), where  we accept the  theorem as the 
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natural  extension of the work of Ferrar [6] and both Whit- 
takers [ 3 ] - [ 5 ], and different  than  their cardinal series. 

One advantage of using the  finite Bessel (Hankel)  transform 
is that  the n-dimensional  Fourier  transform, with circular 
symmetry, is reduced toJn-lp(x)-BeSSel  transform  [231 [see 
(2911. 

D. The  Sampling  Theorem  and  Interpolation 
Jagerman and Fogel 1241 considered the WKS sampling 

theorem as an interpolation  formula,  then  stated  and proved a 
number of interesting  extensions.  They first considered the 
Lagrange interpolation  polynomial [ 25 1 

then extended the real variable r to a  complex  variable z. Note 
that  (17) is the  partial  fraction expansion of J. M. Whittaker’s 
equation  (15). Here (Pn(z))/(gn(z)) is analytic  except  at  the 
zeros of gn(z), the sampling points, and Pn(z) is entire, i.e., 
analytic everywhere. This was generalized to include an in- 
finite  number of sampling points.  The  choice for g ( z )  was 
obviously g ( z )  = sin (nz/h),  so 

P ( z ) =  sin- 
nz OD ( - l ) j f ( j h )  

h i=-m z - jh 

is the  cardinal series for  the  entire  function P(z).  The sample 
points  are  uniformly spaced on the  complex plane. We remark 
here that  a more general choice for g ( z )  would  be a  function 
such as Jm(z), where the sample point  distribution  would  be 
asymptotically  uniform. For  their choice of g,(z), they  stated 
and proved a’ number of basic extensions of the WKS sampling 
theorem, using the  method of contour  integration and the 
Paley-Wiener theorem [ 26, p. 131  which states  the equiva- 
lence  between  band4imited  functions and quare integrable 
functions of exponential type. Then  they  extended these 
sampling theorems to include the samples of the  function 
f (   j h )  and its derivative f( jh) ,  an important  extension  which 
was remarked on explicitly  by Shannon [ 1 1 ,  and which we 
will discuss in  detail  in  Section IV-B. 

III. THE GENERALIZED SAMPLING THEOREM 
In this section we will discuss the  generalization of Shan- 

non’s sampling theorem to include  more general, f f i t e  limit 
(truncated) integral  transforms besides the usual Fourier tmns 
form. In Section II-C we indicated how Whittaker [ 51 had 
suggested a sampling series for a finite limit  integral  transform 
with the Bessel function, instead of the  exponential  function, 
as its kernel.  The  first  generalization that followed in this 
direction was considered by Weiss [ 101 for transforms with 
kernels which are  solutions of the Sturm-Iiouville problem 
associated with  second-order  differential  equations [27]. 
Kramer [9] followed this by a detailed treatment  for  nth- 
order  differential  equations and illustrated  it  for  the case of 
the Bessel function as a  kernel. 

In the following, we will give the  statement of the gen- 
eralized sampling theorem with various illustrations,  compare 
it to  Shannon’s sampling theorem, present its physical inter- 
pretation in terms of time-varying systems, and then discuss its 
various extensions and applications. As we mentioned in the 
beginning of Section I, we will refer to this generalized 
theorem as the WKSK sampling theorem,  after  both Whittakers 

[3]-[5], Kotel’nikov [81, Shannon 111, and Kramer [91 as 
compared to WKS for  the Whittakers’,  Kotel’nikov‘s,  and Shan- 
non’s popular sampling theorem. 

A .  The  Sampling  Theorem f o r  Hankel  (Bessel)  and  Other 
Finite  Limit  Integral  Transforms 

The final generalization of the sampling theorem was stated 
by Kramer  [91 as the following theorem. 

Theorem 111-A-1 : “Let I be an interval and L2 (I) the class of 
functions #(x )  for which hl#(x)12  dx < m. Suppose  that  for 
each real t 

f ( r )  = b ( x ,  t )g(x)   dx  (19) 

where g(x)E  Lz(Z) .  Suppose  that  for each real t ,  K ( x , t )  E 
L2(Z), and that  there  exists  a  countable  set B = { tn}  such that 
{K(x,  t ,)} is a  complete  orthogonal set on I .  Then 

where 

R K ( . ,   t ) K ( x ,  tn)  dx 

S,(t) = S(t,  tn)  = .” (21) 

~ I K ( X ,  tn)l2 dx 

Here g ( x )  E L2 V) means that g ( x )  is Lebesque measurable and 
that Ig(x)12 dx < m. Also R ( x ,  t )  is the  complex conjugate 
of K ( x ,  r). The simplest proof is readily  established when we 
write the  orthogonal expansion  for g ( x )  in  (19) in terms  of 
KO 

m 

= f ( tn)Sn(t)  [(19)-(20)1 
n= 1 

after usiug (19)  for f ( r )  and (21)  for  the sampling function 
S,(t), or what we sometimes  write as S(t ,  rn). We may  men- 
tion here that  a weighting function p ( x )  may be  introduced 
[27],  [28] in theintegralsof(l9)insteadofhavingitimplicit 
in  the  product K(x ,   r )g (x ) .  Also we indicate  that  the same 
proof can be followed when K ( x ,  t )  of (19) is expanded  in 
terms of the same orthogonal  functions K ( x ,  rn). However, 
the  shortest proof is to use Parseval’s equation [29] for  the 
integral  in (19) with the  Fourier  coefficients c, of (23) and 
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S n ( t )  of (21)  for  g(x) and K(x, t ) ,  respectively (see Section 
V-A).  Kramer [91 showed that  the  conditions  for  this 
theorem  on  the  kernel  K(x, t )  in  (19)  are  exhibited by the 
solutions of nth-order self-adjoint differential equations [ 27, 
p. 188, p. 2841. He illustrated it  for  the cases when K(x,  t) = 
eix t and  when K(x, t )  = Jm(xt), where Jm(xt) is the Bessel 
function of the fimt kind of order m.  Campbell [ 281 illus- 
trated  the case when K(x, t )  = P,(x),  where Pt(x) is the 
Legendre  function.  Other illustrations including K(x, t )  as the 
associated  Legendre,  the  Gegenbauer, the Chebyshev,  and  the 
prolate  spheroidal  functions [30] were done  in  detail  in [3 11 
with  suggestions for  their use in scattering problems in physics. 
A  recent illustration for  K(x, t) as the associate Laguerre  func- 
tion  LF(x),  but with  an integral defined on  the  semi-infiite 
interval (0, OD) instead of the usual f i i t e  interval, is found  in 
[ 321 . As an illustration of Theorem 111-A-I , we present the 
case  of the fiiite limit Jm -Hankel, or Bessel, transform : 

f(t) = J' xJ,(xt)F(x)  dx.  (24) 
0 

The  sampling  function S, ( t )  of (2  1) is derived as 

~ lxJm(x~)Jm(x tm,n )dx  

s n ( t )  =SO, t m , n )  = 

1 x [ J m ( x t ) l 2  dx 

where the { rm, , }  are the zeros of the Bessel function J m ,  i.e., 
Jm ( tm, , )  = 0, n = 1,2 ,  . . Here the familiar properties of 
the Bessel functions were  used [33]  to evaluate the integrals 
of (25).  The final sampling series (21)  for  the f i i t e  limit 
Hankel  transform  becomes 

Jm(rm,,) = 0, n = 1,2,  * . 
We note here that  the weighting function p(x) = x  has  been 
introduced explicitly in (24) instead of  having it implicit in the 
product  K(x,  t)g(x) of (19). 

B. On the  Equivalence of the Generalized (WKSK) and 
Shannon (WKS) Sampling  Theorems 

The first question related to the  generalized sampling theo- 
rem  was  raised by  Campbell [ 281 concerning the possibility of 
applying  Shannon's sampling theorem to functions  that can  be 
sampled  by the generalized sampling theorem. He considered 
as kernels in (19)  the  solutions of regular  first-order  and 
regular wcondarder differential equations  with  separated 
boundary  conditions,  and  the  solutions of the singular Bessel 
and  Legendre  equations. For these cases Campbell  showed 
that if a  function  with  such  kernels can  be expanded  by  the 
use  of the WKSK sampling  theorem, then  it can also be ex- 
panded  by  the use  of the WKS sampling  theorem.  These 
results were extended  1341 to include integral transforms  with 
kernels  such as the following: Py (x), the associated Legendre 
function; C:(x), the  Gegenbauer function; Lr;(x), the Cheby- 
shev function of the second kind; and other functions. For 
example, in the case  of the  finite  Gegenbauer  transform: 

1 

f(t) = 1, G(x)F(x )  dx  (27) 

we can use the integral representation of C;(x) [33, p. 159, 
equation  (27)] as a  truncated  Fourier  transform  in  (27),  then 
interchange  the  order of integration  and  define H ( u )  in a 
simple way to obtain 

so the  function (r(t + l))/(r(t + 2v)) f(t) and  hence f ( t )  may 
be sampled  by the WKS sampling  theorem. To compare  the 
two sampling theorems  in  a  more precise way,  some defii-  
tions were presented  and  conditions were found  [341  under 
which the  two  sampling  theorems,  namely,  the  Shannon  and 
the generalized one, are equivalent. In summary,  the  theorems 
presented  in [34] simply tell us that  there is no  advantage  in 
using the WKSK sampling  theorem  when the  function is 
represented  by  a  double inverse Fourier  transform  with  finite 
limits. This, however, is the case only  when we assume that 
the communications  engineer is interested in working  with  no 
integral transform other  than  the  Fourier one. So the advan- 
tage  of the WKSK sampling  theorem may become clear when 
we consider other  htegral transforms [35],  [36] and  espe- 
cially for time-varying  systems  [371  which we shall  discuss in 
the following section. One other obvious  advantage is the use 
of the Hankel  transform in optics [ 141  where,  with circular 
symmetry,  a  Jo-Hankel  transform is equivalent to a  double 
Fourier  transform and,  in general, a  J(m/2)-l-Hankel trans- 
form is equivalent to an m-dimensional  Fourier  transform 
[23, p. 821 : 

Here, F ( E ) = F ( @ ) = F ( p )  is the m-dimensional  Fourier 
transform of f(;) = f(ldl) = f ( r )  with circular symmetry. 
Hence, in two  dimensions we may  replace  a  double WKS sam- 
pling series by  a single WKSK sampling series associated  with 
the Bessel kernel Jo(x). 

C. System  Interpretation-Time-Varying  Systems 
As  we have presented  in  Section I-B, the applied  interpreta- 

tion [ 11 ]  for  the special case  of K(w, t )  = e-Jwr, i.e., the 
Shannon  sampling  expansion (4), is that f ( t )  is the  output of 
an ideal low-pass filter with  impulse  response h ( t ,  t , )  = 2 WS (t, 
t n )  = [sin 2nW(r - (nn/2W))]/[n(t - (nn/2W))l and with the 
input  taken to be the pulse train f ( t n )  =f(n/2W). The  applied 
interpretation of the generalized sampling  expansion (20) can 
be  given [361, where f ( t )  is considered as the  output of a 
band-  (or  transform-)  limited [381 and a low-pass filter  in  the 
sense  of these  general integral transforms,  with a time-varying 
impulse  response that is related directly to the sampling  func- 
tion  in  (21) and  with the pulse train { f ( t , ) }  as its  input. This 
was done  for  a  transform-limited function: 

with the  Fourier-type inverse: 
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F ( w )  = p ( t ) K ( w , f ( t ) d t .  s 
where p(w) is a weighting function. Here K(w, t )  stands  for 
the  complex  conjugate of K(w, t). Also, the limits of integra- 
tion in (31) are not finite and will be specified for  the par- 
ticular  integral  transform.  The  complete  details of this analy- 
ysis are  found  in [36] with  the main definitions being in 
agreement with  those  in D'Angelo [37] ,  Zadeh [39] ,  and 
Zemanian [ 401 . 

Some basic properties of such  transforms  including  the 
Parseval's equality, the  orthogonality of the sampling func- 
tions.on  the interval of the  integral (3 1 ), and the  convolution 
product were  derived and the Hankel  transform was presented 
as an example 1351,  [36]. 

D. Some  Applications (Also Sections  VII-B-VII-C) 
The  first  reference to  the possible application of the gener- 

alized  sampling theorem  in  communications [35]  was for 
time-varying systems analysis [361 which we discussed in the 
last section. Also in the case  of circular symmetry,  for 
example  in  optics,  it is known (141, [23]  that  the needed 
double  Fourier  transform can be replaced by  a single Jo- 
Hankel (Bessel) transform. Hence, it is advantageous to replace 
a  double  Shannon sampling series  by a single  Bessel one.  In 
generd,  with circular symmetry,  an rn-dimensional Fourier 
transform reduces to  a  one-dimensional J( , , , /Z)-~ -Hankel trans- 
form  [see (2911. The  next  application was in the field of 
nuclear scattering [3  11.  In  particular the sampling functions 
(21) for the generalized sampling theorem  -are necessary for 
evaluating the  lth eigenvalue  of the  unitary  S-matrix [4 1 ] due 
to  the  nth Regge pole of the  S-matrix. This is especially true 
when a more general orthogonal  expansion is needed  rather 
than  the usual Legendre one. 

In the field of heat  transfer, the generalized sampling 
theorem was  used [42]  to facilitate the  solution of a conju- 
gated  boundary value prob€em.  The analysis is applied to 
determine  the  effect of the axial conduction  on  the  tempera- 
ture field for a fluid with  laminar flow in a  tube. In this 
problem the finite  Jo-Hankel  transform was used to algebraize 
the radial part of the partial  differential  equation. $0 satisfy 
the  boundary  condition  at  the interface of the fluid, the 
coefficients of the  two i n f i t e  series solutions  are  matched to 
obtain  the final solution. However, since the generalized 
sampling series is applicable to  the finite  Hankel  transforms  it 
was  possible [42]  to recognize the  infinite series in both solu- 
tions as the sampling series and  hence assign it  the  transform 
function value. This resulted in eliminathg  the infinite series 
on  both sides, thereby eliminating the need for  approxima- 
tions  and numerical matching  procedures. 

The  most  recent attempt to use the generalized sampling 
expansion is in  the field of general discrete  transforms [43] ,  
[44] .  This is in parallel to the discrete  Fourier  transform 
[45] ,   [46]  which  lead to the fast Fourier  transform  (FFT) 
algorithm [46]  -[48].  In attempting to develop a discrete 
Hankel  transform [44] ,   [49]  we are guided by  its  correspond- 
ing sampling expansion which dictates the sample spacing. 
This recent investigation indicates that  for  the discrete Jo-  
Hankel  transform of N terms,  the samples are  taken  at 
{ ( j o , , ) / b }  and { ( jo , , ) / c )  in the  two t and w spaces, respec- 
tively, with io,, being the  nth zero of J o ( x )  and j o , ~  < bc  < 
jO,N+ 1.  

E.  Sampling with  the Value of the  Function  and Its 
Derivatives 

When Shannon [ l  I introduced  the sampling theorem to 
communications  he also remarked that  the value  of the  func- 
tion f ( t )  can be constructed  from  the  knowledge of the  func- 
tion and its derivative at every other sample point,  then 
extended his remark to higher derivatives. In Section IV-B 
we will discuss the different  methods (141, [241,  [50]-[53] 
of arriving at this result with illustrations and physical inter- 
pretation.  The  truncation  error  bounds [54] ,  1551 for  such 
series are  presented  in  Section VI-A. This result 1241, [52]  
has been  extended [561,  [571 to  other integral  transforms 
associated with  the generalized (WKSK) sampling theorem, 
which we  will  discuss at the end of Section IV-B and  illustrate 
for  the case  of Hankel (Bessel) transforms. 

F.  Other  Extensions-Sampling for an Infinite  Limit 
Laguerre-Lt(x)  Transform 

Until  recently [ 3 2 ] ,  all direct  illustrations of the sampling 
theorems have been associated with  functions  represented 
by  finite limit (truncated) integral  transforms  whose  kernels 
are orthogonal  on  the same finite  interval.  The  first  example 
of a sampling expansion  for  functions  represented  by an 
integral with i n f i t e  limits is that of the associate Laguerre- 
L t ( x )  transform [321. Here the associate Laguerre poly- 
nomials LE(x) are used, which are orthogonal  on  the semi- 
infinite  interval (0, =) with  respect to  the weighting function 
p ( x )  = e-x   x4 .  This result is summarized in the following 
theorem. 

Theorem  III-F-I: If the  function F ( x )  is such that e-x 
x"lF(x)('  dx <a, or in brief F ( x )  E L z  (I ,  p )  with p = e-% 

* xu and I as (0,~)) then its Laguerre-Lt transform 

f(v) =J- e-x X Q  L: - F ( x ) d x ,  S ~ ; , ' ; ; ~ O  
0 

(32) 
has the sampling expansion 

1 
f(v)= (1 - x)yr(v + 1) 

where 

We note  here  that  in  contrast to the  other sampling expan- 
sions which  involve the  nth sample f ( n )  in  the  nth  term of the 
sampling series, the sampling expansion in (33) involves a 
combination of the first n + 1 samples of the  function in the 
nth  term of the sampling series. However, for t = k, a  non- 
negative integer, the sampling expansion (33) gives the sample 
values f ( k ) .  To verify this we note  that  the  summation over 
n in (33) stops  at n = k and all the coefficients of (A - l)"-m 
in  the  double series cancel out,  except  that of (h  - l ) k  which 
reduces (33) to f ( k ) .  The rigorous proof,  which involves 
writing the Lz(x)-Laguerre polynomials orthogonal  expansion 
of F ( x ) ,  integrating  term  by  term as in (32), and using  some 
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special integrals  [331 is given in [ 321. We may note  that  the Petersen and Middleton [ 531,  [61 I presented  a very  detailed 
so-called  Laguerre function is def ied  as treatment of the sampling theorem in n dimensions [6 1 I that 

involved the samples  of the  amplitude  and  the  gradient  I531 r(Y+a+ 1) 
r(Y + l ) r ( a  + 1) 

L ; ( x )  = M (-Y, + 1 ;x) (34) of an n-dimensional stochastic field (see Sections IV-B-IV-C) 

fh(?)= [ f ( ~ [ k ] ) g ( 3 , ? [ k ] ) + a f ( r [ k ] ) ' i ; ( r , r [ k , ) 1  
where M(a, b ; x) is the  confluent  hypergeometric  function. I k l  
We should  point out here that  the Laguerre function  in  (24) is 
defiied differently  from that  of 133, p. 268,  equation (3711, 

.~ - 

1 
L ; ( x )  = - r(v + 1) 

M ( - v , a +  1;x)  

but it reduces to the Laguerre polynomial L;(x )  when Y = n. 

Iv. VARIOUS EXTENSIONS OF THE SAMPLING THEOREMS 
In this  section we  will present  most  extensions of Shannon's 

(WKS) and the generalized  (WKSK)  sampling theorems. This 
includes sampling in n dimensions,  with derivatives, for 
random processes, with  nonuniformly spaced  samples,  band- 
pass, implicit  sampling, for  distributions (generalized func- 
tions), for signals with time-varying bands and others. 

A .  The Sampling Theorems in n  Dimensions 
Shannon's sampling theorem was extended  by Parzen [58] 

to include sampling for band-limited functions of n variables. 
The following is the  statement given in Reza [ 111 where the 
proof follows the same method as used for  the  one-dimen- 
sional (WKS)  sampling theorem  (Section I-A). 

Theorem IV-A-1: "Let f(t l ,   t2, .  * . , r,) be  a  function of n 
real variables, whose n-dimensional  Fourier  integral  exists  and 
is identically  zero  outside  an  n-dimensional rectangle and is 
symmetrical about  the origin; that is, 

g(Yl ,yz, .  . * , Y n ) = O ,  l Y k l >  Iakl, k =  1 , 2 , .  * , n. 

(36) 
Then 

s in(wl t l  - mln) sin(w,t, - m,) ,, 
olrl - m l n  a n t ,  - mnn 

* . .  (37) 

Miyakawa [59] presented  a sampling theorem  for  stationary 
stochastic variables in n dimensions. A very interesting his- 
torical review  of the sampling theorems  with  reference to 
many relevant applications was presented  by  Petersen [60]. 
We may remark  here that  the above  Theorem IV-A-1 can also 
be  proved  easily  by  using the Parseval's equation  in  n  dimen- 
sions [29]. Also, we can  extend  this  result to include higher 
dimensional general integral  transforms of the  type (1 9) used 
for  the generalized  sampling theorem.  The  proof we  give 
follows the same method used in  Section 111-A for proving the 
generalized  sampling theorem and in  particular the simple  use 
of the general  Parseval's equations  for  such higher dimensional 
transforms. We may point out again the advantage of the 
generalized  sampling theorem where a J(,,2 ,- Nankel trans- 
form is equivalent to  the above  n-dimensional Fourier trans- 
form when g($)  in (36)  and f(?) in (37) possess circular 
symmetry [23]. Hence, the n-dimensional sampling series 
(37) may be  replaced  by a  one-dimensional Bessel  sampling 
series (26) with m = (n/2) - 1. 

(38) 

where ?(?) is an estimate of the value  of the random field f(3) 
at every point 3 in  the N-dimensional Euclidean  space. g(2, 
z [ k ] )  and hl(3, z p ] ) ,  1 = 1, 2, * * * , N are functions applying, 
respectively, to  the values  of amplitude and each  component of 
the gradient measured at  the sampling point J [ k ]  , for recon- 
struction of the random field at  any  point ?. x [ k ]  stands  for 
the  N-dimensional  summation x k l  --- x k N .  In addition 
to suggesting  various applications (see Section VII-E) they 
[ 61 I concluded that,  for deterministic fmctions,  the most 
efficient  lattice is not  in general rectangular, nor is a  unique re- 
construction  function associated with  a given  sampling lattice. 
In addition,  such  optimal weighting functions were  derived 
[531  for least mean-square reconstruction of the above (38) N- 
dimensional stochastic fields from  discrete  measurements of 
amplitude and  gradient. Montgomery  [621 utilized the 
sampling expansion with a  function and its  gradient then 
extended the result of  Petersen and  Middleton (38) to include 
the samples  of the  function and its higher partial derivatives 
[631  up  to  order K < 1 

where f(?) is a  square  integrable  complex valued function  in 
the N-dimensional  space, ? is a  vector in this  space, d~ are 
points of the sampling lattice  and g(? - &) is the weighting 
function applied in  the  construction of f(7). d~ is an integral 
linear combination of the  vectors &, where n' = (nl,  nz, * * * , 
nN) gives the  integral  coefficients used. 

Gaarder [64] extended  the  n-dimensional sampling expan- 
sion to allow nonuniform  but periodic  sampling, a  subject 
which we shall discuss in  Section IV-D. Sharma and  Mehta 
[65] extended  the generalized (WKSK) sampling theorem, 
with kernels  besides the  Fourier  one, to  higher dimensions  for 
bandpass functions instead  of the usual  low-pass ones (see 
Section IV-E). 

B. Sampling with  the  Values of the Function  and its 
Derivatives 

1)  The Shannon (WKS) Sampling  Theorem: As we men- 
tioned in Section Ill-E, when Shannon introduced  the sam- 
pling theorem  he also remarked that  the value  of j ( t )  can be 
reconstructed  from the knowledge  of the  function and its 
derivative at every other sample point,  and  then  extended his 
remarks to  higher derivatives. Fogel [SO]  considered this 
question  without  reference to  the above  remark, and stated 
and  proved the following theorem. 

Theorem  IV-B-1: "If a function f ( r j  contains  no fre- 
quency higher than W(Hz j it is determined by  giving IU func- 
tion derivative  values at each of a series of points  extending 
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throughout  the  time  domain, sampling interval T = (M/2W) 
being the time  interval  between  instantaneous  observations.” 

Later,  Jagerman  and Fogel I241  incorporated  the  above 
theorem  and  a  theorem dealing with  exponential  order to give 
a  number of  very useful  theorems  including  an  explicit  form 
that involves the samples of the  function  and  its derivative. 
The method of proving their  results relies on Lagrange inter- 
polation  polynomial  and  contour  integration. 

The importance of t h i s  result lies in  its  application.  For 
example,  for  an  aircraft the estimated  velocity as well as posi- 
tion are used to determine  a  continuous  course  plot of the 
path  with half the sampling rate. 
As a  generalization to the above results  and as an  explicit 

answer to Shannon’s remark [ 11 concerning the reconstruc- 
tion of a  function f(t) when the value of the  function and  its 
first R derivatives are given at equidistant sampling points 
(R + 1)/2 W seconds  apart,  Linden [ 5 1 I and  then  Linden and 
Abramson [ 521 gave the following final result after  a minor 
correction. 

Theorem IV-B-2: “Let f ( t )  be  a  continuous  function  with 
finite  Fourier  transform F(o)[F(o) = 0 for Iwl> 2nWI. 

Then 

where h = ( R  + 1)/(2W).” 
The E(i)(kh)  in  (40) are linear  combinations of the f(j)(kh): 

Here 

The I’$) may be expressed  in  terms  of  the generalized Ber- 
noulli  numbers.  Some of these values are 

r26) = a(35a2 + 42a + 16) 
63 

rip) =0 ,  for odd& 

Equation (41) may be  obtained  by  multiplying both sides of 
(40)  by {(n sin n(t - kh)) / ( t  - k h ) }  -(R+l) and  equating  their 
jth derivatives at t = (kh)/n.  Such  expansion makes clear the 
advantage of sampling with  the  function and its R derivative 
since the sample spacing here is h = (R + 1)/2W, which is 
(R + 1) times that of h = 1/(2W) for  the case involving the 
samples of the  function  only. 

Rearrangement of terms in  (40) ields  an  alternate  form 
which  emphasizes  the derivatives f 6 ) ( k h )  rather  than  their 
linear combinations  (41).  In  addition,  this  alternate  form 

relates  the  limit  of  the  R-derivative sampling expansion as 
R 00 to Taylor-type series weighed  by a Gaussian density 
function  centered  about  each  sample  point. An interesting 
question would be whether  two-point  (Lindstone  interpolation 
[25, p.  281) and then  N-point Taylor-series-type expansion 
would reduce to a  sampling-type  expansion as N -+ m? The 
proof of Theorem N-B-2 relies on somewhat involved matrix 
methods  [521. However, the  method of  using contour  integra- 
tion can be employed [56], [ 571 to derive (40) in a very 
simple fashion. 

Among other very interesting  results  concerning the sam- 
pling theorems,  Papoulis [ 14, p. 1321  presented  a very useful 
decomposition  theorem  and  utilized it  to arrive at  a simple 
method for deriving the sampling expansion  -with R = N - 1 
derivatives. The  explicit  form for  R = 1 (N = 2) was easily 
obtained  by  this  method 

(43) 

where oo is the  band-limit  and T = n/(wo). However, this 
does not seem to be the case when N > 2. Note that  R = 0 or 
N = 1  corresponds to sampling with the  function only. 
As we mentioned  in  the last section, Petersen  and  Middleton 

[53] gave the sampling expansion for stochastic  fields  repre- 
sented  by an n-dimensional band-limited Fourier  transform 
that involved only  the samples of the  function and its  gradient 
(38) (see Section N-C). They also suggested many applica- 
tions  including  crystallography and meteorology where the 
samples of the  function and  the  gradient were sufficient for 
their analysis. As such they did  not  include  any higher partial 
derivatives. Montgomery [63] extended  these  results to 
involve higher order  partial derivatives (39).  Later another 
method was devised 1561,  [571 for such  extension  and was 
illustrated  for the double  Fourier  transform.  Such  a  method 
uses a  generalization to two dimensions  of Linden and Abram- 
son’s important lemma [52]  that was  used for deriving (40). 
We suggest here that  contour  integration  methods, similar to 
that used in [24],  [561,  [57]  for  functions of several vari- 
ables [ 661  may be  used to establish  the sampling expansions 
with R derivatives for  higher  dimension  band-limited  Fourier 
and  other  integral  transforms. 
As we have shown, sampling with derivatives increases the 

sample spacing required,  or  in  other  words it allows the  recon- 
struction of the  band-limited signal with  a sampling rate less 
than  the  Nyquist  rate.  Another  approach aiming at  the same 
goal was established  by Kahn and Liu [67]. They  treated  the 
problem of the  representation  and  construction of  wide-sense 
stationary  stochastic signals, not from  one  set of data 
{f(nn/a)}  but  from several sets  of sampled values obtained  by 
using a  multiple  channel sampling scheme.  They showed that 
with  the  optimum  combination of prefilters and post-filters,  in 
the case where two sets of sample values are  taken,  the fre- 
quency range of the  input signal is limited by  the  prefiiters to 
a  total width of 4a. This is instead  of the usual total width of 
2u when a single channel is used, which makes it  stand as a 
natural  extension of the  latter case. Todd [68] used multiple 
channels to reconstruct  deterministic  band-limited signals 
with  a sampling rate less than  the  Nyquist  rate.  The  sample 
rate needed is inversely related to the  number of the channels 
used and directly  proportional to the  Nyquist  rate. 

2 )  The Generalized (WKSK) Sampling Theorem: Recently, 
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the sampling  with R derivatives (40) was extended [56] to 
include the  finite limit Hankel  and other transforms  besides 
the  Fourier  transform of (40). The  method used in  such 
general results employs contour  integration  which is a generali- 
zation of the method used by Jagerman  and  Fogel [24] .  It is 
shown that,  in parallel to  the known special case  of the  trun- 
cated  Fourier  transform,  the  advantage of sampling  with  R 
derivatives is to increase  by ( R  + 1)-fold the  asymptotic 
spacing  between  the sampling points. The  importance of such 
an  advantage for  the Hankel  transform,  for  example, is of 
course realized in  time-varying [361 or spatial-varying systems. 
As an example, the generalized  sampling  expansion  with one 

derivative for  the  finite limit JO -Hankel transform 

f ( t )  =[‘ xJo(xt)F(x) dx (44) 
0 

is 

(45) 

where {to$} are the zeros of the Jo-Bessel function of the 
first kind of order  zero  and sk(f) is the same  sampling  func- 
tion as in  (25) 

The general  procedure  for deriving (45) for  the  Jo-Hankel 
transform,  and  other  finite transforms  including the Legendre 
transform is outlined  in [56]  and  presented  in  detail in [571. 
The  derivation  of the sampling  expansion  with derivatives for 
double  finite  Fourier  transform is presented  in [ 571. 

C. Sampling  Theorems for Random  Processes 
Another  extension of the WKS sampling  theorem was con- 

sidered  by  Balakrishnan I691 where  he  showed that  the WKS 
sampling  theorem  can be  used to represent  a  process of a  con- 
tinuous  time  parameter.  One of his theorems  in  this  direction 
is the following. 

Theorem IV-C-I : “Let  x ( t ) ,  - 00 < t < =, be a real or com- 
plex valued stochastic  process,  stationary  in the “wide sense” 
(or second-order  stationary), possessing a spectral density 
which  vanishes  outside the interval [-2nW, 2nWI. Then x(t)  
has the  representation 

for  every t ,  where 1.i.m. stands  for limit in  the mean  square.” 
The  proof consists of using the WKS sampling  theorem for  the 
covariance  function of the process, since it is assumed to have 
a  truncated  Fourier  transform.  Then x * ( t ) ,  the  optimal 
estimate of x(t), was constructed  by using the sampling series 
to show that  the mean-square  error is zero. 

Middleton [ 12,  chap. 201 also treated  random  sampling 
and  presented  a  comparison of random  and  periodic data sam- 
pling. Peterson 1601 gave a  very  detailed  treatment for sam- 
pling  of space-time  stochastic  processes  with  application to 
information  and  decision  systems  and  a  very interesting re- 
view.  Many applications  and  extensions of the subject of 
optimal  reconstruction of multidimensional  random fields 

were presented  by  Petersen  and  Middleton [ 531,  [70] and 
Petersen [ 7 1 I . The  complete  treatment of this  subject will be 
found  in [ 721. 

Among other generalizations of the sampling  theorem, 
Parzen [ 581 presented  simple  proofs using Fourier series for 
the  Fourier  kernel  eiwr to establish the above result (47) for 
random variables.  More general  theorems that include the 
above result as a special  case  were presented  by Lloyd [ 731. 
He first presented  conditions  under which the above random 
variables x(t) of a  stationary  (widesense)  stochastic  process 
{x(t), -00 < t < =} are determined linearly by the “sample” 
random variables {x(nh), -00 < n < a}. This may  be sum- 
marized as follows: “the process  x is determined linearly by 
its samples if and  only if some set of frequencies A containing 
all the power of  the process is disjoint from  each of its trans- 
lates A - (r/h), r = f 1, f 2, * * - (that is no  two frequencies in 
A differ by a  multiple of (l/h).” Then  Lloyd  showed that 
such  a linear dependence  has the form of the sampling  series 
(47) and discussed its convergence properties. Of the  many 
theorems  presented in this  direction, we  give the following 
theorem [731 and its corollary  which is a  generalization of 
the above Theorem IVC-1.  It is noted  that  most of the results 
for  stochastic  processes are based on their  corresponding  ones 
for  deterministic signals. 

Theorem IV-C-2: “If the spectral distribution of process  x 
has  an  open  support A whose translates {A - (n/h), --OO < 
n < a} are mutually disjoint then  the sampling  series is 
(C, 1) summable in norm to  x(t); i.e., 

N 
x(f) = 1.i.m. x(nh)K(t  -nh)” (48) 

N+m ,,=-N 

where 

K ( t )  = h  e2mktdA, -= < t < 00. (49) 

A series L: uj is said to be Cisaro  summable (or (C, 1)) if the 
mean uN=(s l  +s2 + * * - s N / N )  of  its partial sumssl ;*- ,sN 
converges (see Section V-A). 

We may note  that if A in (49) is the  one interval (- (1/2h), 
(1/2h))  then K ( t  - nh) is the familiar sampling  function of 
(47). The  following  corollary  considers the special case  when 
A is a  finite  union of mutually disjoint open intervals { (g ,  
g), a = 1 ,2 ,  * . . , n} where,  according to (49): 

Corollary: “if the set of frequencies A is a finite union of 
intervals, or more generally, if l.u.b.-- < t<  oo ~ t ~ ( t ) l  < 00, 
then  the sampling series  converges in  norm to  x(t); i.e., 

J* 

N 
x(t) = 1.i.m. 2 x(nh) K ( t  - nh).” 

N + -  ,,=+ 

Here  1.u.b. stands  for least upper  bound  which  means, as it 
sounds, that  for  the set of real numbers A ,  if x is an  upper 
bound for A and if y is any  upper  bound  for A then  x < y ,  
then  x is called the least upper  bound  of A or x = 1.u.b. A .  We 
may remark  here that (50) is a  generalization of (47) towards 
bandpass or multipass  systems  and  away  from the usual  band- 
limited ones. The  extension to multidimensional  space of the 
sampling theorem of stationary  stochastic variables  was treated 
by Miyakawa 1591 which  combines  Theorem IV-C-1 and 
Parzen’s results [ 5 8 ]  for  the n-dimensional  sampling. Miya- 
kawa also considered the application of his extension to 
crystallography.  Petersen  and  Middleton [ 53  ] derived optimum 
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weighting, or sampling, functions  for  reconstructing  the n- 
dimensional random field f(3) using the sample measurement 
of its amplitude and gradient (38). Their criterion for  the 
optimum  reconstruction, of the  estimate %’(;) for f(31, is to 
minimize the (statistical) meahsquare  error E { [f(;) - f(3)] ’ } 
at every point 3. 

In a later paper, Balakrishnan [74] considered the  question, 
“that a stationary  stochastic process is not physically  realiz- 
able.?’ As an answer he  spoke of  “essentially band-limited 
stochastic processes.” 

For sampling  over a finite interval (0, T )  instead of the usual 
infinite  one (-a, a) Lichtenberger 1751 showed that sampling 
infinitely often over any  finite interval (0, T) taken at arbi- 
trary discrete times { t i }  leads to perfect  reconstruction of an 
analytic  random process f(t). He considered a separable 
Gaussian random process f ( t ) ,  with its samples { f ( t i ) }  taken 
at  the  arbitrary times {tj,} over the fmed interval (0, T ) ,  then 
constructed an estimate f&) such that 

1.i.m. E { l f ( t )  - &(t>12} = 0, -a < t < 00 (51) 
N - t -  

where 

The proof utilized the Lagrange  interpolatiohn formula for rep- 
resenting f(t) with its  Nth partial s u m  for fN(t), in (5 I), then 
letting N + 00. An error  bound was  derived  as 

where 7 = max (It - t ,  1, It - tN I) and R is some finite number 
defined as ID(N)R( t , s ) I  < R N .  HereR(t,s)  is  the covariance 
of f(t) and D c N ) f ( t )  E ( d N f ) / ( d p ) .  More  general results in 
this  direction were presented by Beutler [ 761. 

Instead of the usual sampling at  equidistant  instants  or  the 
above arbitrary  instants, Beutler and Leneman [77] con- 
sidered random selection of the sampling points. Leneman 
[ 781 and then Leneman and Lewis [79] -[8 1 ] considered 
some specific related results. Barakat [ 8 2 ]  used the sampling 
expansion in  one [ 121, [ 841 and  higher [ 591, [ 6  11 dimen- 
sions,  in  connection  with nonlinear transformation of stochas- 
tic processes  associated with Fourier  transforms of band- 
limited positive functions. 

1)  Sampling  Theorems for Nonstationary  Random  Processes: 
The sampling theorems presented so far in this section deal 
with wide-sense stationary  random processes,  while the rest of 
the paper deals  mainly with deterministic signals. For non- 
stationary  random processes, Zakai [83] was the  first to pre- 
sent a sampling theorem followed by  Piranashvili [84]  then 
Gardner [ 85 1 ,  who presented the following theorem which 
required a relatively  simple proof and which was motivated 
toward applications. 

Theorem IVC-3:  “Let x be a random process  with auto- 
correlation  function k,( t ,  s). If the double  Fourier  transform 
K,(f, v) of k,( t ,  s) satisfies the band-limiting constraint 

K,(f, u )  jL k,.r, e-2m‘(fr-vs) dr  ds = 0 

Fig.  3. Recurrent  nonuniform sampling, N = 3. 

x admits the  meanquare equivalent sampling representation:” 

for all t E (- 00, m).” 

The proof here is a formal one in the sense that  (54) was ex- 
panded and  the  expectation was  allowed to be exchanged with 
the  infinite summation to yield the above result of (54). We 
may note how this theorem is related to two-dimensional de- 
terministic function sampling. Sharma and Mehta [86] pre- 
sented a generalized sampling theorem  for  nonstationary 
processes. 

D. Sampling with  Nonuniformly  Spaced  Sampling  Points 
For  the case of a band-limited function f ( t )  with all the 

sampling points  outside  the interval (- T ,  T )  being exactly zero, 
Shannon [ 11 remarked, as  did others before him, that only 
then can f ( t )  be specificed by 2WT sampling points where W 
is the bandwidth. He also remarked that these 2WT sampling 
points need not be equally spaced, an idea that obviously can- 
not be  covered by his version of the WKS sampling theorem 
and its cardinal series. We review here some of the work  which 
was done in this  direction.  The first is a statement which was 
attributed to Cauchy by Black [ 7 ,  p. 41 ] : 

If a  signal  is a magnitude-time  function, and if time  divided  into 
equal  intervals  such  that  each  subdivision  comprises  an  interval 
T seconds  (sic)  long, where T is  less  than  half  the  period of the 
highest  significant  frequency  component of the signal, and if one 
instantaneous  sample is taken from each  sub-interval (sic) in any 
manner, then  a  knowledge  of  the  instantaneous  magnitude  of 
each  sample  plus  a  knowledge of the  instant  within  each  sub- 
interval  at  which  the  sample  is  taken,  contains  all  the  informa- 
tion  of the original  signal. 

Yen [87]  considered the case  where a finite  number of uni- 
form sample points migrate in a uniform distribution to new 
distinct positions. He proved that  the band-limited signal 
f(t) remains uniquely defined,  then  reconstructed f(t). When 
the number of migrated points increases without limit he 
called it a gap and proved a similar theorem. Yen  also con- 
sidered the case of a “recurrent,  nonuniform sampling.” That 
is, when the sampling points are divided into groups of N 
points each, and the groups have a recurrent period of N/2W 
s, as shown in Fig. 3 where W is the maximum frequency of 
the band-limited function fir). He determined f(t) uniquely 
and reconstructed it in terms of its values at r = r p  + (mN/2W),  
p=1,2;-~,N,andm=**r,-1,0,1;**asfollows. 

Theorem IV-D-1: “A bandwidth-limited signal is uniquely 
determined by its values at a set of recurrent sample points 
r = r p m = r p + ( r n N ~ 2 W ) , p = i , 2 ; ~ ~ , N ; m = ~ ~ ~ , - 1 , ~ , ~ ,  
* . * . The  reconstruction is 

for I f 1  (1 /2T)  and Iul 2 (1/2T)  (for some nonzero 0, then m = - m p = l  
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where 

a=1 1.1 

q =1#p  lV 

(56) 

Recently,  Sankur  and  Gerhardt [88]  considered various 
methods  for  reconstructing a continuous signal  from its non- 
uniform samples. They  employed  and  compared a number of 
techniques including low-pass filtering, spline interpolation, 
and Yen’s [ 871 interpolation.  The spline- or hill-function-type 
interpolation is a special polynomial  expansion which is rela- 
tively new, with best approximation  properties (see Section 
VU-C). Their observation,  from  the  simulation  experiments 
with these and other  techniques, was that even though Yen’s 
method was impractical to realize, it still proved superior to 
the  other methods. This is in the sense that  it is insensitive to 
sample migration and signal-to-noise ratio (SNR) 

SNR = 
i = l  

N 
( S j  - ;j)2 

i = 1  

where the si are the signal samples and & are the samples from 
the  reconstructed signal. Recently Marvasti and. Gerhardt 
[891 presented a practical treatment  for signal transmission 
using nonuniform sampling. The special  case of Yen’s non- 
uniform but periodic sampling was extended to higher dimen- 
sions by Gaarder [64] with explicit sampling series  which he 
then applied to nonrectangular lattices. 

Yao  and  Thomas [90] derived sampling representation  for 
band-limited functions  when  the sampling instants  are  not 
necessarily spaced uniformly but each deviate less than (1 /n) 
In 2 21 0.22  from  its  corresponding Nyquist instant, as required 
by the WKS sampling theorem.  They  termed  such representa- 
tion as “semiuniform”  and used nonharmonic  Fourier series 
for  its derivation. Finally they remarked that a sample repre- 
sentation is not possible when all the sampling instants are al- 
lowed to deviate nonuniformly by (1  /4)  unit from their cor- 
responding Nyquist instants, or if an  arbitrary  finite  number 
of the sampling instants are placed arbitrarily,  or if additional 
sample points are added. Prior to this, Beutler [ 9 1, p. 11 11, in 
his unified approach to sampling theorems (see Section V-C), 
treated  the same “perturbation” question  and concluded that 
the sampling times need not be periodic,  but may vary from 
the  true periodicity by over 20 percent  without sacrificing ca- 
pability of restoring the signal f ( r ) .  A l s o ,  Leneman [92] pre- 
sented  error  bounds  for  jittered sampling. In a later  paper, 
Yao and Thomas [ 931 considered the question of the  stability 
of the WKS sampling expansion in  the sense that a small 
change in the amplitude of sample values should lead to small 
changes in the  reconstructed  function. This subject will  be 
discussed in Section VI-D. They showed that  the uniform 
Lagrange interpolation sampling expansion preserves some 
stable properties while a general nonuniform sampling expan- 
sion need not possess these stability  properties.  For  their 
“semiuniform sampling expansion” [ 931 where 1 r, - (nn/a)l< 
d < (1/4)  they showed that it is  stable while for  the nonuni- 
form sampling, Le., when d > (1/4)  the Lagrange interpolation 

sampling expansion  is not  stable  [93, Theorem 1 I .  They also 
gave a simple example with uniform sampling that is not stable 
(see Section VI-D). Beutler [ 941 considered and proved what 
is called the “folk theorem” in the sense that a signal f(t) may 
be represented by any linear combination of irregularly spaced 
samples f ( t , ) ,  provided that  the average sampling rate exceeds 
the Nyquist rate, Le., that  the number of  samples per unit time 
exceed (on  the average) twice the highest frequency present in 
the signal. Also he showed that only the past need to be  sam- 
pled at an  average rate greater than  the Nyquist rate to assure 
error-free recovery. Even more, the recovery is sometimes 
feasible if the average rate is less than  the Nyquist rate, e.g., 
if sampling is concentrated in rare bursts of higher than  the 
Nyquist rate sampling. Like Yao and Thomas [ 931 , his proofs 
utilized nonharmonic series expansion, but within a more gen- 
eral mathematical  setting. Furthermore, Beutler [941 applied 
his results to deterministic as well  as  wide-sense stationary 
stochastic processes. 

In  summary, for a band-limited function  on ( -a ,  a )  the free- 
dom of  having  irregular  sampling, or allowing the sampling  in- 
stants r, to deviate from  those of the Nyquist instants (nnla), 
stems from some theorems  due to Levinson [ 951. These theo- 
rems give conditions  on a set of real numbers I t , }  which as- 
sure that 

s: e iWtn  g ( o )  dw = 0, for all n ,  g E L ,  ( - a ,   a )  ( 5 8 )  

implies that g = 0 almost everywhere. Here g E L p ( - a ,  a )  
means that 1-4, I g(w) Ip  d o  < m where the usual  case of p = 2 
defines finite energy signals. Also the condition (58) defines 
the set { e i w f n }  as a closed set. 

Brown [96]  treated  the nonuniform sampling for band- 
limited and finite energy signals  using a finite energy and 
band-limited Lagrange interpolating  function. He  gave condi- 
tions on  the nonuniform sampling instants { t , }  such that f ( t )  
is uniquely determined by the sample values { f ( t , ) }  and po- 
sesses a uniformly convergent representation 

f ( t>= f(t,)Q,(t), --03 < r < 00. (59) 

The function \k,(t)  is a Lagrange interpolating  function which 
is band-limited to  the same band as f ( r )  and \k,(tk) = 8, ,k  for 
integers n and k. The  conditions  on  the sequence (t,} are that 
it is both  stable, as defined by Yao and Thomas [93],  and 
exact. By “exact” or “minimal” set  it is meant that  the clo- 
sure, as defined by (58) of the  set {eiw‘n} on  the interval 
( -a ,  a) ,  is destroyed by  the deletion of any single term  from it. 

A detailed treatment of the sampling theorem including 
nonequidistant sampling points is presented in Churgin and 
Iakovlev [ 971. 

E. Sampling for  Bandpass Functions 

eo 

,=-eo 

Kohlenberg [ 981  was the first to consider sampling expan- 
sions for a bandpass function which  lies in the frequency band 
(Wo, W o  + W) instead of the usual  low-pass function with 
band limits (- W,  W). This is to be  distinguished from the 
bandpass function which  vanishes outside  the intervals [WO, 
W O  + W] U [- W o  - W, - Wo] . Because  of the possible non- 
uniqueness of the equispaced sampling expansion,  he  intro- 
duced what he termed  “second-order sampling”  which  guar- 
anteed a unique  representation.  Second-order sampling 
involves two interleaved sequences of equispaced sampling 
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points. In  general a pth-order sampling  is defined as 

P P 

in which the  ith sampling series g i ( t )  has particular “sample 
spacing” ai, “phase” ki ,  and “sampling function” Si ( t ) .  He 
first considered a first-order sampling with a1 = a = (1/2W), 
kl = 0 for band-limited function f ( t )  in  the frequency range 
(0, W) and used Fourier analysis to obtain  the WKS sampling 
series 

where the samples are independent, since SI (0) = 1  and 
Sl(n/2W) = 0 for n = + I ,  ?2, - * , and the sampling rate of 
2W per second is minimum, For  the case of first-order sam- 
pling with u l  = a < (1/2W) 

It is  clear that  the samples are  not  independent since Sl (an) # 0 
for n # 0. To treat  this  problem  for  the general  case of band- 
pass function f ( t )  on (WO, W o  + W), a necessary and sufficient 
condition of Wo = cW, c = 0, 1, 2, - , was found to permit 
the exact construction of f ( t )  from its samples at  the mini- 
mum  rate of 2W per second. In contrast,  the following second- 
order sampling expansion (a = a2’ = (1 /W), k l  = 0, kz = k # 0 
in  (60)), permits the use of 2W samples per second for any W O  
and W 1981, [12,p.2151. 

Theorem ZV-E-1: For a function f ( t )  in a band (WO, 
Wo + W), the  exact  interpolation  formula is 

where the frequency  spectrum vanishes outside  the bandpass 
region Rm = [ W O  - nW, W O  + nW] U [-WO - nW, - W O  + nw1 
instead of the interval Z in (19)-(21). Their main result [65, 
Theorem 2.31 is the following. 

Theorem ZV-E-2: “Let g ( w )  be a complex valued function 
on -=<o<m with g ( w ) E L 1 ,  i.e., -i-2 Ig(w)ldw<m, 
and let K ( t ,  w )  be a complex function of time  such that 
IK(t,  w)l = IK(t,  -w) l .  Consider a bandpass signalf(t) which 
is real valued and band-limited to the bandpass region RBP = 
[-W, - nW, - Wo + nW] u [ Wo - nW, Wo + nw1. If 

then 

where 

J 
K B P ‘  ’ I ’  

The explicit expression for L n ( t )  and an example of K ( t ,  W )  = 
Jo(w, t ) ,  the Bessel function of the first kind of zeroth  order, 
were also presented. We may remark that  the method of  prov- 
ing this general result is a simple and straightforward one 
which  parallels the proof for  the generalized  (WKSK) sampling 
theorem (Theorem 111-A-I). But in contrast to  the remark 
made by Kohlenberg [ 981 and others [ 121, [ 5 11, [ 581, con- 
cerning the required sampling rate in order to guarantee the 
algebraic independence of the samples, no such remark was 
mentioned for  the above generalization or  its special  case. 
However the above Theorem IV-E-2  was extended to higher 

S ( t )  = 
COS [2n(Wo + W) t - (r + 1) rWk] - cos [ 2n(rW - W,) t - ( r  + 1) nWk] 

27rWt sin ( r  + 1) nWk 

In (63), we  have two groups of samples each at a rate of W per dimensions [65, Theorem 3.11  which is a generalization of 
second with spacing ( 1 / W )  shifted by a phase k from each Theorem IV-A-I for bandpass functions with more general 
other. k in (64) is a constant  such that kWr, kW(r + 1) # 0, 1, kernels. 

W + 1. Such development of sampling for bandpass functions F. Implicit  Sampling 
is discussed in Middleton [ 12, p. 21 51, and was also derived by All the sampling expansions that we  have  discussed up till 
Linden [ 511 and Parzen [ 58, Theorem 41 using somewhat now may be termed “explicit” samplings  in the sense that a 
similar but more direct and simpler methods of Fourier anal- band-limited function f ( t )  is represented in terms of its sam- 
ysis. Linden [ 5 I ]  relied on  the convolution  theorem of Fou- ples f ( t n )  at preselected instants { t n }  which are independent 
rier analysis and very  clear  graphical illustrations to derive of f(r). “Implicit” sampling may refer to  the case  when the 

. , and where r is an integer such that (2W0/W) < r < 2 W o /  

(63) and (64) and also gave second-order sampling expansion 
for  the usual  band-limited function.  The result (63),  (64) can 
be derived  easily with the help of the Hilbert transform [ 17, p. 
761. 

1) The  Generalized  (WKSK) Sampling Theorem for Band- 
puss Functions: Sharma and Mehta [65] derived the sampling 
expansion for bandpass functions represented by more general 
integral transforms than  the Fourier transform. This is a gen- 
eralization of the WKSK sampling theorem (Theorem 111-A-1) 

function is represented in terms of the  instants { f n }  in which 
the  function assumed a predetermined value, for example its 
zero crossings { t n  : f ( t n )  = 0) or  its crossings with a cosine 
function { t n  : f ( t n )  = C cos 2nwt,}. The first “implicit” sam- 
pling expansion was considered by Bond and Cahn (991 as 
they extended the WKS sampling theorem when the sampling 
instants { t n }  are not independent of the sampled signal f ( t ) .  
Their justification was that such a procedure had proved valu- 
able in minimizing the  error caused  by infinite clipping, which 
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means that we can transmit a continuous signal  over a discrete 
channel if the  zero crossings  of f ( t )  are preserved. Forf(t), a 
band-limited function  on (0, W), they extended t to a complex 
variable z and used  Titchmarsh’s [ 1001 result that 

~ ( z )  = eZKif2 V(f) df c (68) 

is a real, entire  function, described by the  location of its zeros 
which are either real or  occur as complex conjugate pairs. In 
general, the zeros tend to cluster near the real  axis. Further- 
more, the aggregate of the zeros occur at the Nyquist rate. 
Thus 

where f(0) # 0, z ,  = R , e i e n ,   R ,  < R , + l ,  and limn-,.,, 
(2WR,/n) = 1. Note that  the formula (69) needs all the past 
and future zeros, both real and  complex, which makes it im- 
practicable. Instead,  they suggested another, more practicable 
problem with specified interval (- (T/2),  (T/2)) and zeros inside 
this interval occurring at slightly  less than  the Nyquist rate, 
zeros outside are real and occurring at  the Nyquist rate. Let 
N be the largest integer not exceeding WT; then  there  are a 
maximum of 2N real or complex zeros, z ,  = t ,  + iu,, 1 t ,  1 < 
T/2. Outside this interval the zeros occur at t ,  = *(n/2W), 
for n = N  + 1, N + 2, - - . Using this in (69) and referring to 
the  infinite product  representation of the sine function,  they 
obtained 

where A ,  is expressed in terms of the values  of the  2N zeros 
zm inside the interval 

m + n  

where m in the  numerator of (71) as the index of the zeros 
within the interval (- ( T / 2 ) ,  ( T / 2 ) ) .  Later Bond, Cahn,  and 
Hancock [ 1011 found a relation between the above “implicit 
sampling” and the Fourier coefficients that allows a Fourier 
series representation of a band-limited function  in  terms of 
its zero crossings.  More work on  the subject of implicit sam- 
pling  was done by Voelker [ 1021 which was simulated on 
a computer by Sekey [ 1031. Bar-David [ 1041 considered 
the  important case of implicit sampling in terms of  real 
variables alone. For example, the  instants { f , }  at which a 
bounded band-limited function  f(t) crosses a cosine function 
{ t ,  : f ( t n )  = cos 2nwt,}, where f(0)  and { f , }  determine f(t) 
uniquely. He considered bounded  functions which are band- 
limited in the usual  sense or as extended by Zakai [83],  to 
give the following implicit sampling theorem. 

Theorem IV-F-I: “Let f(t) be a bounded band-limited func- 
tion of bandwidth W o  such that  the sampling expansion 

converges uniformly, for w > Wo, in any  bounded region of 
the z-plane. Let C > B 2 If(t)l  and let 

(73) 

Then the following infinite  product also converges uniformly, 
though  conditionally, in the same region: 

f(z) = [f(O) - C] lim +c  cosnwz.  (74) 
n - t -  -, 

A sufficient condition for convergence is that f*k should in- 
dicate the  kth zero to the right (left) of the origin.” 

G. Sampling for Generalized  Functions  (Distributions) 
The extension of the WKS sampling theorem ( l ) ,  (2) to band- 

limited generalized functions was f i t  considered by Campbell 
[ 1051. He noted  that  the WKS sampling expansion 

f ( t )  = g f (;) sin (ar - nn) 
- m  (at - nn) 

of the band-limited function 

f(t) = I” e - j w t g ( w )  dw (76) 
-51 

where g ( o )  is integrable, is  valid when g ( w )  is replaced by the 
Dirac delta  function 6(w - a), which is a special  case of a gen- 
eralized function. In this case it is obvious that  (75) reduces to 

as a Fourier series expansion of the  function  f(a) = e- ia t .  
However  when g ( o )  = 6’(w - a) ,  the derivative of 6(w - a) ,  
the  Fourier  transform  (76)  in  this case isjt e-iar and f (nn/a)  = 
(innla) e-(jnnl”)= O(n) ,  which makes the series (75) diverge. 
Here  we let 0 and o have their usual meaning, i.e., F(x)  = 
O(g(x ) )  means that  there exists an M such that F ( x )  < Mg(x)  
and F(x)  = o ( g )  means that lim, +xo (F(x ) /g (x ) )  = 0. Thus 
Campbell concluded that  the WKS sampling theorem (75) does 
not extend to  the Fourier  transform of an arbitrary distribu- 
tion with bounded support. He then investigated functions 
which are Fourier  transforms of distributions with bounded 
support and showed that these band-limited distribution func- 
tions are still  entire  and are completely determined by their 
sample values at nn/8. Here  serves  as a bandwidth for  the 
support (-a, a), which  we  shall present next as Theorem IV- 
G-1 . The statements of Campbell’s theorems need a few defi- 
nitions and the usual notation, as given in Zemanian [ 1061. 
One of his main results in this  direction is the following. 

Theorem  ZV-G-1: “Let g ( w )  be a distribution  with  support 
contained in the open interval ( w  : Iwl < (1 - q )  a} where 
0 < q < 1. Let f(t) be the Fourier transform of g ( w ) .  Then 

where S( y )  is the  additional  factor defined as 
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Campbell [ 1051 also derived  an  expression for  the  truncation 
error (see (181)) of (78) that reduced to previously  derived 
errors of the usual WKS sampling series, which we shall pre- 
sent at  the end  of Section VI-A. 

Pfaffelhuber [ 107) presented  additional results for  the 
band-limited  generalized functions which include that, for  a 
suitably  restricted space  of test  functions,  the WKS sampling 
theorem  expansion is valid in  its classical form,  and  that  a 
band-limited  generalized function f ( t )  can  be represented by 
a series of delta  functions 

n -  
f(t)  = 5 f0,) 6 0  - t n )  (80) 

n=--  

concentrated at  the sampling points { f n }  with weights equal 
to  the sampling  values f ( tn) .  This means that, as it is the case 
for  ordinary band-limited functions, the  information con- 
tained in  the whole signal is  equal to  the  information provided 
by  the sample  values at { t n ) .  

As we have indicated [29] in Section IV-A for sampling in 
n dimensions  and other extensions of the sampling theorem, 
the proper  extension of Parsed’s equation [ 108, p. 641 
offers  the simplest method of proof. 

Pfaffelhuber  [.lo71 also gave a  representation  for band- 
limited distribution  that  looked like a  combination of a  Taylor 
series and  a  conventional sampling series [ 107, Theorem 21. 

H. Sampling for Time-  Varying  Systems  with 
Time-Varying  Bands 

Horiuchi [ 1091  was the first to extend  the WKS sampling 
theorem  for  the analysis  of continuous signals specifiedcby 
time-varying spectra  with time-varying  bands. This is in  line 
with  what we had  presented  in  Section 111-C for using the gen- 
eralized WKSK sampling theorem  for time-varying  systems. In 
both cases the analysis is justified  only when the  fluctuations 
of the time-varying parameters of the system  are predicted  in 
advance. 

Consider the class of continuous signals 

z f lwz( t )  
f ( t )  = F ( w , t ) e i w f d w  (8  1) 

z w ( t )  

with time-varying spectrum F ( o ,  t )  and  time-varying  bands, 
2nw2( t ) ,   2nw1( t ) .  Here w l ( t )  and w z ( t )  are bounded real- 
valued piecewise-continuous  functions  such that w z ( t f  > 

Signalf(t)of  (81) can  be  specified  by a time-varying  signal 
W l O ) ,   w z ( t )  > 0. 

f(t, 7) = Pflwz(7) F(w, 7) eiw7  d7 (82) 
2flw1(7) 

and its  Fourier  transform 
00 

F(w, 7) = f ( t ,  7) e - i w t   d t  (83) 

where f ( t )  f ( t ,  t ) .  
Since the  function F(w, t )  vanishes outside  the  interval 

B : 2nw 1 ( t )  < w < 2nwz  ( t ) ,  the signal f ( t )  is said to  have the 
time-varying spectrum F(w, t )  and the time-varying band B. 
Also for  constant w1 and w2 in (81)  this  represents the band- 
pass signal which we discussed in  Section IV-E. 

The  expansion  for  the signal f ( t )  of (81) in terms of the 
samples off(t ,  7) in (82) is 

w o w  = 3 { W I  0 )  + w z w ) .  (87) 

The  derivation of the sampling expansion  (84) is obtained 
simply  by  writing the  Fourier series of F(w, t )  in  terms of 
exp {- ( ik /2w( t ) )  w }  

then  substituting in (8 1). 
We note  that  the coefficientsf((k/2w(t)), t )  of (84), as spec- 

ified by (82), are not  the same as the samples { f ( t k ) )  of the 
signalf(t)  except  at  the  zeros { t k }  of the  equation 

2 W ( t )  - k = 0. (89) 

In this case, &(t )  may  be called a pseudo-sampling function 
since it plays the role of the usual  sampling function 

@ k ( f n ) = S k , n ,  k , n = O , T 1 , * - - .  (90) 

Horiuchi [ 1091  then  considered  some special cases  and  showed 
that only  for  restricted cases the expansion (84) can be real- 
ized as a sampling expansion  with the usual  physical interpre- 
tation of the WKS sampling theorem. We may remark here 
that  the expansion  (84) may  be  realized  when we consider the 
generalized WKSK sampling theorem  and its physical interpre- 
tation in terms of  time-varying systems (see Section 111-C). 
Applications of both  the WKS and the generalized WKSK 
sampling theorems to time-varying systems are  discussed in 
Section VII-B. 

I.  Other  Extensions 
Papoulis [ 131, [ 141, [ 1 lo ] ,  [ 1  11  ]  presented  and discussed 

in detail various extensions of the WKS sampling theorem. 
Some of these  extensions were utilized to give a  more prac- 
tical physical interpretation of the sampling theorem  than  the 
one associated with  an ideal low-pass filter  (Section I-B). He 
then  presented  different  error  bounds for  the sampling expan- 
sion  which we shall discuss  in Sections VI-A and VI-B. We will 
present  here the main extensions which  lead to such relaxed 
physical interpretation of the sampling series to  which we 
hinted  in  Section I-B (see Fig. 1 and Fig. 2 ,  Section I-B). 
Papoulis  considered a band-limited  signal f ( t )  

f ( t )  = [’ F(w) e i w r   d w  (91) 

but  constructed it in a  more general  way than  that of the WKS 
sampling theorem (4) to  give 

2= -w1 
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where w 2  E (n /T )  2 wl, w1 G w o  < 2 w2 - w1. We note 
here that with the band limit wl, the sampling  spacing T 
( n / w 2 )  < (n/wl), which means that such a relaxed extension 
(92) requires higher sampling rates. The proof of (92) is con- 
sidered to be a particularly elegant version [ 14, p.  1201 of the 
proof of the WKS sampling theorem. Papoulis also  proved a 
converse to the above result, i.e.,  “Given  an arbitrary seq.uence 
of numbers { a n } ,  if  we form the sum 

(93) 

then x ( t )  is band-limited by wo.”  The proof assumes the 
Fourier series expansion of F(w) then  multiplication  by 
e-jnT pwo(w) and  integration  term by term. Of course, we 
must have a condition on  the coefficients {a,} that allows 
such term by term  integration. A sufficient condition is that 
Z n = - -  I an I < 00. A number of theorems in this direction  for 
the WKS and the WKSK sampling theorems are presented in 
[ 341. Ericson and  Johansson [ 1 121  also  derived  necessary 
and sufficient conditions  for some variations of the WKS sam- 
pling  series. 

Papoulis [ 141 then presented the sampling expansion for 
f 2  ( t ) ,  instead of f(t), of (92) as 

00 

where w2 = (n/T), w2 B 2wl (instead of wz 2 w1 for f ( t )  
in (92)), and wo is such that  2wl < wo < 2w2 - 2w1. We 
note here how (94) with T < (n/2w1) requires more than 
double the usual sampling rate. Papoulis then used this result 
(94)  for deriving the round-off  error of the sampling series 
which we shall discuss  in Section VI-C. 

More  significance should be assigned to the sampling expan- 
sion (94) since in applying the sampling theorem to scattering 
problems  or crystallography it  is  the  intensity If(t)12, and not 
the wave function f ( t ) ,  that is to be constructed  from its mea- 
sured samples I f (nT) l* ,  as  we shall see in Section VILA. 

Papoulis’ most  recent generalization [ 1 11 ] of the Shannon 
sampling theorem is to express the band-limited signal 

in terms of the sample valuesg(nT) of the  output 

of a system H(w) driven by f ( t ) .  The sampling expansion is 

where 

and the proof is a straightforward one  after writing tbe  Fourier 
series expansion for (e  ‘ w r / ~ ( w ) )  on (-u, a). 

Another  extension of the sampling theorem is the prediction 
of band-limited  processes from past samp!es. Brown [ 1 131 
considered f(t) as either a deterministic  or a stochastic signal 
which  is band-limited to the frequency interval I w I < II 

f(t) = -!- c“ F ( o )  eiwr dm, -= < t < 00 (991 

with lFIZ integrable on [- n, n] . He showed that  for any con- 
stant sampling spacing T satisfying 0 < T < (1/2), f ( t )  may 
be approximated arbitrarily well by a linear combination of 
past samples f ( r  - kT) taken  at any  constant  rate that exceeds 
twice the associated Nyquist rate 

2n J-, 

n 
lim I f ( r )  - ak, f ( t  - kT)I = 0 (100) 

n + -  k =  1 

uniformly for -m < t < 00. Here the coefficients a h  = 
(- (cos T T ) ~  ( i )  are  independent of the detailed struc- 
ture of the signal f(t). This result provides a sharpening of a 
previous result by Wainstein and Zubakov [ 1141 which re- 
quires a sampling rate in excess of three times the Nyquist 
rate. Beutler [94] showzd that  there exist coefficients for re- 
covering the signals with sampling rates required to exceed 
only  the Nyquist rate. However, the explicit form for such 
coefficients are not given and in general they are not indepen- 
dent of the  structure of the  predicted  functionf(t). 

Maeda [ 1 15 ] treated  the sampling theorem for band-limited 
periodic signals [ 171 with  nonuniformly spaced points. These 
results were extended by Isomichi [ 1161 to band-limited sig- 
nals with finite energy. 

Among other  extensions of the WKS sampling theorem are 
the integral sampling [ 11 71 in which the sample is taken over 
a whole sampling period T and the sampling for signals as solu- 
tions of nth-order linear differential equations  with  constant 
coefficients [ 1181. Holt, Hill, and Linggard [ 1171 developed a 
network that allows integrating the  input signal f(t) over the 
whole sampling period. The sampled output signal f * ( t )  of 
such a circuit is expressed as 

f*(t) = 2 {rT f(7) d7 - rT-T f(7) d7} u(t - nT) 
n = O  nT-T  nT-2T 

(101) 

where u ( t )  is the  unit  step  function.  In  addition to his detailed 
presentation  and applications of the sampling theorem, Lathi 
[ 181 considered what is termed  “natural” sampling where very 
narrow pulses of finite width are considered instead of the in- 
stantaneous impulses of the WKS sampling theorem. Kishi and 
Maeda [ 1181 considered nth-order linear differential equations 
with constant coefficients and showed that  their  solutions 
obey sampling theorems similar to those of band-limited func- 
tions. Their main result is that a waveform f ( t )  which is a 
finite linear combination of eUr or tn sin (ut + 8 )  can  be 
constructed  from a finite  set of its sample values at equal inter- 
vals. In  addition  they showed that f(t) can  also  be constructed 
uniquely in terms of the samples of the derivative f‘(t) as well 
as f ( t ) .  Maeda [ 1 191 showed the relations between such signals 
[ 11 81 and band-limited  signals, and then gave some theorems 
[ 1201 for the  interpolatory  functions. Kishi and Maeda [ 12 1 ] 
followed this  treatment  by an application to waveform 
approximation. 
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For integral transforms  with  infinite limits, like the Hilbert 
transform,  Linden [ 5 1 ] gave a  sampling  expansion in terms of 
the samples of a  bandpass  function  and its Hilbert  transform. 
Papoulis [ 14, p. 1301  presented  a sampling expansion for  a 
signal represented  by the  infinite limit Hilbert  transform.  The 
sampling expansion  for the  infinite limit Laguerre-Lt(x) trans- 
from (33) was presented in Section 111-F. 

Wunsch [ 1221  and  Kioustelidis [ 1231  considered  sampling 
of duration-  (or  time-)  limited  functions,  instead of band- 
limited  functions.  Recently  Butzer  and Splittstosser [ 1241 
presented  a  more  detailed  treatment of such  sampling  expan- 
sion  for  continuous  duration-limited  functions whose spec- 
trum is absolutely integratable. They also gave a  bound on 
the  truncation error of such series.  Slepian and  Pollak [30] 
treated  the  problem of reconstructing  a finite-duration-finite- 
energy (FDFE) signal that is observed  through  an ideal low- 
pass filter. They  showed that such  construction  could be per- 
formed  without  error  by  expanding  the  time-limited signal as 
a series  of prolate  spheroidal  functions. Stuller [ 1251 used 
certain time  domain  sampling  arguments,  along  with the series 
of prolate  spheroidal  functions [30],  to derive  an interpola- 
tion formula for  the  FDFE signal from  equally  spaced  samples 
of the observed  waveform. He showed that  in  the noiseless 
case, perfect  reconstruction of the FDFE signal can  be  ob- 
tained  when the sampling rate  exceeds  one  half the minimum 
sampling rate specified by the WKS sampling  theorem.  The 
limitations  imposed  by  measurement  noise  were also 
described.  Kramer [ 1261 developed a very useful  property of 
the band-limited  functions  in the sense that  in digital computa- 
tions  “continuous”  operations are replaced by “discrete”  ones. 
In particular he gave explicit relations between the samples  of 
the higher derivative of a  band-limited  function f(t)  and the 
samples of f(t). This was also done  for  bandpass  functions. 

V. DIFFERENT METHODS, CONDITIONS, AND 
REPRESENTATION OF THE SAMPLING SERIES 

In  this  section we will outline  most of the  methods used in 
deriving the WKS and the WKSK sampling series. The  empha- 
sis here is to relax the conditions  on  the  sampled signals. This 
includes  sampling for  not necessarily finite  energy signals,  i.e., 
signals whose transforms are not necessarily square  integrable 
but may be  absolutely integrable. Besides the usual  finite limit 
integral representation of the signal, a triple integral repre- 
sentation,  that  allows different physical  interpretations will 
also be presented. This will be concluded  by  a  summary of the 
various attempts to unify  the different aspects  of the sampling 
expansion in the sense of a  general  mathematical setting which 
we  will not pursue  here in much detail. We refer the interested 
reader to  the original papers. 

A.  Different  Methods and Conditions  for Deriving  the 
Sampling Series 

In  Sections I1 and 111,  we presented the WKS and the gen- 
eralized WKSK sampling theorems  and  offered the usual 
proofs  that included contour integration  for the sampled  func- 
tion f ( t )  and  orthogonal  expansion  for  the  kernel K ( x ,  t )  or 
the transformed  function F ( x )  in 

where both F(x)  and K ( x ,  -) are assumed to be square inte- 

grable, i.e.,F(x),K(r,-)EL,(I)  andwhereIis a  finite interval. 
In the case of the WKS sampling  theorem K(x, t )  = eur E 
L z ( Z )  and so it is the purpose of this section to investigate 
relaxing the  condition F ( x )  E L 2 ( I )  on  the transformed  func- 
tion F(x) .  

A simple  mode of proof was offered  by Brown [ 1271 for 
the WKS sampling  theorem which employed the  prototype 
Parseval equation ; that is, when g, h E L2 (I) and c, , d ,  are 
their  respective  Fourier coefficients, for  the orthogonal  expan- 
sion in terms of { K ( x ,  t , ) } ,  then 

where 

I IW,  f n ) l l :  = J l K ( x ,  tn)12 d x .  
I 

Brown considered the band-limited  function 

f(t) = [ eiXt F(x)  dx ( 1  03) 

and  employed (102) with g ( x )  = eixt,   h(x) = F(x);  K ( x ,  t , )  = 
ei(nnx’a). Clearly, d ,  = (1/2a)f(nn/u), IIK(x, tn)ll$ = 20,  and 

c, = S,(t) = 
sin (at - nn) 

(ut - nn) 

f ( t )  = 1: eixt F ( x )  dx = 2 f (:) sin (at - nn) 
(1 05) 

,=-- (at - nn) 

as the WKS sampling series. 
Unless otherwise  indicated,  a  summation like Z c, will as- 

sume limits as in (102) while Z” c, signifies the  nth partial 
sum. It is clear that  this  method of proof is valid for  the 
WKSK sampling theorem  when c, and d ,  are given in  (23) and 
(21) as Fourier coefficients for  F(x) and  K(x, t )  of (61), re- 
spectively. The WKSK theorem  can also be  proved  by using 
the  Schwarzinequality [91 onf(t)in (19)-(20): 

2 

and  noting  that  the  orthogonal series inside the last integral 
converges in  the mean to  the square  integrable  kernel K ( x ,  t )  
as 

~ ( x ,  t )  = 1i.m. S,(t) ~ ( x ,  t,). (107) 

In  attempting to move  away from  the  condition  of  square in- 
tegrability, or  finite  energy,  band-limited signals, Brown [ 1271 
raised a  question  concerning  the  necessity  for  a  “new  mode of 
proof” when F ( x )  (E Lz(Z).  He  gave the example of  Bessel 

N-r- I n l 6 N  
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function of zeroth  order 

Jo(nt) = - 

which is band-limited to  [-IT, a ]  and  with  a  Fourier trans- 
form F(x) = (2/4-) which is in L1(-n, n), i.e., Pm 
I 2 / d n T l  dx < 00 but  not  in L2 (- n, n). Hence, his version 
of  using the above prototype Parseval equation  or  the  other 
method of  using the  Schwan inequality [9] cannot be  used 
for  they  both require F(x) E L (- n, n). To answer such ques- 
tions, we will make use  of the Holder  inequality, as opposed 
to its special case, the Schwarz inequality,  and the many ex- 
tensions of the Parseval equation [ 291. Among the various 
methods  for relaxing the  conditions  on  F(x),  both  the Holder 
inequality and an  extension of the Parseval equation allow 
the validity of the WKS sampling expansion (105) when 
F(x) E L ( -a ,   a ) ,  which  answers  Brown's question of (108) as 
a special case. 

Before  we introduce  the Holder inequality  and the proofs of 
the sampling theorems, we  will present  here  a few definitions 
and  state  some basic  and  very clear results [22]. 

Let f(x) E Lp(a,  b )  mean that  f(x) is Lebesque  measurable 
and  that J: If(x)lp dx < 00, where we  have already used its 
two usual special cases L z  and L 1 for p = 2  and  1, respectively. 
The norm l l f l l p  of f i s  defined by 

(109) 

It is clear that when p = p' = 2  this  reduces to Schwarz's 
inequality. 

2) Parseval's Equation: Consider the  Fourier series expan- 
sion for g(x) and h(x) in terms of the  orthogonal  functions 
$,(x) = einx on  the interval [-n, n] with the  Fourier coeffi- 
cients c, and d, ,  respectively. The following  are some relaxed 
versions  of the Parseval equation: 

then 
If  1 < p < m a n d g E L p , h E L p f ,   l / p +   l / p ' = l ,  

C c n d ,  is (C, 1)  desaro summable to  3 g(x)h(x)  dx. 1: 
(115) 

The case p = p' = 2 is the  prototype Parseval equation used 
by Brown [ 1271. The case  of interest  here, p = 1 is taken to 
correspondtop'=wand(ll5)issti l lvalid.  F o r f E L 1 , t h e  
series converges absolutely  and  uniformly when g E C z .  A very 
brief  proof for Brown's example of Jo(nt) in  (108) will make 
use  of the Parseval equation  (1  15). Since eiXr E La(- n, n) 
and g(x) E L (-n, a), its sampling series is (C, 1) summable 
and hence convergent  when  we appeal to Hardy's theorem 
which requires that f ( n )  (sin n(t - n) ) / (n ( t  - n ) )  = o(l/n). 
This is the case since f ( n )   = J o ( n n )  is bounded,  which can  be 
shown  by using the Holder  inequality  (1  14) on (108). 

The first proof we  give here  for the WKS sampling theorem 
makes immediate use of the Holder inequality  (114).  Let 
S N ( t )  and  DN(x) be the partial sums of the series expansion 
for f ( t )  and K ( x ,  t )  = eixr in (105)  and  (107), respectively, and 
consider 

Let f(x) E Ck mean that  f(x) is k times  continuously differ- 
entiable. Also f(x) E BV means that  the  function is of bounded  DN(x)] F(x) dx. ( 1  16) 
variation,  which is equivalent to  saying that fis the  difference 
between two  monotonic  functions.  The following  inclusion 
relation may  prove  valuable. For k 2 0,O < q < p < 00, 

C a C ~ ~ ~ C C ~ + ' C C ~ C ~ ~ ~ C ~ C L a C L p C L q .  (110) 

As  we had  considered in  Section II€ (Theorem  II€-1), the 
nth partial sum SN(X), 

is said to  be (C, 1) Cesaro summable if the  arithmetic  mean 

convergw. Hardy's  theorem states  that if c, = o( l /n)  then  the 
(C, 1) Cesaro summability implies  convergence. SN(X) is said 
to  converge, in the  mean of order p ,  to  f(x) if 

b 

N !  If(x) - SN(X)IP dx = 0. (113) 

1) Holder  Inequality: For a  finite  or  infinite  interval  let 
gELpandhELp~,wherel<p<=,(l/p)+(l/p')=l,then 

If  we  use the Holder inequality (1  14) we obtain 

U P  

If(r) - SN(t)l  < [[ Ieixt- DN(x)Ip dx] 

1lP' 

*[J: IF(x)lp' dx] . (117) 

Hence the series in  (105) converges to  f ( t )  when we know  that 
DN(x) converges in  the mean of order p and F(x) EL,* ( -a ,   a ) .  
When p = 00, which is the case, then  (105) is valid  when F(x) E 
L ( -a ,   a ) .  By employing the Parseval equation  (1  15), we  can 
find other conditions on F(x) for  the WKS sampling theorem. 
Also the Holder inequality may be used to  relax the  condition 
on F(x) in  (19)  for  the generalized  sampling theorem.  This of 
course  depends on  our close examination of the convergence, 
in the mean  of order p ,  of DN to the particular  kernel  K(x, t ) .  
These extensions  and  others including  generalized functions 
and sampling in n dimensions for  the WKS and the WKSK 
sampling theorems are presented in [ 291. 

Boas [ 1281  presented  a simple  proof for  the Shannon 
sampling theorem using  well-known summation formulas.  He 
illustrated  this  method by using  Poisson's summation  formula 
to  derive the sampling expansion including the case  when the 
Fourier  transform is integrable.  Also he used such  expansions 
to  derive an estimate  for the aliasing error which results when 
the sampling series is applied to  a  function which is not band- 
limited (see Section VI-B). 
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B. Difderent  Representations of the  Sampling  Series tion of 
As we state any sampling theorem for a band-limited func- 

tion f(t) in terms of its discrete values f(tn), we  involve two 
different representations. The first one is the integral repre- 
sentation  for  the general band-limited signal 

(19) 

which in  our various proofs implies a series representation, 
i.e., the sampling expansion 

where S,(t) = S(t, t n )  is the sampling function  (21).  The con- 
verse of the sampling theorem is to have (20) impIy (19). 
Theorems in  both such  directions  and  in  the  direction of WKS 
versus WKSK sampling representations  are given in [34]  and 
[ 341,  [281, respectively. 

Another familiar and very useful representation is the con- 
tour integral one, which was  used in derivingvaxious extensions 
of the sampling theorems [ 241, [54], [ 561, This method em- 
ploys the residue theorem, to establish a series expansion, 
which states  the following. 

Theorem V-B-I: "Any function h(z)  which is meromorphic 
(analytic except at a finite  number of points) inside C, for 
every R ,  where CR is a circular contour of radius R centered 
at  the origin, may be represented by an expansion of the form 

h(z)  = - Rzj {%} 
i 

if the integral 1/(2ni)$cR (h(f'))/(f' - z )  d f '  along CR approaches 
zero as R -+ 03.'' In (1 18), Rzi denotes  the residue at (zi> and 
zj stands  for  the  summation over the poles of h( f ' ) .  This resi- 
due theorem can be used to produce a variety of sampling  ex- 
pansions.  All we need to do is to let h ( z )  = ( f ( z ) ) / ( g ( z ) )  and 
choose the proper function g ( z )  that has  zeros  at  the sampling 
points of f ( z ) .  This was  used [24]  to derive the sampling  ex- 
pansion (1  15) by letting f ( z )  have a finite  Fourier  transform 
representation and g ( z )  = sin z. The corresponding expansion 
with the  function and its  first derivative (42) required g ( z )  = 
sin' z .  The same method was  used [561, [571 to derive the 
sampling expansion with N derivatives for  the general band- 
limited integral transform (19)  by  letting h(z)  = f ( z ) / g N + ' ( z ) .  
In  the specific case of f ( z )  as a band-limited Hankel transform 
associated with the Bessel function Jn(z), the choice is h ( z )  = 
f (z) /J:+'(z) .  Here the sampling points are in,,, , m = 1, 2, - - , 
the zeros of Jn(z). The cases of N = 1  and N = 2 for sampling 
with the  function  alone and the  function and its first deriva- 
tive are presented in (26) and  (45),  (46), respectively. 

A somewhat novel method for deriving the sampling expan- 
sion of the WKSK sampling theorem was introduced by 
Haddad and Thomas [ 1291 then  by Haddad, Yao, and  Thomas 
[ 1301. This method represents the sampled function f ( t )  in 
(19) as a triple integral where two of its possible six permuta- 
tions correspond to  the  two most used methods of derivation, 
the orthogonal expansion and contour integration. The signif- 
icance of this  representation lies in the  fact  that each of the 
six possible permutations  represents  an interesting physical 
interpretation.  The derivation of the  triple integral representa- 

P r b r  b 

(1 19) 

assumes f(t) as a finite limit transform of F ( x ) .  The kernel 
$(x, A) of this  transform is a solution  of  the nth-order self- 
adjoint  boundary value problem and F ( x )  in (1 19)  is  the non- 
homogeneous term of its associated nonhomogeneous problem 
with G (x, f', z )  as its Green's function [ 1301. 

C. A  Unified  Approach to the  Different  Aspects  of  the 
Sampling  Theorems 

In  this  section, we  will only summarize what was done in 
the  direction of a unified and rigorous approach to the sam- 
pling expansion, since such development needs more mathe- 
matical background than  this review paper is intended to deal 
with. Beutler [911 presented a unified approach to the sam- 
pling theorems for  (widesense)  stationary random processes 
as it rests upon the concept of Hilbert space. His treatment 
included, as he had  done in a more  recent  paper [94],  the 
recovery of the process x ( t )  from  nonperiodic samples, or 
when any  finite  number of the samples are missing or deleted. 
He also gave conditions  for  obtaining x ( t )  when only the past 
is sampled and a criterion for restoring x ( t )  from a finite  num- 
ber  of consecutive samples. 

Yao [ 131 1 considered a number of cases for  the WKSK 
sampling theorem as it is represented by  the band-limited 
integral transforms with kernels including the Bessel, expo- 
nential, sine and cosine functions. He considered such general 
finite energy transforms as a realization of the  abstract: 

I )  Reproducing  Kernel  Hilbert  Space H {RKHS): This is a 
Hilbert space of functions defined on a set T such that  there 
exists a unique  function  or kernel K ( x ,  t )  defined on  the cross 
product T X T such that K (-, t )  E K, for all t E T and that 

x ( t )  = ( X ,  K(-, t ) )  E x ( w ) - K m d w  (120) 

for all t E T and for all x E H. The  function K(o, t )  is the 
reproducing  kernel of the RKHS. As one  of Yao's examples, 
he proved that  the class of fiiite energy, Fourier-transformed 
band-limited signals is a realization of the  abstract RKHS. He 
also made the same statement  for  the Hankel transform, indi- 
cating the same method of proof. This is not so clear  since his 
proof in the case of the Fourier  transform uses the convolu- 
tion theorem which is not as  feasible or simple in  the case  of 
Hankel transforms [ 4 4 1 ,  [ 491. 

We may remark here that  the reproducing kernel K ( t ,  T )  is 
different  from K ( x ,  t ) ,  the kernel of the integral transform 
(19),  but  it is very much related to S(t ,  7 )  

S(t, 7 )  p ( w ) l K ( o ,  7)1*dT = p z ( w ) p ( w ) K ( w ,   t ) K ( w , d u  

I 

J Z  I 
(121) 

as it represents, aside from  the norm  factor,  the impulse re- 
sponse of a time-varying system when a general integral trans- 
form with  symmetric kernel K ( x ,  t )  (30H31) is used. Indeed 
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we have shown [ 361 that  in  this general case and its WKS sampling representation 
.~ 

and even  closer to (1 20.) we  have 

where S(t ,  7) is defined in (1 2 1). 
Yao [ 13 11 also  discussed the relevance  of the RKHS for 

extremum problems for general integral transforms and finally 
gave an  upper  bound  for the  truncation  error  (173) of the 
generalized WKSK sampling  series, which we  shall present in 
Section VI-A. 

Among other information theoretic results, Jagerman [ 1321 
presented the approximation of band-limited functions  in  ah 
abstract setting and derived  an upper  bound for  the  truncation 
error of the sampling  series  (see Section VI-A). 

As  we mentioned in Section 11-A, a general treatment of the 
cardinal or sampling functions was presented by McNamee, 
Stenger, and Whitney [20]. They showed that  the cardinal 
functions provide a link between the  Fourier series and Fourier 
transform.  They also linked the cardinal functions to  the 
central difference in numerical analysis. A subject similar to 
this is Schoenberg’s  work [ 1331 in extending the cardinal 
series expansion to splines,  which  we  will present in Section 
VII-C. 

A more abstract generalization of the sampling theorem was 
established and proved by Kluvinek [ 1341 in terms of abstract 
harmonic analysis. In this analysis, the role of the real line, in 
the case  of the band-limited integral, is replaced by an arbi- 
trary locally compact Abelian group and  the role of the sam- 
ple instants (nnla) in (105)  by  its discrete subgroups. 

VI. ERROR ANALYSIS I N  SAMPLING REPRESENTATION 
In  this  chapter, we  will present a review of the various errors 

that may  arise in the practical implementation of the sampling 
theorems. This includes the truncation  error which results 
when only a finite  number of samples are used instead of the 
infinite samples needed for  the sampling representation,  the 
aliasing error which is caused by violating the band-limitedness 
of the signal, the jitter error which  is  caused by sampling at 
instants  different  from  the sampling points,  the round-off 
error, and the amplitude error which is the result of the uncer- 
tainty in measuring the amplitude of the sample values. A 
comprehensive treatment of some of these errors  with  their 
upper  bounds were presented by Thomas and Liu [ 1351 and 
Papoulis [ 141, [ 1101. 

As we mentioned in the  Introduction,  attention should be 
given to  the different  notations used  especially for  the signal 
representation as a truncated inverse Fourier  transform  [see 
(1) and (124)]. 

A.  The  Truncation  Error  and Its Bounds 
For  the band-limited  signal 

(125) 
(at - nn) 

the  truncation  error ET is the result of considering the partial 
sum f N ( f )  with  only 2 N  + 1  terms of the  infinite series (125), 

Unless otherwise indicated we  will  use 8~ for all the different 
truncation errors. 

Tsybakov and Iakovlev [ 136 1 gave the first truncation  error 
bound as 

for - T  < t Q T and where A t  < (l/W), W is the highest fre- 
quency of f ( t ) ,  and E is  the total finite energy which is camed 
by  the signal f ( t ) :  

W 
E = IF(o) lZ  do. (128) 

Helms and  Thomas [ 541 considered the  truncation error when 
f ( t )  is approximated by  the following finite sum 

K+N sin (2 Wnt - nn) 
, O < N < m  (129) 

n=K-N 

with a = 2nW in (1 25); K is  an integer which is  assumed to be a 
function of t such that 2Wt - (1/2) < K ( t )  Q 2Wt + (1/2), and 
N is a fixed integer. Thus the  truncation  error & T ( f )  = f(t)  - 
f N ( f )  will approach  zero as N approaches  infinity provided 
that f(t) is band-limited to a = 2nW. In  their  treatment  they 
considered a band limit rW < W with 0 < r < 1 which, as  we 
shall see, improved the  bound  on  the  truncation  error: 

where M  max If(t)l for all t ,  q = 1 - I .  As an example, when 
N = 24, W = 1000 Hz, f(t) has the highest frequency of 750, 
the  truncation  error &T of (1  30) is bounded by  0.068. 

A similar bound was  given by Jordan [ 1371 

When f ( t )  is approximated by an asymmetrical partial sum, 

the  truncation  error 8 T ( t )  = f(t) - f N , , N ,  is also shown to be 
bounded as 

To obtain an upper  bound that decreases faster  with N than 
that of (130),  they  [54] considered a “self truncating” sam- 
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pling expansion 4 

with  its Nth partial sum fN and the corresponding  truncation 
error &(t)  = f ( t )  - f N ( t ) .  With the choice of m in (134) to 
equal  approximately the  optimum value (Nqn)/e  they gave a 
new upper  bound: 

IgT(t)l < 1.48M(qN-  1.74)-’/2(3.2)-qN.  (135) 

To compare  this  upper  bound to that in (1  30)  they considered 
the same  values  of the last example to .find  that  for  (1  35) 
IbT(t)l< 6.8 X M ,  which is 1/100 as large as the  bound 
of (1  30). 

When they considered the  truncation  error  for  the sampling 
expansion  with the  function and its first -derivative the  bound 
was the same as that of &T(t )  in (130). However,  when they 
used the same series with the self-truncating  factor as in  (1  34), 
the  bound  on  the  truncation error was  derived as 

l&T(t)i < 2.1M(qN-  0.87)-1/2(3.2)-24N  (136) 

where M and q are  defined in  (1  30) and m in the  “self-truncat- 
ing series,” of the  function  and  its derivative, is  an  integer 
which is set  equal to  approximately the  optimum value  of m = 
(2Nqn/e). For  the same example of &T in (130)  the error 
I & T ~  of (136) is bounded  by 8 X lo-”. The  detailed  proofs 
for  (130),  (133),  (135), and (136)  are  presented in 1541 where 
contour  integration was  effectively  and  elegantly  used as  a 
powerful  tool.  The  convolution  theorem was also employed 
for deriving the sampling series (134), since its self-truncating 
factor is the  mth repeated  convolution of a  gate  function P ~ ( W )  
with b = (2qW/m).  Petersen [601 also presented  a  treatment 
for  the  truncation error. 

An upper  bound on  the  truncation  error was  given by 
deFrancesco [ 1381. Razyner  and  Bason [ 1391  used the error 
formula  for Lagrange interpolation [25]  to derive an expres- 
sion for the  truncation  error  bound in terms of the sampling 
rate and the Nyquist frequency  for regular  sampling and cen- 
tral  interpolation.  The usual error  formula [ 25 ] for interpola- 
tion over N samples  of g ( t )  is 

where g N ( [ )  denotes  the Nth derivative at some  undetermined 
5 in  the sample  range, t is the  interpolation  point,  and tu are 

I I I I 
0.2 0.4 0.6 0.8 1.0 r 

Fig .  4. R:  Ratio of Brown’s truncation bound to  Yao and Thomas’ 
bound.’ 

tighter  bound  than  that of (1  33) was  given by  Yao  and  Thomas 
[551 with If(r)l < M  for all t ,  0 < r  < 1: 

which they  extended to the case  of  sampling signals f ( t 1 ,  t2 ,  - , t m )  in m dimensions  (371, 

laT(t1, * * . tm)l Q Mlsin  2nW1 tll - - Isin  2nWmt,l 

and to sampling with the  function and  one derivative (42), 

When the restriction If(t)l < M is replaced  by the  condition 
that f ( t )  has a  finite energy E (1  28), i.e., f ( t )  E L2 (- m,  m) and 
that f ( f )  is band-limited to  rW Hz, the  bound  (1 39) would  be 

Brown [ 1401 used real analysis methods to  obtain  bounds  that 
have the same asymptotic behavior as that of (142) as N1, N2 + 
m for F(w)  E L2(-m, m) and F ( o )  E L1(-m, m). For  the 
first case  of finite energy the  error  bound was  given as 

the  arbitrary sample locations.  In  terms of the  total energy E 
and the cutoff  frequency W, they derived a  bound  as In comparing (143) to  (1421, note  that W = (1/2)  and  that 

(143) represents  an  improvement over (142)  when r is  close to 
1.  This is clear from  the  ratio R of the  upper  bounds of (143) 

(138) and  (142), 

for samples at regular equal intervals h in equal  numbers on 
either side of the  interpolation  point.  In  order  that  this  inter-  upper  bound of (143) 
polation converges, it is sufficient to  have h < (l/nW) which R upper  bound of (142) requires  approximately  a 50 percent  faster sampling rate  than 
that required by the sampling theorem  with h < (1/2W). A and Fig.  4. 

- .  - G (144) 
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For  the second  case  of F(w) E L 1 ( -nr,  m), i.e., 

rnr  

For It1 < (Nnla), he  presented the following bound  and  at- 
tributed i t   to  Jagerman [ 143, Theorem  1 .] : 

where It1 Q 3 and (1  54) 

Later Papoulis [ 1441 used some of his results to  show that  for 

(147)  error is bounded  by the  mep-square value  of the error q(w) co=-ln 1 [ g 1 +sin- a signal with  finite energy E the maximum of the  truncation 

1 - sin- resulting in approximately elwr by  a  truncated  Fourier series, 
m 

Piper [ 141 ] used real analysis methods to  derive a truncation E 
error  bound  for  finite energy signals that are band-limited to  
(-m, nr): 

+ (N - m)-'] (148)  for  any t .  Then when  we expand and  use  Parseval's equation, 

where m is the nearest  integer to t and I t 1  <N. This  represents 
an  improvement over the  bound  (142) of  Yao and  Thomas ] . (156) 

[55] for 0.73 < r < 1  and that  (143) of  Brown [ 1401 for all 
values  of r. A tighter  error  bound than  that of Helms and In  terms of the energy  of such  error, E, = J-= I&T(r)12 d t ,  the 
Thomas [ 541  was  derived by Hagenauer [ 1421. He considered bound  is 

I&T(t+7) l2GE [ sin (UT - nn) 
Inl>N ((17- nn) 

. -  

the  truncated sampling series 
lbT(7)12 G 2 sin2 u(7 - nT) 

W )  +N, sin (wot - nn) . (157) 
fN,,N,(t) = f($) (1  49) 

n =K(r) -N, (oar - nn) 
n l n l > ~  a 2 ( 7 -  nT12 

For signals with finite power 
with oor/n - 4 < K ( t )  < wot/n + +,then used aself-truncating 
factor n 

U 

6 wo t / n  J n + 1 1 2 ( 6 w o t )  ("O) the mean square value  of &T is bounded  by  the maximum 

with  the sampling series v(wAf) of Iq(0)l in (155) : 

m IgT(t + 7)l2 < l q ( o M ) 1 2  If(t)12 (159) 

(oor - kn) (151) where the average is with  respect to  t .  In  the derivation  of 
(1  59), Papoulis commented  that  the sampling expansion 

where 0 <6 < 1, (2n + l)!! = (2n + 1)(2n - 1)(2n - 3) * a * 3 * 1 
and Jn+l12 is the Bessel function of the  first  kind of order n + 

f(t+?) (1/2). We note  that  this self-truncating  factor is similar to  that n=-m 

00 

f ( r + T ) =  
Sin (UT - nn) 

(160) 
(a7 - nn) 

used in (134) with 6 = 4 and 00 = 2W. The  bound  on  the 
truncation  error &T = f ( t )  - fN,,N, was  given as used is not valid in general for  finite  power signals; however, he 

showed that  it holds  in the following  mean square sense 

T = -  (161) 
n 
U 

where Cn,k = ($) (k + n)! /n! .  where 1i.m.  stands  for "limit in the mean."  He then remarked 
lo]  presented and proved the bound that  such  results [ 1441  can  be extended to stochastic processes 

for  the  truncation  error of (1  26)  by  formally replacing time averages by  expected values [69], 
[9 l ]  . He also extended similar results to two dimensions  and lsin at1 f (nn/a)  c a Inl>N It - (nn/a)I' tainty principle in  one and two dimensions [ 145 I .  l&T(t)l  - (1  53) Hankel  transforms and then related  such  results to  the uncer- 
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Mendelovicz and Sherman [ 1461 used a generalization of 
Papoulis’s approach [ 1451 to give a least upper bound (1.u.b.) 
on the  truncation  error  for energy bounded band-limited func- 
tions. This was done for  the WKS sampling expansion (1 25) 
and the self-truncating series (134).  They also treated  the 
problem of finding an optimum sampling function  that mini- 
mizes the  truncation  error. These results compared very 
favorably with  those of Yao and Thomas [55] and  Brown 
[ 1401 especially when sampling  above the Nyquist rate.  They 
concluded that a few percent oversampling  gives a significant 
improvement in error  performance. In comparison with the 
cardinal series  which  converges  slowly but is best at  the 
Nyquist rate,  they suggested other series for over  sampling that 
may  converge faster. Later Mendelovicz, Sherman, and 
Murphy [ 1471 presented a more detailed treatment where 
they considered both  stochastic and deterministic signals. 

Jagerman [ 1431 presented various estimates for  the  trunca- 
tion error under some appropriate constraints on  the signal 
f 0 )  

The estimate in (1  54) is one of his first theorems for f ( t )  E 
L z ( -  00, w). A corollary to this theorem is the special  case 
when It1 f n/2a 

(163) 

With the different condition t k f ( t )  E L z ( - w ,  w), k positive 
integer, N 2 1, he gave the following estimate 

where h = (n/a) and 
1’2 

E k  = [I: tzklf(t)lz dt] . (165) 

An immediate consequence of (1  64) is the special  case for 
It1 2 (n/2a): 

It1 < _If_. (166) 2a 

For  the  truncation  error 8 T ( t )  (135) of the Helms-Thomas 
“self truncating series” (134)  (with a = 2nW) the  estimate  for 
It1 2 (n/2a) is 

where 0 < q < 1,  v = (nq/e) (N - (1/2)), N 2 1, rn = Uvll + 1 ; 
f(x) has radian band width  (1 - 4)a and S = l.u.b.-,<,<, 
f(nn/a). Here [ v ] l  is the integral part of u, i.e., it is the unique 

integer satisfying v - 1 < [ u ]  2 v. Jagerman [ 1431 also gave 
an estimate of the  truncation  error in terms of the 1.u.b. of 
the sampling  series error 

His estimate  for 0 < q < 1, v = (nq/e)(N + (1/2)), N 2 1, m = 
I v D  + 2, It1 2 (n/2a), and f(x) having radian bandwidth (1 - 
6 ) a  is 

Other estimates including when the  conditions of both  (164) 
and (1  70) are met were  also presented. 

The most recent  treatment of the  truncation  error,  for  deter- 
ministic functions as  well  as  wide-sense stationary processes, 
was presented by Beutler [ 1481.  In  contrast to other methods, 
his method depends on  the use of the Dirichlet kernel repre- 
sentation  for  the  truncated series and on  properties of func- 
tions of bounded variation. Other integral kernels were  also 
employed. It is known that  the  truncated series for  functions 
f ( t )  with  absolutely integrable Fourier  transform is  slowly 
convergent [ 141 1.  As we indicated earlier, bounds for such 
functions were found [55] , [ 1401, [ 1431 provided that  there 
is a guard band 6 ,  i.e.,  provided that  the  Fourier transform 
F(w) of f ( t )  is supported on [-n + 6 ,  n - 61. Beutler [ 1481 
showed that a similar upper  bound can be obtained  without 
the guard requirement which he replaced  by requiring that  the 
Fourier  transform of f ( t )  be of bounded variation in the 
neighborhood of -n and n. 

I )  Truncation Error  for  the Generalized WKSW Sampling 
Expansion: As  we mentioned in Section VC, Yao [ 13 1 ] was 
the first to give an  upper  bound for  the  truncation  error of the 
generalized WKSK sampling expansion. He  considered this 
and other expansions as a realization of his abstract RKHS of 
functions f ( t )  and the reproducing kernel K(s, t )  defined on a 
set T (see Section V-C), 

f(t) = f ( t n ) $ n ( t ,  f n ) .  (171) 
nE I 

Here $ n ( t ,   t n )  is a sampling function where $i(ti, fj) = 6i,j and 
the series (1 7 1) is uniformly convergent for all t E T. He con- 
sidered the partial sum f o ( t )  of (171) with a finite  number of 
terms Z‘, as a proper subset of Z, and showed that  the  trunca- 
tion error 

E;rT(t) =f(t) - f o ( t )  = f ( t n ) $ n ( t ,   t n )  (172) 
n E ( I - 1 ’ )  

is bounded as 

laT(t)l2 E -  c ~ f z ( ~ n ) l l ’ z  * [  c iKZ( t ,  t n )  , [ nEI’ nE(I-1’ )  rz 
f E H “  (173) 

for  any f E H” where HI’ = {f€ H:l l f l l :  5 E } ,  i.e.,  finite  en- 
ergy  signals.  Here the  constants cn are defined as c n f ( t n )  = 
(f, &), n EZ’, where fo is an  element of smallest norm 
satisfying 

(fo, dn) = bn, n €1‘ (1  74) 
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{ b f l ,  n E I f }  are fixed constants, {&, n E I }  is a complete sampling expansion.  In  this  section we will present estimates 
orthonormalset  for  the  finite energy functions,  and Jln(t, t n )  = for  the aliasing error  for band-limited bandpass functions 
c,&(t, t n )  = c i  K(t, t n ) .  In the case  of the Shannon (WKS) and for  the generalized WKSK sampling theorem. 
sampling expansion, In  their review paper for  error problems in sampling repre- 

sentation, Thomas, and Liu [ 1351 showed that  the mean- 
sin n(t - n )  (174) square aliasing error is equal to twice the spectral power out- 

f(t) = f ( n )  
m 

n=-m n(t - n )  side the Nyquist range Io1 > 2nW: 

he considered only I' = {no( t )  - M < n < n o ( t )  + N} terms 
where no( t )  is the nearest integer to t and M and N are positive 
integers. The  truncation  error is 

and the upper bound was  given for  finite energy functions f as 

where 

E o =  
n0(2)+N+1,- 

f 2 ( n )  < E <=. (1  77) 
n = - - , n o ( t ) + M - l  

The  limits of the summations (1  75) and (1  77)  are  those of 

2)  Truncation Error f o r  Band-Limited Distributions (Gener- 
alized  Functions: Campbell [ 1 OS] established a bound  for  the 
truncation  error 

I - z'. 

(178) 

for the sampling expansion (78) of band-limited generalized 
functions  (distributions).  For f, g ,  S, q ,  52 as in Theorem 
IVG-1, let r be an integer and b a number such that If(t)l 5 
bltl' for It1 > (Nn/a). Also let j be an integer greater than r 
and  let 

cj = 4(9)j-' [ ( j  - l)!]2(2j)!j-'12n-3~ZbK  (179) 

where 

1 

K-' = exp (xz - 1)-' d x .  I, (180) 

Let 0 5 lati < Nn. Then the  estimate  for  the bound of the 
truncation  error &;T(t) of (1  78) is 

B. The  Aliasing Error and its  Bounds 
In practice, the signals that we deal with  are not necessarily 

band-limited in  the sense required  by  the Shannon sampling 
expansion. The aliasing error E A  ( t )  = f ( t )  - fJt) is the result 
from applying the sampling theorem  representation f s ( t )  to 
signals f(t) with samples f ( n n / a )  even when they  are  not band- 
limited or band-limited to different  limits  than  those us&d in 

E [ ( f  - fJ 1 - -'J @ff(o) d o  (182) 
Iwl>2nW 

where E stands  for expectation value and @ff is the power 
spectral  density of f ( t ) .  However when  an optimum prefilter 
is used then  the mean-square  aliasing error is reduced to one 
half  of the  error without prefiltering (182). In the deviation 
of (182),  the sample for f s ( r )  was taken  at ( n / 2 W )  - CY where 
a is uniformly  distributed  in  the interval [0, (1/2W)I.  The 
phase  averaging process resulted in a widesense  stationary pro- 
cess. Brown [ 1491 considered the samples at ( n / 2 W )  and 
showed that  the  meansquare  error  is less than  or  equal  to 
twice that of (182). He also added that his result cannot be 
improved without  additional processing such as the above ran- 
dom phase averaging or prefiltering. It is clear that unless the 
signal  is band-limited to (-2nW, 2nW) there will always be an 
aliasing error when we sample at  the required Nyquist rate. So 
if there is any alias free sampling it must be based on a rate 
different  from  that of the Nyquist rate  or  in  other words 
sampling at unequally spaced instants of time.  To develop an 
alias free sampling, Shapiro  and Silverman [ 1501 found condi- 
tions on the sampling instants. They showed that various 
schemes with  randomly chosen sampling instants satisfy these 
conditions. This problem was later  treated  by Beutler [ 15 1 1.  

Weiss [ 1521 considered the aliasing error resulting from 
applying the sampling theorem to a function even when it is 
not band-limited, i.e., when F(w) does differ from  zero for 
101 > a. For F(w) E L 1  (-=, =), F ( o )  = F(-w), of bounded 
variation and 2 F ( o )  = F ( o  + 0) +F(w - 0), let f s ( t )  be the 
sampling series (125) with samples f ( n n / a )  of the nonband- 
limited function f ( t ) .  Weiss  gave an upper bound for  the 
aliasing error as 

IEA = If(t) - f$(t)l 5 - [ I F ( w ) l d o .  (183) 

Papoulis [ 1101 derived an upper bound for  the aliasing error 
in terms of the area of the spectrum EA (0) of such  an  error 

B = IEA ( ~ ) l  d o  (184) 

as 

IEA(f ) l  G 5 lsin at1 (185) 

where the upper bound can be attained. Brown [ 1531 showed 
that  the fust of the  four W e b  conditions, i.e., F(w) E L 1 (--OD, 
00)) is sufficient for  the validity of (183) with the  estimate as 

B 

r m  

As  we have indicated in  Section V-A, Boas [ 1281 used the 
Poisson summation  formula to derive the sampling expansion 
and the above two  estimates of Weiss [ 1521 and Brown [ 1531 
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for  the aliasing error. Brown then considered the same  aliasing 
error for  the  sampling  expansion of bandpass  functions  (63) 
[ 12, p. 2161,  where again F(w) does not necessarily  vanish 
outside the bandpass interval 1 ~ p  as in  (63).  The  bound  on 
this error is 

I f ( t )  - f s ( t ) l  G 2 I FWI d o  (187) 
L Z B P  

where f ,  is the sampling series (63) with  samples of f ( t ) .  He 
concluded  and proved [ 1531, [ 1541 that  the  constant multi- 
ple  in (186) and (187)  cannot be reduced further and so the 
crude  estimate  (1  87) is a  very good estimate of  aliasing error 
for almost all values o f t  except  those  for  which t is a  sampling 
point of the  form (nn/a). Standish [ 1551  showed that  a 
bound of the form 

IaA(t)l  g a ( t )  JU,,. IF(W)12 d o ,  --OO < t < (188) 

with a ( t )  independent of f and  bounded cannot hold  for all 
signals  of finite  energy (F(w) E L ~ ( - - o o ,  00)). Stickler [ 1561 
reported  the same bound as Weiss (183)  without  reference to 
Weiss’s result and then derived a tighter but cumbersome 
bound 

where 

h(x)  = smallest integer 2 1x1 and sgn x = c 1, x > o  
1, x < o .  

Then  he gave a  bound for  the aliasing error  when f ( t )  is band- 
limited but  with  a larger band oo than a ,  Le., wo > a: 

which  he  compared to  that given by  Papoulis (1  85) 

with the  comment  that  (189)  or  (191) is more  usefid than 
(1  85)  for some cases. 

The aliasing error bounds (1  83) and (1  87) were  extended 
by Mehta [ 1571 to  the case of the generalized WKSK sampling 
theorem  for  its  deviation  from  “the  generalized”  band-limited 
and  bandpass  functions, respectively, 

IZA(t)l G 2 a  lez IF(W)l d o  (192) 

lsA(t)l 2 a  
L e n s p  

IF(Nl d o  (193) 

where I is the interval on which {K(w, t,)} are orthogonal, as 
in  (19), R- is the bandpass region as in  (65). Mehta took 
a = IK(w, t)l for all real w but  it would  be  more practical to 
take a = max IR(w, r)l, which  does not  affect his derivation. 

C. The  Jitter,  Round-Off, and Other Errors 
The  amplitude  error is caused by the  uncertainty  in  the sam- 

ple  values due to either quantization  or to some  fluctuation 
where the round-off error may  be considered as a special case. 

The  jitter error results from  sampling a t  instants tn = nT + 
7, which  differ  in  a  random  fashion  by 7, from the required 
Nyquist  sampling  instants nT. As it turned  out [ 1351 the 
jitter  and  amplitude  errors are related and  require  very similar 
theoretical  treatments.  Thomas  and Liu [ 1351 gave a  thorough 
review  of both subjects  with  a  summary of the original work 
by  Franklin [ 1581, Lloyd and MacMillan [ 1591,  Stewart 
[ 1601,  Spilker [ 16  1 1,  Chang [ 1621, Brown [ 1631,  Middleton 
and  Petersen [ 1641,  and  Ruchkin [ 1651, on the  amplitude 
error,  and  by  Shapiro  and  Silverman [ 1501,  Balakrishnan [ 69 I ,  
[ 1661,  Brown [ 1671,  and  Brown  and  Palermo [ 1681 on the 
jitter problem.  Middleton [ 12, ch. 41  treated various sam- 
pling procedures  including the “jittered” samples. Papoulis 
[ 1101 also gave a  simple  treatment of the  jitter and the 
round-off  error  where  he utilized some  extensions of the 
sampling  theorem  which we presented  in  Section TV-I. In 
this section, we  will present the  bounds of both errors that 
were  developed  by  Papoulis  and refer the reader to  the above 
references  and in particular [ 1351. 

In his study of the error analysis for  the sampling  theorem 
Papoulis [ 1 101 applied (94) 

where w2 E ( n / T )  and w2 2 2wl  (instead of w2 2 w 1  in the 
case for f ( t ) )  and wo is such that  2wl < wo G 2w2 - 2wl,  to 
the round-off error 

where A n T )  is the recorded or  tabulated  sampled values which 
differ from  the  exact sampled values by E,. Using the cardinal 
series (92)  with wo = w1 and  sampled values R n T )  he  con- 
structed  the  function f r ( t ) ,  which differs from f ( t )  by the 
total round-off  error a,(t). Combined  with the above results 
in  (94)  he showed that  this  error &,(t) is bounded  by its own 
total energy E,; that is, 

Papoulis then considered the  jitter problem,  which arises 
when the sample values are not exactly  at the sampling 
points nT but are at some other  instants nT - u,, where {u,} 
is the set of deviations of the sampling  points  from nT. He 
considered 

to be  band-limited, using (93). Higgins [ 1691  presented two 
series representations  for  an  error free reconstruction of a 
band-limited  finite  energy signal from  its irregularly spaced or 
“jittered”  samples.  The basic theoretical  treatment  for  this 
problem was developed by Beutler [ 9  1 ] , [ 941 . 

Knab  and  Schwartz [ 1701  considered the  truncation error 
8~ combined  with  channel  error 8, which is caused by  uncor- 
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related noise samples. Let the  band-limited signal f(t), with 
band limit W O ,  bounded by M and  with  a  Fourier  transform of 
bounded  variation be corrupted  with zero-mean additive noise 
samples Ek of variance u2 that are  uncorrelated.  They used a 
truncated sampling  series to approximate f ( t )  in the interval 
I t 1  < ( ~ / 2 )  as R t ) :  

where 8( t )  is a  “self-truncating” sampling function as in (134) 
with q = 1 - 6 and a = W O .  The  reconstruction  meansquare 
error E18(t)12 is found as 

+ [&4t)12.  (199) 

The  error  bound for such combined  errors was found  for all 
t < TI2  as 

where m is as in (1 34). 
Knab [ 17 1 ] derived an error  bound using  Lagrange poly- 

nomials for  interpolation and extrapolation of finite  power 
band-limited signals.  He compared  this  bound to that derived 
by  Helms and  Thomas [54]  for  the self-truncating sampling 
series (1 34). He also noted  that  extrapolation is possible with 
his series while it is not  the case with  (134). However, the 
Lagrange extrapolation  method is not numerically stable as 
the  channel error  becomes large  very fast  with N, the  number 
of terms in the series. 

Ericson [ 1721 presented  the sampling series for signals 
which  are not necessarily band-limited and where the samples 
are subject to distortion  before being  used for signal recon- 
struction. He considered a  stationary  timecontinuous process 
x ( t )  whose  spectral  density (which is assumed to be integrable) 
is zero  outside  a  more general frequency  set  than  the  band- 
limit  interval. 

D. Conditions  for  a  Stable  Sampling  Expansion 
As it is the case  of the  solutions of many  problems  in applied 

mathematics, we always seek a  stable  solution in the sense (of 
Hadamard)  that  a small error  in the  input  produces a cor- 
respondingly small error in the  output  or in other words the 
output  depends  continuously  on  the  input. Yao  and  Thomas 
[93 I considered the stability of the sampling expansion in the 
sense that a small error in reading the  sample values produces 
only  a  correspondingly small error  in the recovered signal. 
They gave a  condition  for  a  stable sampling that  “for  a band- 
limited function g ( t )  to possess a  stable sampling expansion 
with  respect to a class of sampling sequence { t n )  there must 
exist  a positive finite  absolute  constant C (C is independent of 
f(t) and { tn ) ), such  that 

For an example of an  unstable sample expansion,  they con- 

sidered the simple constructed  function f(t) = 0 with  uncor- 
rupted samples { f ( n )  = 0, n = 1,2,  * e } .  When these sample 
values f ( n )  were corrupted  by  the specific noise samples h(n)  
of 

h ( t )  = 
b’I4 sin [(n - e ) ( b  + t ) ]  

n ( b  + t )  
, b > O  (202) 

they became { f ( n )  + h ( n )  = h ( n ) } .  For this noise (202)  it is 
easy to show that 

which  becomes  unbounded as the arbitrary b approaches 
infinity which makes such sampling unstable. 

Landau [ 173 I considered the WKS sampling theorem and 
used the Parsed  equation  (1  02)  on  (4)  whereby 

and gave the following interesting interpretation as it  relates 
the  Nyquist  rate  with  the stability of the sampling expansion. 

1) Every signal f(t) of f f i t e  energy, i.e., f2 ( t )  d t  < 00, 
and  bandwidth W(Hz) may be completely recovered in  a 
simple way,  from  the knowledge of its samples taken  at  the 
Nyquist rate of 2W per second. Moreover, the recovery is 
stable, in the sense  of Yao and  Thomas  (or  Hadamard), such 
that a small error in reading sample values produces  only  a 
correspondingly small error in  the recovered signal. 

2) Every squaresummable sequence of numbers  may be 
transmitted  at  the  rate of 2W per second over an ideal  channel 
of bandwidth W(Hz) by being represented as the samples of an 
easily constructed band-limited signal  of finite energy. 

In relation to the  required Nyquist rate  for  the  transmitted 
sequence of samples or  the recovered ones,  Landau considered 
other confiiations,  besides the band-limited finite energy 
signals,  in the  hope of improving such rates. This included 
moving to differently chosen sampling instants  or to bandpass 
or  multiband  (rather  than  band-limited) signals. Emphasizing 
that  only  stable sampling is meaningful in practice,  he proved 
the following two very sharp and useful results. 

1)  Stable sampling cannot be performed  at  a lower rate  than 
the Nyquist rate. 

2) Data cannot be transmitted as samples at a rate higher 
than  the Nyquist rate regardless of the  location of  sampling 
instants, the  nature of the set of frequencies which the signal 
occupy,  or  the  method of construction. 

These results also apply to bounded signals  besides finite 
energy signals. 

WI. OTHER APPLICATIONS OF THE  SAMPLING THEOREMS 
In this chapter we will discuss a  number of applications of 

the WKS and the generalized WKSK sampling theorems  in 
other fields besides the usual communications  theory.  The 
latter  applications of the sampling theorems are found  in  most 
texts [ 1  1 I - [ 17 I , research papers in  information  theory,  and, 
in  particular [ 131, [ 141. 

A .  Optics and  Crystallography 
Barakat [ 1741 presented  a  direct  application of the sampling 

theorem to optical  diffraction theory as a  computational  tool 



1590 PROCEEDINGS OF THE IEEE, VOL. 65,  NO. 1 1 ,  NOVEMBER I977 

and credited Gabor [ 1751 and others  for pioneering the  intro- 
duction of the sampling theorem  concept in  optics. He 
developed formulas, in terms of sampled values of the  point 
spread function for  the transform function,  total illuminance, 
line spread function, and cumulative line spread function. 
Then he presented a theory  for general point spread functions 
for slit and square aperture, where the WKS sampling theorems 
in one and two dimensions are used, respectively. For circular 
apertures with rotationally  symmetric  point spread functions, 
the one-dimensional generalized WKSK sampling theorem, 
associated with the Jo-Bessel function, was  used instead of the 
two-dimensional WKS sampling theorem. This, of course, is an 
advantage of the generalized WKSK, as we pointed out  in Sec- 
tion 111-B, in general, with circular symmetry, a J(m,2)-l - 
Hankel transform is equivalent to an rn-dimensional Fourier 
transform  [see (2911. 

As an example, the  transfer function T ( w )  and the  point 
spread function t ( u )  for a slit aperture  are related by a band- 
limited Fourier  transform 

t ( u )  = 3 T ( W )  e iuw dw 

where the  factor  (1/2)  enters in order  that t (0)  be unity  for a 
perfect system. Using the WKS sampling theorem,  the  point 
spread function t ( u )  can be  written in terms of its discrete 
measured  values  t(n77/2)  as 

l (205) 

Som [ 1761 used the two-dimensional WKS sampling theorem 
in the frequency domain for a coherent  optical processor to 
obtain multiple reproduction of  spaced-limited functions  in 
two dimensions. This approach was backed by an  experiment 
where it was found that  the relative separation and the relative 
brightness of the multiple reproductions of a given input func- 
tion can be quantitatively controlled by simply choosing an 
appropriate sampling function. 

An early application of the sampling theorem in opticis is 
due  to diFrancia [ 1771 where he used the WKS sampling 
expansion to  compute  the number of  degrees  of freedom of an 
image.  He then extended the analysis to antenna  theory 
[ 1781.  Gori  and  Guattari [ 1791 -[ 1811 used nonuniform 
sampling in the analysis of holographic restoration  and  optical 
processing. Various applications of the sampling theorem in 
optics were made by Lohmann [ 1821. Another related appli- 
cation in the general  field of Fourier  spectroscopy is due to 
Vanasse and Sakai [ 1831. 

Hopper [ 1841 utilized the N-dimensional sampling theorem 
for wavenumber-limited functions  with examples of the two- 
dimensional case for coherent  optical systems. In particular, 
in  the case  of computer generation and  construction of holo- 
grams, sampling must be done  in space and, hence, it is of  ad- 
vantage to use the most efficient sampling  in two dimensions 
as presented by Petersen and Middleton [ 6  11 and Miakawa 
[59]. Instead of the two-dimensional sampling in Cartesian 
coordinates ( x ,   y ) ,  Blaiek [ 1851, [ 1861 considered the 
sampling theorem in polar coordinates ( p ,  6) to find the 
number of spatial degrees of freedom of optical wave fields at 
the  output of optical systems with circular symmetric aper- 
tures of various shapes. The difference between this sampling 
and that of the WKS sampling is that  the former is based on 

sampling circles instead of sampling points. This implies that 
an  integration of a function over a given  circle  is  used instead 
of the value of the  function  at a given point. We may remark 
that such polar coordinate sampling is a combination of the 
WKS sampling in 6 with exponential  kernel and the WKSK 
sampling in p with kernel as Bessel function. Blaiek men- 
tioned as an example a radiotelescope with circular symmetric 
transfer  function. This makes use of the sampling theorem as 
a tool to solve system analysis problems  from the  point of 
view of transmission of pictorial information. 

Marks, Walkup, and Hazler [ 1871 developed a sampling 
expansion which  is applicable to the class of linear space- 
variant systems characterized by sufficiently slowly  varying 
line-spread functions.  They showed that  the desired  sampling 
rate is determined by  both  the system and the  input and that 
the corresponding output is band-limited. McDonnell [ 1881 
introduced the “line-segment-limited” function  for image 
restoration where the emphasis is on  the samples  themselves 
and the continuously  restored image obtained by  the usual 
sampling expansion. This is in  contrast  with  the usual 
sampling  series where these samples are convolved with the 
sampling function to reconstruct  the restored image. In 
avoiding the usual sampling function, he showed that sampling 
can be performed at a rate lower than  the Nyquist rate. These 
results were extended to two dimensions. 

1) Crystallography: Brillouin [189,  p. 1051 presented the 
WKS sampling  series and Fourier  methods  for analyzing pe- 
riodic crystal structures. He considered the  electron density 
F G )  as periodicjn :he thye  dimensions with the correspond- 
ing translations d l ,   d 2 ,  and d 3  : 

F ( ? + p J 1  + p J z  + p 3 2 3 ) = F ( ? )  (207) 

where ?is the  vector ( x l ,   x 2 ,   x 3 ) ; p l r  p z ,  and p3 are positive or 
negative  integers. The  Fourier series for F ( ? )  is 

F ( x l , x 2 , X 3 ) = c  Ch,h,h3 
h , h , , h ,  

. e 2ni(hlblx l  +h,b ,x ,+h,b ,x , )  (208) 

Chlh,h3 = ’ p  ldz ld3 F ( x 1 , x 2 , x 3 )  
vd o 

* e - 2 n i ( h 1 b 1 x 1 + h 2 b 2 x ~ + h 3 b 3 x 3 )  d x l   d x 2   d x 3  (209) 

where Vd = l / b l b z b 3 ,  the volume of the fundamental  lattice. 
Brillouin then turned to  the Fourier series of the  autocorrela- 
tion of F ( ? )  or what is  called the Patterson  function [ 1891, 

P ( u l , u Z , u 3 ) = -  /”’ J g d z  J d 3  F ( x ,  + U l ,  x2 
vd O 

+ ~ 2 , ~ 3   + U ~ ) F ( X I , X ~ , X ~ ) ~ X ~  dxz  dx3 (210) 

whose Fourier coefficients are the intensities 

and 

p ( u l , u 2 ,   u 3 ) =  lChlh,h31Z 
hl,h,,h, 

e e 2 n i ( h 1 b 1 u 1 + h , b 2 t c 2 + h ~ b 3 u 3 ) .  (21 1) 

This is a Fourier series  analysis whereby the  autocorrelation of 
the  electron  density is determined in terms of the measured 
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samples of the  intensity ICh,h,h, 1’ where we  don’t  seem to 
find the explicit use of the sampling theorem  except in Bril- 
louin’s other information  theoretic discussions. To apply the 
sampling theorem it is tempting to recognize the  intensity as 
the square of a band-limited function  in  three dimensions 
(209) where  an  extension of  Papoulis’s [ 141 sampling expan- 
sion (94)  for f 2 ( t )  to  three dimensions may be used to inter- 
polate  the discrete values of the  intensity (Ch ,  h,h, I ’. Since 
( h l ,   h z ,   h g )  determines the  direction in which the  intensity is 
measured, it seems  possible, for some physical reasons, that 
measurements cannot be  done  at some angles and, hence,  there 
is a gap or nonuniform samples which can be treated  by  the 
methods of Section IV-D. 

Some related applications of the sampling theorems were 
made by Frank [ 1901 then  Frank and Ali [ 191 I in  the area 
of radiation damage  caused by  the  electrons used for imaging 
in the  electron microscope. Earlier, Frank [ 1921 presented 
a detailed review for  computer processing of electron 
micrographs. 

B.  Time-Varying  Systems,  Boundary  Value  Problems, and 
Discrete  Fourier and Other  Transforms 

1)  Time-Varying  Systems: The  Shannon sampling theorem 
with  its band-limited Fourier  transform and the simple con- 
volution  translation is a natural  tool  for  the analysis of time- 
invarying systems. Time-varying systems are also analyzed 
using Fourier  transform as evident in the work of Zadeh [39] 
and others, however, we emphasize here a time-varying system 
with a generalized convolution translation  [36] which is 
associated with the generalized integral transforms of the 
WKSK sampling theorem.  In Section 111-C  we attempted  to 
give an applied interpretation of this generalized WKSK 
theorem  in terms of a time-varying impulse response. In Sec- 
tion IV-H  we discussed the WKS sampling theorem, using the 
Fourier  transform,  but  with time-varying bands [ 1091. 
Siastnjr [ 1931 considered the  reconstruction of time-varying 
signals with particular emphasis on  the  distortion which arises 
during such  restoration. He employed the sampling expansion 
for bandpass functions and derived a dependence of the distor- 
tion  on  the sampling frequency which is valid for  stationary 
Gaussian random signals and for  deterministic signals with 
continuous  spectrum having a low frequency character. In 
Section 111-D we  discussed the possibility of  replacing the m- 
dimensional Fourier  transform of functions  with circular sym- 
metry  by a one-dimensional J ( m p -  -Hankel transform where 
the WKSK sampling theorem can be used. This may relate to 
spatial-varying problems where, in  the case  of polar coordi- 
nates, the sampling is done  on circles instead of at points. 

2 )  Boundary  Value  Problems: In Section 111-D we  discussed 
how the generalized WKSK sampling theorem was  used [42] 
to facilitate  the  study of the  effect of the axial heat conduc- 
tion on the temperature field for a fluid with laminar flow in 
a tube. This development can still be extended to problems 
which require matching boundary  conditions  and uses general 
orthogonal  expansion. For example, in  the case  of a spherical 
geometry, associated  Legendre polynomials or spherical Bessel 
function expansions may  be  used.  In the simple case  of 
laminar flow between plates, the Cartisian coordinates are used 
and, hence, a finite  Fourier  transform and its Shannon’s 
sampling theorem may be employed. 

3) Discrete Fourier  and Other  Transforms: The role of the 
WKS sampling theorem is very evident [45],  [46]  in deter- 
mining the required spacing of the discrete Fourier  transform 

which led to  the powerful tool of the fast Fourier  transform 
(FFT) algorithm. Petersen [ 1941 employed the WKS sampling 
theorem [53]  for  the discrete transform and FFT  for N- 
dimensional lattices. As we mentioned in Section 111-D, it 
is in this  direction  that we  have attempted to employ the 
generalized WKSK sampling theorem for determining the 
spacing of general discrete transforms associated with classical 
orthogonal polynomials [43] and the Bessel functions [44]. 

C. The  Sampling  Series and the Hill Functions  (B-Splines) 
As we have briefly indicated in Section VI-A, the hill func- 

tion $IR + (a(R + l ) ,  W) of order R + 1 is defined as the  Rth- 
fold Fourier  convolubon of the gate function p , ( o )  $1 (a, 
a). Hence, it is the Fourier  transform of [(2 sin at)/(t)] R + 1 
which can  be  recognized  as related to the sampling function 
for sampling with R derivatives (43)  or  the  factor  for  the self- 
truncating series (134) which improved the  error bound for 
the  truncation  error  (1  35). This function was  also  used [ 195 I 
as a self-truncating Fourier coefficient for efficient evaluation 
of the hill function of higher order 

. cos - -a(R + 1) < w < a(R + 1)  (212) 
nlr 

a(R + 1)’ 

where a0 = ( ( 2 ~ ) ~ + ~ ) / ( a ( R  + 1))= 20 $ R + ~  and is the 
average  value of $R + (w) over the interval [ -a@ + l ) ,  a(R + 
1). In  (21  2) we note  the simple form of the coefficients and 
their advantage in making the series a self-truncating one for 
large R. A very thorough treatment of the sampling expansion 
(cardinal interpolation) and spline functions is  given by 
Schoenberg [ 1331. The above discussion  is  exclusive for  the 
WKS sampling theorem and its very familiar tool  the Fourier 
transform. As of yet  no mention is made of some “valuable 
function” like the spline function which  can be defined as the 
Rth-fold general transform  convolution [ 361 and which may 
play the role  of improving the  error bound for  the  truncation 
error of the generalized WKSK sampling theorem. 

D. Special  Functions 
The subject of this section  is varied  as  we can see that  the 

generalized WKSK sampling theorem is an  extension of the 
simple exponential function, as the kernel of Fourier trans- 
form,  to  other  functions; as solutions of nth-order self-adjoint 
differential equations,  for  the  kernel of more general integral 
transforms. In Section 111-B we  have already shown the con- 
ditions  for  the equivalence between the Fourier and other 
transforms and, hence, the  two sampling theorems. In par- 
ticular, it is known that  the sampling functions {(sin (at - nn))/ 
(at - nlr)} which are band-limited to ( -a ,   a )  are orthogonal on 
(-m,m) and we  have shown [ 361 that  the generalized  sampling 
functions { S ( t ,  t , ) )  of (21) are also orthogonal on  the interval 
used for  the integral transform inverse (31). This shows that 
the general Fourier-type  transforms (30), (31)  presene  orthog- 
onality since { K ( x ,  t , ) }  in  (2  1)  is an  orthogonal  set and so is 
its transform ( S ( t ,  t n ) } .  Some of the following results 
relating band-limited functions to  the transform of some 
special functions  are closely related to the above treatments. 

Yao and Thomas [ 1961 noted that (sin t ) / ( t )  is a band- 
limited function of the gate function p,(w) which is a poly- 
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nomial of order zero on (- 1 ,  1). This is the same for  the pro- 
late spheroidal functions [ 27 ], which are also band-limited and 
have been used extensively for approximating band-limited 
signals.  They showed that a more general frequency  function, 
instead of the gate function, band-limited to (- 1, 1) can be 
obtained by orthogonalizing the polynomials 1, a, o’, * * * 

with respect to  the weighting function p(o) using the Gram- 
Schmidt process. Such  functions are the weighted Jacobi 
polynomials which are complete in L z ( -  1 ,  1) and are also 
solutions of second-order self-adjoint differential equations 
[27] .  The  time  functions as the inverse Fourier transform of 
these  functions are  well-known  special functions which are 
also orthogonal [261 on (-m, 00). Some of the special cases 
that  they  exhibited are the Gegenbauer, the Legendre, and the 
Tchebyschev polynomials. Mehta [ 197 J considered the same 
problem for  other examples like the associated  Legendre 
polynomials and the  prolate spheroidal functions. 

One of the simplest applications of the WKS sampling 
theorem is in establishing a relation between the continuous 
special function and its discrete or sample values. For ex- 
ample,  from  Titchmarsh [ 198, p. 1861 we  have the following 
band-limited function  representation  for a certain combination 
of gamma functions of x 

a >  1. (213) 

We recognize that this is a band-limited function of x, for 
which we  can immediately write the Shannon sampling  series 

1 1 

r u a  +x) /2)r( (a  - X m  n=-oo  
- - 

a result which apparently is not easily  accessible in  the liter- 
ature.  Setting a = 2 in (214) leads to  the well-known  special 
C a S e  

1 - sin (n/2)x 
r ( x / 2 ) r ( ~  - (x /2) ) -  IIX 

which is the finite limit Fourier transform of the gate function 
p(,,p)(t) as in (213) with a = 2. 

In parallel to the WKS sampling theorem or  the Whittaker 
cardinal series [ 1 1 ,  [SI ,  Higgins [ 1991 considered an inter- 
polatory series  associated with the WKSK sampling theorem 
[9 I and in particular the  one associated with the Hankel 
(Bessel) transform. He proved a number of theorems that 
included basic properties of the WKSK sampling functions 
[36]. Then he utilized particular cases of his results for 
special functions  expansion which is in parallel to the above 
expansion (214) of the gamma functions as a WKS sampling 
series. 

E. Other Applications 
Among other applications of the Shannon samphg theorem, 

Petersen and Middleton utilized the multidimensional sampling 
theorem [53 ] ,  [61]  for  the analysis of meteorological data 
[200] .  Also this sampling expansion [ 531,  [61] was referred 
to by Belyayev [ 201 ] for oceanographic applications. Rad- 
zyner [202] employed the nonuniform sampling expansion 

and developed error  bounds resulting from the simplification 
of a mathematical  model for  the cardiac pacemaker. 

A seemingly far removed application is that of sampling the 
fractional derivative (dOL)/(dta) f ( t ) g ( t )  (Leibnitz rule-a  not 
necessarily an  integer) [203] of the product of two  functions 
f ( t ) g ( t )  in terms of its samples, the usual nth derivatives 
(dn) / (drn)  f ( t ) g ( t ) .  We remark here that such sampling may 
also  be attempted  for  the fractional integrals [ 2041. 

ACKNOWLEDGMENT 
The  author wishes to express his thanks to  the members of 

the  editorial board of the IEEE PROCEEDINGS for  their 
encouragement  and to the  three referees for  their very con- 
structive and helpful remarks and suggestions. This paper 
could not have been as complete  without the generous contri- 
butions of most researchers in the field by supplying the 
author with  their  up-todate results or some other results that 
he had overlooked. The  author is also grateful to Prof. A .  C. 
Newell and Dean B. A. Pethica, of Clarkson  College of Tech- 
nology, Potsdam, NY, for  their encouragement and support, to 
his students  for  the  interest  they showed in  the  subject, and to 
Mrs.  D.  Mein for typing the manuscript. 

REFERENCES 

C. E. Shannon,  “Communications in the presence of  noise,” 

H.  Nyquist, “Certain topics in telegraph transmission theory,” 
AIEE  Trans., vol. 47, pp. 617-644,  1928. 
E.  T. Whittaker, “On the  functions  which are represented by the 
expansion of interpolating  theory,” Proc. Roy .  SOC. Edinburgh, 

J .  M. Whittaker, “The Fourier theory  of  the cardinal functions,” 
Roc. Math. SOC. Edinburgh, vol. 1, pp. 169-176,  1929. 

Cambridge University Press (Cambridge tracts in Mathematics 

W.  L. Ferrar, “On  the  consistency of  cardinal function inter- 
and Mathematical Physics), 1935, no. 33. 

polation,” hoc. Roy.  SOC. Edinburgh, vol. 47, pp. 230-242, 

H. S. Black, Modulation  Theory. New  York: van Nostrand, 
1927. 

1953. 

wire in electrocommunications,” (material for  the f i i t  all-union 
V. A.  Kotel’nikov, “On the transmission capacity of “ether” and 

SvyaziRKKA (Moscow), 1933. 
conference on questions of  communications) Izd.  Red. Up?. 

H. P. Kramer, “A generalized sampling theorem,” J .  Math. 

Weiss, “Sampling theorems associated with Sturm-Liouville 
systems,” Bull.  Math. Soc., vol. 63, p. 242 (abstract 459), 
1957. 
F. M. Reza, An  Introduction  to  Information  Theory. New 

D. Middleton, An  Introduction to Statistical  Communication 
York: McGraw-Hill, 1961. 

A. Papoulis, The  Fourier Integral and its  Applications. New 
Theory. New  York: McGraw Hill, 1960. 

York:  McGrawNill, 1962. 

York: McGraw-Hill, 1968. 
I. M. Wozencraft and I .  M.  Jacobs, principles of Communication 
Engineering. New  York:  Wiley, 1965. 

S. Goldman,Information  Theory. New  York:  Dover, 1968. 
R. B. Ash,Information  Theory. New York:  Interscience, 1965. 

I. Sorneya, Waveform  Transmission. Tokyo:  Shukyo,  Ltd., 
B. P. Lathi, Communication  Systems. New  York: Wiley, 1965. 

1949. 
J .  McNamee,  F.  Stenger, and L. E.  Whitney,  ‘Whittaker cardinal 

Jan. 1971. 
function in retrospect,” Math.  Comput., vol. 25, pp. 141-154, 

F.  Stegner,  “Approximations via Whittaker’s cardinal function,” 
J. Approx.  Theory, vol. 17, no. 3, July 1976. 
R.  E. Edwards, Fourier  Series, A  Modem  Introduction,  Vol. I ,  
New York:  Holt, Rinehart, and Winston, 1967. 
I. N.  Sneddon, The Use of  Integral Transforms. New  York: 
McGraw-Hill, 1972. 
D. L. Jagerman  and L. Fogel,  “Some general aspects of  the 
sampling theorem,” IRE Trans. Inform.  Theory, vol. IT-2, pp. 
139-146, Dec. 1956. 

P~oc. IRE,vol. 37, pp. 10-21, Jan. 1949. 

V O ~ .  35, pp. 181-194,  1915. 

- , Interpolutory  Function  Theory. Cambridge, England: 

PhyS., V O ~ .  38, pp. 68-72,  1959. 

- , Systems and  Transforms with  Applications in Optics. New 



JERRI: SHANNON  SAMPLING  THEORY:  A  REVIEW 1593 

125) P. J. Davis, Interpolation  and  Approximation. New York: 

[26]  R.  E. A. Paley  and N. Wiener, Fourier Transform in Complex 
Blaisdell, 1963. 

. .  
Domain. New York:  American  Math.  SOC.  Colloq.  Publica- 

[27]  E. A. Coddington  and N. Levinson,  Theory of Ordinary  Dif- 
tions, 1934, vol. 19. 

[28]  L.  L. Campbell, “A comparison  of  the sampling theorems  of 
ferential  Equations. New  York:  McGraw-Hill, 1955. 

(291 A. J .  Jerri, “Sampling for  not necessarily finite energy signals,” 
Kramer  and Whittaker,” J. SIAM, vol. 12, pp. 117-130,  1964. 

[ 301 D.  Slepian  and H. 0. Pollack,  “Prolate  spheroidal  wave func- 
In?. J. System  Sei.,  vol. 4 ,  no. 2 ,  pp. 255-260,  1973. 

tions,  Fourier analysis  and uncertainty-I,” Bell.  Syst. Tech. 

[ 311 A. J.  Jerri, “On the  application  of  some  interpolating  functions 
in physics,” J. Res.  Nut.  Bur. Stands. -B. Math.  Sciences, vol. 

[32]  -, “Sampling  expansion for  the  LE-Laguerre  integral  trans- 
73B, no. 3, pp. 241-245, Sept. 1969. 

form,” J. Research of Nut. Bur. Stands. -B. Math.  Sciences, 

[ 3 3 ]  A.  Erdelyi, et al., Higher  Transcendental  Functions, vol. 1.  
vol. SOB, pp. 415-418, Sept. 1976. 

New York:  McGrawNill, 1953. 
[ 3 4 ]  A. J. Jerri,  “On  the equivalence  of  Kramer’s  and  Shannon’s 

sampling  theorems,” IEEE Trans.  Inform. Theory, vol.  IT-15, 

[ 351 -, “Some  applications  for  Kramer’s  generalized  sampling 

[36]  -, “Application  of  the  sampling  theorem to time-varying 
theorem,” J. Eng.  Math., vol. 3, no. 2,  Apr. 1969. 

systems,” J. Franklin  Inst., vol. 293, no. 4,  pp. 53-58, Jan. 
1972. 

[ 371 H. D’Angelo, Linear Time  Varying  Systems,  Analysis and  Syn- 
thesis.  Boston:  Allyn  and  Bacon, 1970. 

[ 381 K. Yao,  “On  some  representations  and  sampling  expansions  for 
band  limited  signals,” Ph.D. Thesis,  Dept.  of  Elec.  Engng., 

[ 3 9 ]  L.  A. Zadeh,  “A  general  theory of  linear  signal  transmission 
Princeton  University,  Princeton, NJ, 1965. 

[40] A. H. Zemanian,  Generalized Integral Transforms. New York: 
systems,” J. Franklin Inst., vol. 253, pp. 293-312,  1952. 

(411 R. G. Newton, The Complex  j-plane. New York:  Benjamin, 
Interscience, 1968. 

1964. 
[ 4 2 ]  A. J.  Jerri and E. J. Davis, “Application  of  the sampling theo- 

rem t o  boundary value  problems,” 1. Fng. Math.,  vol. 8,  pp. 1- 
8 ,  Jan. 1974. 

I431 A. J.  Jerri,  “The  application of  general  discrete  transforms to  
computing  orthogonal series  and  solving boundary value  prob- 

[44]  -, “Towards  a  Discrete Bessel Transform,” to appear, J. 
lems,” submitted. 

[45]  J.  W. Cooley, P. A. W. Lewis  and P.  D. Welch,  “The fiiite 
Applicable  Analysis. 

Fourier  transform,” IEEE Trans. Audio  Electroacoust., vol. 

[46]  E. 0. Brigham,  The Fast  Fourier Transform.  Englewood  Cliffs, 
AV-17, no. 2 ,  pp. 77-85,  1969. 

NJ:  Prentice-Hall, 1974. 
[47]  J. W. Cooley  and J. W. Tukey, “An  Algorithm  for  the  machine 

calculations  of  complex  Fourier  series,”  Math.  Comput.,  vol. 19, 

[48]  J. W. Cooley, P. A. W. Lewis, and P. D. Welch,  “Application  of 
the fast  Fourier  transform to  computation of  Fourier  integrals, 

Electroacoust., vol. AU-15, pp. 79-84,  1967. 
Fourier  series,  and  convolution  integrals,” IEEE Trans. Audio 

[49]  A. J.  Jerri  and C. J.  Reed,  “On  the generalized  translation for 

[ S O ]  L. Fogel, “A note  on  the sampling theorem,”IRE Trans., vol. 1, 
the  convolution  of  discrete Hankel transform,”  submitted. 

[51]  D.  A. Linden,  “A  discussion  of  sampling theorems,”hoc.  IRE, 

[52]  D.  A. Linden  and N. M. Abramson, “A generalization of the 
sampling  theorem,”Znform.  Contr.,  vol. 3, pp. 26-31,  1960 (see 
correction  for  equation (40), ibid.,  vol. 4,  pp. 95-96,  1961). 

[53]  D.  P. Petersen  and D. Middleton,  “Reconstruction  of  multi- 
dimensional  stochastic  fields  from  discrete  measurements of 
amplitude  and  gradient,”  Inform.  Contr.,  vol. 1 ,  pp. 445-476, 
1964. 

[ 5 4 ]  H. D. Helms  and J. B. Thomas,  “Truncation  error of  sampling 
theorem  expansion,” h o c .  IRE, vol. 50, pp. 179-184, Feb. 

[ 5 5 ]  K. Yao  and J. B. Thomas,  “On  truncation  error  for sampling 
1962. 

representations  of  band-limited  signals,” IEEE Trans.  Aero. 

[ 5 6 ]  A. J.  Jerri  and D. W. Kreisler,  “Sampling  expansions with 
Electron.  Syst., vol. AESQ, Nov. 1966. 

derivatives for  finite Hankel  and other  transforms,”  SIAM J. 

[57]  D. W. Kreisler,  “Sampling  expansion with derivatives for  finite 
Math. Anal. ,  vol. 6,  no. 2,  Apr. 1975. 

Hankel  and  other  transforms,” Ph.D. dissertation,  Clarkson 
College  of  Technology,  Potsdam,  NY, 1972. 

J . ,  VOI. 40,  pp. 43-64,  1961. 

pp. 497-499, July 1969. 

pp. 297-301,  1965. 

pp. 47-48, Mar. 1955. 

VOI. 47, pp. 1219-1226,  1959. 

[SS] E. Parzen,  “A  simple  proof  and  some  extensions  of  sampling 
theorems,”  Stanford University, Stanford, CA,  Tech.  Rep. 7, 
1956. 

[ 591 H. Miyakawa,  “Sampling theorem of stationary  stochastic vari- 
ables  in  multidimensional  space,” J. Inst. Elec.  Commun.  Engrs., 
Japan,vol. 42, pp. 421-427,  1959. 

[60]  D. P. Petersen,  “Sampling  of  space/time  stochastic  processes 
with  application t o  information  and  decision  systems,” D.E.S. 

[ 611 D. P. Petersen  and  D.  Middleton,  “Sampling and  reconstruction 
dissertation,  Rensselaer  Polytechnic  Institute,  Troy,  NY, 1963. 

of wave number-limited function in N-dimensional  Euclidean 

621 W. D. Montgomery,  “The  gradient in the sampling ofN-dimen- 
spaces,”Informat.  Contr.,  vol. 5 ,  pp. 279-323, Dec. 1962. 

sional  band-limited  functions,” J. Electron.  Contr., vol. 17, no. 

631 W. D. Montgomery,  “K-Order  sampling  of  N-dimensional  band- 
limited functions,”  Int. J. Contr.,  vol. 1 ,  no. 1, pp. 7-12, Jan. 

641 N. T. Gaarder,  “A  note  on  multidimensional sampling theo- 
1965. 

rem,”hoc.  IEEE, vol. 60, DD. 247-248, Feb. 1972. 

4 ,  pp. 437-447,013.  1964. 

[ 651 B. D. Sharma  and F. C. Mihta,  “Generhized bandpass  sampling 
theorem,”  submitted. 

[66]  L. Hormander,  An  Introduction to Complex  Analysis  in  Several 
Variables.  Princeton,  NJ: van Nostrand, 1966. 

[67]  R.  E. Kahn  and B. Liu,  “Sampling  representation  and optimum 
reconstruction  of  signals,” IEEE Trans.  Inform.  Theory,  vol. 

[68]  D. E. Todd, “Sampled data  reconstruction  of  deterministic  band 
IT-11, pp. 339-347, Apr. 1965. 

limited  signals,” IEEE Trans.  Inform. Theory, vol. IT-19, pp. 

(691 A. V. Balakrishnan,  “A note  on  the sampling  principle for  con- 
tinuous  signals,”IRE Trans.  Inform.  Theory, vol. IT-3, pp. 143- 

809-811,Nov.  1973. 

1701 D. P. Petersen  and D. Middleton,  “Linear  interpolation,  extra- 
146, June 1957. 

. .  

limited  domain  of  measurement,” IEEE Trans.  Inform.  Theory, 
polation  and  prediction of random  space-time  fields  with 

vol. IT-11, no. 1, Jan. 1965. 
[71]  D.  P. Petersen,  “Linear  sequential  coding  of  random  space-time 

fields,”Inform.  Sci.,  vol. 10, pp. 217-241,  1976. 
[721 D.  P. Petersen  and D. Middleton,  Srochastic  Fields  and  Signals. 

In  preparation-tentative MIT Press,  Cambridge, MA. 
(731 S. P. Lloyd,  “A  sampling  theorem  for  stationary (wide sense) 

stochastic  processes,”  Trans.  Am.  Math. Soc., vol. 92, pp. 1-12, 
1959. 

[74]  A. V. Balakrishnan,  “Essentially  band-limited  stochastic  pro- 
cesses,’’ IEEE Trans.  Inform.  Theory, vol.  IT-11,  pp. 145-156, 
1965. 

(751 G. B. Lichtenberger,  “A  note on perfect  predictability  and 
analytic  processes,”IEEE  Trans.  Inform.  Theory,  vol. IT-20, pp. 

(761 F. J. Beutler,  “Recovery of randomly  sampled  signals  by  simple 
interpolators,”Inform.  Cone., vol. 26,  no. 4 ,  pp. 312-340, Dec. 
1974. 

(771 F. J .  Beutler  and 0. A. Z. Leneman,  “Random sampling of 
random  processes: stationary  point process,”  Inform.  Contr., 

[78]  0. A. 2. Leneman,  “Random sampling  of  random  processes: 
optimum linear interpolation,” J. Franklin  Inst., vol. 281, no. 

[79]  0. A. 2.  Leneman  and J .  Lewis, “Random sampling  of  random 

IEEE Trans. Automat.  Contr., vol.  AC-IO,  pp. 396-403, July 
processes: Mean square  comparison  of  various  interpolators,” 

1965. 
[SO] 0. A. Z. Leneman  and J .  Lewis,  “A note  on  reconstruction  for 

randomly  sampled  data,” IEEE Trans.  Automat.  Contr.,  vol. 

[ 8 1 ]  0. A. 2. Leneman and J .  Lewis,  “On  mean-square  reconstruc- 
tion  error,” IEEE Trans. Automat.  Contr., vol. AC-11, pp. 324- 
325, Apr. 1966. 

[ 82 1 R.  Barakat,  “Nonlinear  transformation  of  stochastic  processes 
associated with  Fourier  transforms of band-limited  positive 

[ 8 3 ]  M. Zakai,  “Band-Limited functions  and  the sampling theorem,” 
functions,”Int. J. Contr.,vol. 14, no. 6,  pp. 1159-1167,  1971. 

I841 Z. A. Piranashvilli,  “On the  problem of interpolation of  random 
Inform. Contr.,vol. 8 ,  pp. 143-158,  1965. 

(851 W. A. Gardner,  “A  sampling  theorem  for  nonstationary  random 
processes,”  Theory  Prob.  Appl.,  vol. 12, pp. 647-657,  1967. 

processes,” IEEE Trans.  Inform. Theory, vol.  IT-18,  pp. 808- 
809,  1972. 

[86]  B. D. Sharma  and F. C.  Metha, “A generalized  sampling  theorem 
for  non-stationary processes,” J. Cybernetics,  pp. 87-95,  1974. 

(871 J. L. Yen,  “On  the  nonuniform sampling  of  band width  limited 
signals,” IRE Trans.  Circuit  Theory, vol.  CT-3,  pp. 251-257, 

[88]  B. Sankur  and L. Gerhardt,  “Reconstruction  of signals from 
Dec. 1956. 

nonuniform  samples,” in IEEE Int. Con$ Commun., Con$ Rec., 

101-102,  1974. 

V O ~ .  9 ,  pp. 325-346,  1966. 

4 ,  pp. 302-314,1966. 

AC-10, p. 626,  July 1965. 



1594 PROCEEDINGS OF THE  IEEE, VOL. 65,  NO. 1 1 ,  NOVEMBER 1977 

(891 F. A. Marvasti  and L. A. Gerhardt, “Signal  transmission using 
pp. 15.13-15.18, June 11-13,  1973. 

Information  Theory  Int.  Symp. (sponsored by  IEEE and Inter- 
non-uniformly  spaced  samples-A  general  theory,”  presented  at 

national  Union  of  Radio  Science),  Ronneby,  Sweden,  June 

[90]  K. Yao  and I .  B. Thomas, “On a  class  of  nonuniform  sampling 
representation,” in Symp.  Signal  Trans.  Processing,  (sponsored 

[91]  F. E. Beutler,  “Sampling theorems  and bases  in  a  Hilbert  space,” 
by  Columbia  University),  pp. 69-75, May 1968. 

[92]  0. A. 2.  Leneman, “On error  bounds  for  jittered sampling,” 
Inform.  Contr.,vol. 4,  pp. 97-117,  1961. 

[ 9 3 ]  K. Yao and  J. B. Thomas, “On some  stability  and  interpolating 
IEEE Trans. Automat.  Contr., vol. AC-11, p. 150, Jan. 1966. 

Circuit Theory, vol. CT-14, pp. 404-408, Dec. 1967. 
properties  of  nonuniform sampling  expansions,” IEEE Trans. 

[94]  F. J. Beutler,  “Error-free  recovery  of signals from irregularly 
spaced  samples,” SIAM Rev. ,  vol. 8, no. 3, pp. 328-335, July 
1966. 

[95]  N. Levinson, Gap  and  Density  Theorems, Colloq.  Pub. 26, 
Amer.  Math.  Soc. New York, 1940. 

[ 961 J. L. Brown,  Jr., “On exact,  stable  nonuniform sampling expan- 

[ 971 J. I. Chargin and V. P. Iakovlev, Finite  Functions in Physics  and 
sions,”  private  communications. 

[ 9 8 ]  A. Kohlenberg,  “Exact interpolation  of band-limited func- 
Technology. Moscow:  Nauka, 1971, (in  Russian). 

tions,” J. Appl.  Physics, vol. 24,  pp. 1432-1436,  1953. 
[ 9 9 ]  F. E. Bond and C. R. Cahn, “On sampling the zeroes  of  band 

width limited  signals,” IRE Trans. Inform.  Theory, vol. IT-4, 

[ l O O ]  E. C. Titchmarsh,  “The  zeros  of  certain  integral  functions,” 
R o c .  London  Math.  SOC., vol. 25, pp. 283-302,  1926. 

[ 1011 F. E. Bond, C.  R. Cahn,  and I. C.  Hancock, “A relation  between 
zero  crossings  and  Fourier  coefficients for band-limited func- 

[ 1021 H. Voelker,  “Toward  a  unified  theory  of  modulation,” Roc. 
tions,” IRE Trans. Inform.  Theory, vol. 6, pp. 51-55,  1960. 

IEEE, vol. 54, p. 340,  1966. 
[ 1031 A. Sekey,  “A  computer  simulation  study of  real-zero  interpola- 

[ 1041 I. Bar-David, “An implicit  sampling theorem  for  bounded  band 
tion,”IEEE Trans. Audio  Electroamst., vol. 18, p. 43,  1970. 

21-24,  1976. 

pp. 110-113,  1958. 

limited  functions,” Inform.  Contr., vol. 24, pp. 36-44, Jan. 
1974. 

1051 L. L. Campbell,  “Sampling theorem  for  the  Fourier  transform 

vol. 16, pp. 626-636,  1968. 
of  a  distribution  with  bounded  support,’’ SIAM J. Appl.  Math., 

1061 A. H. Zemanian, Distribution  Theory  and  Transform  Analysir. 

1071 E. P. Pfaffelhuber,  “Sampling  series  for  band  limited  generalized 
New  York:  McGraw-Hill, 1965. 

functions,” IEEE Trans. Inform.  Theory, vol. IT-17, pp. 650- 
654, Nov. 1971. 

108) R. E. Edwards, Fourier  Series,  A Modem  Introduction, vol. 2. 
New York:  Holt,  Rinehart,  and Winston, 1967. 

1091 H. Horiuchi,  “Sampling  principle for  continuous signals with 
time-varying  bands,” Inform.  Contr., vol. 13, pp. 53-61, July 
1968. 
A.  Papoulis, “Error analysis  in  sampling theory,” Roc. IEEE, 
vol. 54, no. 7 ,  pp. 947-955, July 1966. 
A. Papoulis, Signal A ~ l p i s .  New  York:  McGraw-Hill, 1977. 
T. Ericson  and U. Johansson,  “A  new  approach to  sampling,” 
Preliminary draft,  Linkoping University,  Linkoping,  Sweden, 
Rep.  LM-ISY-1-0051, 1974. 
J. L. Brown, Jr., “Uniform  linear  prediction  of  band-limited 

vol. IT-18, Sept. 1972. 
processes from past  samples,” IEEE Trans.  Inform.  Theory, 

L. A. Wainstein and V.  D. Zubakov, Extraction of SigMLsfrom 
Noise. Englewood  Cliffs,  NJ:  Prentice-Hall, 1962. 
N. Maeda, “On sampling  theorems of band-limited  periodic 
signals,’’ J.  Inst.  Electron.  Comm.  Engrs.,  Japan, vol. 50, No. 8, 
pp. 1472-1473,  1967 (in  Japanese,  English  Abstract  in Ab- 
stracts, p. 25). 
Y. Isomichi,  “Generalized  sampling  theorem,” Electron.  Com- 
mun., Japan,  vol. 52, no. 2,  1969. 

R o c .  IEEE, vol. 61, pp. 679-680,May  1973. 
A. G. I. Holt, J.  J. Hill,  and R. Linggard,  ‘‘Integral  sampling,” 

G. Kishi and N. Maeda,  “Sampling theorems  for signals given 

Electron.  Commun., Japan, vol. 53, no. 4 ,  pp. 29-36,  1970. 
by linear  differential  equations  with  constant  coefficients,” 

N. Maeda,  “Some  relations  between  band-limited  signals and 
signals  satisfied by linear  differential  equations  with  constant 
coefficients,” Trans.  Inst.  Electron. Comm. Engrs.,  Japan, vol. 
53-A, no. 10, pp. 568-569,  1970. 

mun., Japan, vol. 56, no. 6 ,  pp. 25-32,  1973. 
, “Time  limitation  of  network  response,” Electron.  Com- 

G. Kishi  and N. Maeda,  “Stability  of  signals  and  its  application 
t o  approximation  of  signal  waveforms,” Electron.  Commun., 
Japan,vol. 54, no. 7 ,  pp. 29-38,  1971. 
G.  Wunsch,  “Concerning  a  generalization  of the sampling tkeo- 

- 

rem  and its  applications  in  system theory,”Nachrichtentech. Z., 

[123]  J. B. Kioustelidis,  “Error bounds  for  the sampling  theorem,” 
Arch.  Elec.  mertragung, vol. 23,  pp. 629-630,  1969. 

I1241 P. L. Butzer  and W. Splettstosser,  “A  sampling  theorem  for 

Contr., to  appear. 
duration-limited  functions  with  error  estimates,”  Inform. 

[125]  J. A. Stuller,  “Reconstruction  of  finite  duration signals,”IEEE 

(1261 H. P. Kramer,  “The  digital  form  of  operators on band-limited 
Trans. Inform  Theory, vol. IT-18, pp. 667-669, Sept. 1972. 

functions,” J. Math.  Anal.  Appl., vol. 44,  no. 2,  pp. 275-287, 
Nov. 1973. 

[ 1271 J. L. Brown,  Jr.,  “Sampling theorem  for  finite energy signals,” 
IEEE Trans. Inform.  Theory, vol. IT-14, pp. 818-819,1968. 

[ 1281 R. P. Boas, Jr., “Summation  formulas  and  band-limited signals,” 
TShoku  Math. J., vol. 24, pp. 121-125,  1972. 

[129]  A.  H. Haddad and  J. B. Thomas,  “Integral  representation  for 

Circuit Syst.  Theory, pp. 322-333, Oct. 5-7,  1966. 
non-uniform  sampling  expansions,” in Roc. 4th Allereton ConE 

[ 1301 A. H. Haddad, K. Yao,  and J. B. Thomas,  “General methods  for 
the  derivation  of sampling  theorems,” IEEE  Trans  Inform. 
Theory, vol. IT-13, Apr. 1967. 

[ 131 ] K. Yao,  “Applications  of  reproducing  kernel  Hilbert  spaces- 
band-limited  signal  models,” Inform.  Contr., vol. 11, pp. 429- 

[ 1321 D. Jagerman,  “Information  theory  and  approximation of  band- 
limited  functions,” BeU. Syst.  Tech. J. ,  vol. 49, pp. 1911-1941, 
1970. 

[ 1331 1. J.  Schoenberg,  “Cardinal  interpolation  and  spline  functions,” 
J.  Approx.  Theory,vol. 2,  pp. 167-206,  1969. 

[ 1341 I. Kluvinek,  “Sampling theorem in abstract  harmonic analysis,” 
Matematicko-Fyzikalny  Casopis, vol. 15, no. 1, pp. 43-48, 
1965. 

[ 1351 I .  B. Thomas  and B. Liu,  “Error  problems in sampling  repre- 
sentation,’’ IEEE Int.  Conv.  Rec. (USA),  vol. 12, part 5, pp. 

[ 1361 B. S. Tsybakov  and  V. P. Iakovlev, “On the  accuracy  of  restor- 
ing  a function  with  a  finite  number  of  terms of  Kotel’nikov 
series,”Radio Eng.  Electron.  (Phys.), vol. 4 ,  no. 3, pp. 274-275, 

[ 1371 K.  L. Jordan, “Discrete  representation  of  random  signals,” 
Mar. 1959. 

M.I.T.,Cambridge, MA, Tech.  Rep. 378. RLE,  July, 1961. 
[ 1381 S. deFrancesco, “An estimate  of  Shannon’s  sample  series  partial 

summation  inaccuracy,”  presented  at 15th Int.  Commun.  Conv. 
Int.  Inst. Commun.,  Geneva,  Oct. 1967. 

[139]  R. Radzyner  and P.  T. Bason, “An error  bound  for Lagrange 
interpolation  of  low pass functions,” IEEE  Trans.  Inform. 

(1401 J. L. Brown,  Jr.,  “Bounds for  truncation  error in sampling 
Theory, vol. IT-18, pp. 669-671, Sept. 1972. 

expansions  of  band  limited signals,”IRE  Trans.  Inform.  Theory, 

[ 1411 H. J. Piper, Jr., “Best asymptotic  bounds  for  truncation  error  in 
sampling  expansions  of  band-limited  signals,’’ IEEE Tram. 
Inform.  Theory  (Corresp.), vol. IT-21, pp. 687-690, Nov. 1975. 

[ 1421 J. Hagenauer,  “Sampling theorem  with small truncation  error,” 
Archiv  fur  Electronic  and  Ubemagungslechnik, vol. 26, no. 4 ,  
pp. 181-184,Apr.  1972. 

I1431 D. Jagerman,  ‘‘Bounds  for  truncation  error  of  the sampling 
expansion,” SIAM J.  Appl.  Math., vol. 14, pp. 614-723, July 

[144]  A. Papoulii,  “Truncated  sampling  expansions,” IEEE Trans. 
1966. 

[ 1451  A. Papoulis,  “Limits on band-limited  signals,” R o c .  IEEE, vol. 
Automat.  Contr., pp. 604-605, Oct. 1967. 

[ 1461 E.  Mendelovicz  and J. W. Sherman,  “Truncation  error  bounds 
55, no. 10,pp. 1677-1681,Oct.  1967. 

Circuit Syst.  Comput., p. 16, Nov. 1975. 
for signal  sampling,”  in Con5  Rec.  9th  Ann.  Asilomar  Conf. 

[147]  E. Mendelovicz, J. W. Sherman  and  J.  T.  Murphy,  “Signal 
sampling theorems  and  truncation  error  bounds,” to  appear. 

[ 1481 F. J. Beutler, “On the  truncation  error  of  the  cardinal sampling 
expansion,” IEEE Trans. Inform.  Theory, vol. 22, no. 5 ,  pp. 

[ 1491 J. L. Brown,  Jr., “On mean  square  aliasing  error  in  the  cardinal 
568-573, Sept. 1976. 

[150]  H. S. Shapiro and R.  A. Silverman,  “Alias  free  sampling of 
series  expansion  of  random  processes,” to appear. 

V o l a  13, pp. 380-382,  1963. 

444,  1967. 

269-277,  1964. 

V O ~ .  IT-15, pp. 440-444, July 1969. 

15 1 ] F. J. Beutler,  “Alias-free  randomly  timed  sampling of  stochastic 
random  noise,” J .  SIAM, vol. 8, pp. 225-236, June 1960. 

processes,” IEEE Trans. Inform.  Theory, vol. IT-16, pp. 147- 
152,  1970. 

152)  P. Weiss, “An  estimate  of  the  error arising from misapplication 
of the sampling theorem,” Amer.  Math.  SOC.  Notices, no. 

1531 I. L. Brown,  Jr., “On the  error  in  reconstructing  a  nonband 
10.351 (abstract No. 601-54),  1963. 

limited  function  by means  of the  band pans sampling theorem,” 
J. Math.  Anal. Appl . ,  vol. 18, pp. 75-84,  1967. 

1541 J. L. Brown,  Jr., “A least  upper bound  for aliasing error,” IEEE 
Trans. Auto.  Contr., vol. AC-13, no. 6 ,  pp. 754-755, Dec. 1968. 



JERRI: SHANNON SAMPLING THEORY: A REVIEW 1595 

[ 1 5 5 )  C. J .  Standish,  “Two  remarks on the  reconstruction  of sampled 
non-band  limited  functions,” IBM J .  Res.  Develop., vol. 1 1 ,  no. 
6, p. 648,  1967. 

[ 1561 D. C. Stickler,  “An  upper  bound on aliasing error,”Proc. IEEE 

(1571 F. C. Mehta, “Error  bound  for generalized  band-pass  sampling 
(Let t . ) ,  vol. 55, pp. 418-419,  1967. 

[ 1581 G. Franklin, “Linear  filtering of sampled data,”  in IRE  Int. 
theorem,”  submitted. 

[ 1591 S .  P. Lloyd  and B. MacMillan, “Linear least squares fiitering  and 
Conv.  Rec., vol. 3, pt. 4 ,  pp. 119-128, Mar. 1955. 

prediction  of sampled signals,” in Proc. Symp.  Modern  Network 

[ 1601 R. M. Stewart, “Statistical design and  evaluation  of  fiiters  for 
Synthesis, P.I.B., pp. 221-247, Apr. 1955. 

the  restoration  of  sampled  data,” Proc.  IRE, vol. 44,  pp. 253- 

[ 161 1 J. I. Spilker,  “Theoretical  bounds on  the  performances  of 
257, Feb. 1956. 

sampled data  communications  systems,” IRE Trans. Circuit 
Theory, vol. CT-7, pp. 335-341, Sept. 1960. 

[1621 S .  S. L. Chang, “Optimum transmission of a continuous signal 

1’  

1 

1 

1 

over  a sampled.data  link,” AIEE  Trans., vol. 79,  pt. I1 (Appiica- 

631 W. M. Brown,  “Optimum prefiltering of sampled data,” IRE 
tions and Industry),  pp. 538-542, Jan. 1961. 

Trans.  Inform.  Theory, vol. IT-7, pp. 269-270, Oct. 1961. 
641 D. Middleton  and D. P. Peterson, “A note  on  optimum pre- 

sampling  filters,”  IEEE  Trans. on Circuit Theory, vol.  CT-IO, 
pp. 108-109, Mar. 1963. 

651 D. S. Ruchkin, “Linear reconstruction  of  quantized  and sam- 
pled random signals,” IRE Trans. Commun.  Syst., vol. CS-9, pp. 

661 A. V. Balakrishnan, “On the problem  of  time  jitter  in sam- 
350-355, Dec. 1961. 

pling,” IRE Trans. Inform.  Theory, vol. IT-8, pp. 226-236, 

[167]  W. M. Brown,  “Sampling with  random  jitter,”J. SIAM,vol. 1 1 ,  
Apr. 1962. 

[168]  W. M. Brown  and C. J .  Palermo,  “System  performance in  the 
pp. 460-473, June 1963. 

presence of  stochastic  delays,” IRE  Trans.  Inform.  Theory, vol. 
IT-8,  pp. S206-S214, Sept. 1962. 

[169]  J. R. Higgins, “A sampling theorem  for irregularly  spaced 
sample points,” IEEE Trans.  Inform.  Theory, IT-22, pp. 621- 

[ 1701 J. J .  Knab and M. I. Schwartz,  “A  system  error  bound  for self 
622, Sept. 1976. 

truncating  reconstruction  fiiter class,” IEEE Trans. Inform. 
Theory, vol. IT-21, pp. 341-342, May 1975. 

[171]  J .   J .  Knab,  “System error  bounds for Lagrange estimation  of 
band-limited functions,” IEEE Trans.  Inform.  Theory, vol. 

I1721 T. Ericson,  “A generalized version of  the sampling theorem,” 

[173]  H. 1. Landau,  “Sampling data transmission  and the Nyquist 
Roc. ZEEE, vol. 60,  pp. 1554-1555,  1972. 

[ 1741 R. Barakat, “Application of the sampling  theorem to optical 
rate,”Proc. IEEE, vol. 55, pp. 1701-1706,  1967. 

diffraction  theory,” J .  Opt.  SOC.  Amer., vol. 54, no. 7, pp. 

[175]  D. Gabor, Progress in Optics, E. Wolf, Ed., vol. 1. Amster- 
dam,  The  Netherlands:  North  Holland, 1961. 

[ 1761 S .  C. Som,  “Simultaneous  multiple  reproduction  of space- 
limited functions by  sampling of spacial frequencies,” J.  Optic. 
SOC.  Amer.,vol. 60,no. 12, pp. 1628-1634, Dec. 1970. 

[177]  G. diFrancia, “Resolving  power and information,” J.  Opt.  SOC. 

(1781 -. “Directivity,  super-gain  and information,” IRE Trans. 
Amer., vol. 45, pp. 497-501, July 1955. 

(1791 F. Gori and G. Guattari, “Holographic restoration  of  non- 
Antennas  Propagat., vol. AP-4, pp. 473-478,  1956. 

uniformly sampled  band-limited functions,” Opt.   Comm., vol. 
3, no. 3, pp. 147-149, May 1971. 

[ 1801 -, “Use of  nonuniform sampling with a single correcting 
operation,” Opt.   Comm.,  vol. 3, no. 6,  pp. 404-406, Aug. 
1971. 

[ 1811 -, “Nonuniform  sampling in optical processing,” Optica  Acta, 

(1821 A. W. Lohmann,  “The space-band width  product,” IBM, San 

[ 1831 G. A.  Vanasse and H. Sakai,  “Fourier  spectroscopy,”  in Progress 
Jose Res., San Jose, CA, Res. paper RJ-438, May 9,  1967. 

in  Optics, E. Wolf,  Ed.  Amsterdam, The  Netherlands:  North 
Holland, 1967, vol. 4, pp. 261-329. 

[ 1841 W. A. Hopper,  “Generalized multidimensional sampling theory 

3 Conf., p. R3-1, 1972. 
and  applications  in  optical  systems,” in Proc.  10th  Ann. Region 

[ 185 ] V. Blaiek, “Sampling theorem  and  the  number  of degrees of 
freedom  of  an image,” Opt. Comm.,vol. 11, pp. 144-147, June 
1974. 

[186]  -, “Optical  information processing by  the Fabry-Perot res- 
onator,”Opt. Quantum  Electron., vol. 8, pp. 237-240,  1976, 

[187]  R. J. Marks 11, J .  F. Walkup,  and M. Hagler, “A sampling the- 
orem  for space-variant systems, J.  Opt.  SOC.  Amer., vol. 66,  pp. 

(1881 M. J .  McDonnell, “A sampling function  appropriate  for  decon- 
918-921, Sept. 1976. 

IT-21. pp. 474-476, July 1975. 

920-930,1964.  

VOI. 18,nO. 12,pp.  903-911,  1971. 

notation,” IEEE  Trans.  Inform.  Theory, IT-22, pp. 617-621, 
Sept. 1976. 

[189]  L. Brillouin, Science  and  Information  Theory, 2nd  Ed. New 
York:  Academic Press, 1963. 

[ 1901 J .  Frank,  “Radiation  damage assessment from  electron images 
using digital correlation  methods,” J.  Phys.  D.  Appl.  Phys., vol. 

[ 1911  1. Frank  and L. Ali, “Signal-to-noise ratio  of  electron micro- 
graphs  obtained  by cross-correlation,” Nature, vol. 256, no. 

[192]  J.  Frank,  “Computer processing of  electron micrographs,” in 
Advanced  Techniques in Biological  Electron  Microscopy, I. K. 

[ 1931 A. Stastnt,  “Restoration  of  continuous signals,” Zpravodaj 
Koehler, Ed. New York: Springer-Verlag, 1973, pp. 215-274. 

ZLU, no. 3, pp. 33-43,  1969. (In  Czech). (English summary 
in Inti. Aerospace Abstracts v. 10#24 Abs. A70-45434). 

[ 1941 D.  P. Petersen,  “Discrete  and  fast Fourier  transformations on N- 
dimensional  lattices,”Proc. IEEE, vol. 58, Aug. 1970. 

(1951 A. J.  Jerri,  “Computations  of  the hill functions of higher 
order,” J.  Math.  Comput.. vol. 31, no. 138, pp. 481-484, Apr. 

7,  pp. 74-77,  1974. 

5516, pp. 376-379, July 31,  1975. 

1077 

1961 K. Yao  and J .  B. Thomas, “On band-limited  properties  of 

1965 Allerton Conf. Circuit Syst.  Theory, pp. 20-22, Oct. 
Fourier-transform pairs of  some special functions,”  in Proc. 

1965. 
1971 F. C. Mehra,  “Sampling expansion  for band-limited signals 

through  some special functions,” J .  Cybernetics, vol. 5, no. 2,  

1981 E. C. Titchmarsh, Introduction to the  Fourier  Inregral. Oxford: 
University Press, 1937. 

1991 J. R. Higgins, “An  interpolation series associated with  the 
Bessel-Hankel transform,” J.  London  Math.  SOC., vol. 5, pp. 

a. I I .  

PP. 61-68,  1975, 

707-714,  1972. 
[?OD] D.  P. Petersen  and D. Middleton,  “On representative  observa- 

tions,” Tellus 1 5 ,  no. 4 ,  pp. 387-405,  1963. 
[ 2 0 l ]  V. I. Belyayev, Procesring and Theoretical  Analysis o f  Oceano- 

graphic  Observations. Translation  from Russian JPRS 6080, 

[202]  R.  Radzyner,  “Aspects of nonreguiar  sampled  processes with 
Dec. 19,  1973. 

applied to  an investigation of a  cardiac  pacemaker  model,” 
particular  reference to  interpolation  and spectral  analysis, as 

M.E.S. dissertation,  The University of New South Wales, Ken- 
sington, New South Wales, Australia,  Dec. 1970. 

[203]  T. J .  Osler, “A further  extension of the Leibnitz  rule for frac- 

J.  Math.  Anal., vol. 4 ,  no. 3, Aug. 1973. 
tional derivatives  and its  relation to  Parseval’s formula,” SIAM 

I2041 T. P.  Higgins, “A Hypergeometric  function  transform,” J.  SOC. 
Indust.  Appl.  Math., vol. 12, no. 3, Sept. 1964. 

Other  Related  References 
Sec tion I :  

[205]  A. L. Cauchy,  “Memoire sur diverses formules d’analyse,” 

(2061 C. E. Shannon  and W. Weaver, The  Mathematical  Theory of 
CornptesRendus, vol. 12, pp. 283-298,  1841. 

(2071 N. Wiener, “Extrapolation,  interpolation, and  smoothing  of 
Communication, Urbana, IL: University of Illinois Press, 1949. 

[208]  A. A. Kharkevich,  “Kotel’nikov’s  theorem-a review of some 
stationary  time series,” New York:  Wiley, 1949. 

new  publications,” Radiotekhnika, vol. 13, no. 8, pp. 3-10, 
1958. 

1209) J .  R. Ragazzini  and G. F. Franklin, Sampled-Datu  Control 
Systems. New York: McGraw-Hill, 1958. 

I2101 V.  V. Lebedev,  “The description of time-limited signals by 
discrete values,” Radiotekhnika, vol. 16, no. 1 ,  pp. 75-80, 
1961. 

Section 11: 
I2111 I. J.  Schoenberg,  “Contributions to   the problems  of  approxi- 

Math., vol. 4 ,  pp. 45-99 and  pp. 112-141,  1946. 
mation  of  equidistant  data  by  analytic  functions,” Quart.  Appl. 

[212]  A. I. Velichkin, “Interpolation  of  continuous signals from dis- 
crete transmissions,” Elekrrosvyaz, vol. 14, no. 3, pp. 3-7, 
1962. 

(213)  I. Neveu,  “The  problem of sampling  and interpolation  of sig- 
nals,”Comptes  Rendus, vol. 260, pp. 49-51,  1965. 

Section 111: 
[214]  R. Kress, “On the general  Hermite  cardinal interpolation,” 

[215]  D.  K. Cheng  and D. L. Johnson,  Walsh  transform  of sampled 
Math.  Cornput.,vol. 26, no. 120,pp.  925-933,Oct.  1972. 

time  functions  and  the sampling  principle,” Proc.  IEEE, vol. 16, 
no. 5 ,  pp. 674-675, May 1973. 

Section I V: 
[216]  A. Nathan,  “On sampling  a function  and  its derivatives,” In- 



1596 PROCEEDINGS OF THE  IEEE,  VOL. 65,  NO. 11, NOVEMBER 1977 

(2171 D. P. Petersen,  “Static  and  dynamic  constraints  on  estimation 
form. Conrr.,vol. 22, pp. 172-182,  1973. 

of  space-time  covariance  and  wavenumber-frequency  spectral 
fields,” I. Atmospheric  Science, vol. 30, no. 7, pp. 1257-1266, 

(2181 I. Bar-David,  “Sample functions  of  a Gaussian  process cannot be 
Oct. 1973. 

recovered from  their zero  crossings,” IEEE  Trans. Inform. 
Theory, vol. IT-21, pp. 86-87, Jan. 1975. 

(2191 G.  Bonnet,  “On the  optimal  interpolation  of  random sampling,” 
Comptes  Rendus, vol. 260, pp. 784-787,  1965. 

(2201 -, “On the  spectral  property  of  functions  with  bounded sup 

Rendus, vol. 265, pp. 628-630,  1967. 
port  with  an  application t o  the sampling  theorem,” Comptes 

I2211 -, ‘‘On a  property of  decomposition  of  functions  with 

ComptesRendus, vol. 265, pp. 691-693,1967. 
bounded  support  and  an  application to samples  correlation,” 

(2221 -, “Problems of s a m p q  and linear and  quadratic  handling of 
random  signals,” Ann.  Tilecommun., vol. 24, pp. 17-29,  1969. 

(223)  -, “Hybrid  correlation  of  samples,” Ann. TelCcomrnun., vol. 
24, pp. 252-260,  1969. 

Section V: 
(224)  I. T.  Turbovich,  “The  application  of  Kotel’nikov’s  theorem t o  

time  functions  with  a non-limited  spectrum,”  Radiotekhnika, 
vol. 13, no. 8, pp. 11-12,  1958. 

(2251 I. T. Turbovich,  “The  analytical  representation  of  a  time  func- 
tion  with  an  unlimited  spectrum,” Radiotekhnika. vol. 14, no. 

I2261 N. K. Ignat’ev,  ”On the  discretization of  signals with  an  un- 
bounded  spectrum,” Elektrosvyaz, vol. 14, no. 2,  pp. 71-72, 
1960. 

(2271 -, “General methods  of investigating  signals  involving  dis- 
cretization,” Elektrosvyaz, vol. 14, no. 8 ,  pp. 3-1 1, 1960. 

3, pp. 22-27,  1959. 

Section VI: 
[228] I. J. Good,  “The loss of  information  due to clipping  a  wave- 

I2291 V.  A. Pis’menetskii,  “Errors  in  representing f h t e  duration sig- 
form,”Inform Control, vol. 10, pp. 220-222,  1967. 

(2301 H. J. Landau  and H. 0. Pollack,’  “Prolate  spheroidal  wave func- 
nals,”Radiotekhnika, no. 16, pp. 99-101,  1971. 

tions,  Fourier analysis  and uncertainty41  and III,” Bell Syst. 
Tech. J . ,  vol. 40,  pp. 65-84,  1961, andvol. 41, pp. 1295-1336, 

I2311 D. Slepian,  “On bandwidth,” hoc. IEEE, vol. 64,  no. 3, pp. 
1962. 

[232]  A. Ephermides  and L.  H. Brandenburg,  “On  the  reconstruction 
error  of sampled data  estimates,” IEEE  Trans. Inform. T h e o v ,  
vol. IT-19, pp. 365-367, May 1973. 

292-300, Mar. 1976. 

(2331 J. R. Mitchel  and W. L. McDaniel, Jr., “Calculation  of  upper 
bounds  for errors of  an  approximate sampled frequency re- 
sponse,” IEEE Trans. Automat.  Contr., vol. AC-19, pp. 155- 
156, Apr. 1974. 

Section VII: 

sampling theorem I, 11,111, IV,  V, VI,  “presented at Prof. Group 
K. Sasakawa,  “Application  of Miyakawa’s  multidimensional 

on  Info.  Theory,  Inst.  of Elec.  Comm.  Engrs.  of Japan, 1960- 
1961. 
D.  P. Petersen,  “On  the  concept  and  implementation  of  sequen- 
tial  analysis for linear random fields,” TelIus, vol. 20, no. 4, pp. 

D.  P. Petersen,  “Algorithm  for  sequential  and  random  observa- 
tions,” Meterol.  Mono., vol. 11, no. 33, pp. 100-109, Oct. 
1970. 
World  Meteorological  Organization,  “Upper air network  require- 

WMO, Tech.  Note 29, Geneva,  Switzerland, 1960. 
ments  for  numerical  weather prediction,”  Secretariat  of the 

D.  P. Petersen,  “A  comparison of performance  of  quasiaptimal 

Meteorol., vol. 12, no. 7,  pp. 1093-1101, Oct. 1973. 
and  conventional  objective  analysis  schemes,” J. Appl. 

R. N. Bracewell,  “Two-dimensional  aerial  smoothing in radio 
astronomy,”Aust. 3. Physics, Vol. 9,  pp. 297-314,  1956. 
R. W. Schafer  and L.  R. Rabiner,  “A  digital  signal  processing 
approach to  interpolation,”Proc. IEEE, vol. 61,  no. 6, pp. 692- 
702, June 1973. 

approximations to continuous  data,” IEEE Trans. Audio  Elec- 
L. E.  Ostrander.  “The  Fourier  transform of  spline  function 

P. Leuthold, “Sampling theorem as an aid to  lucid  description 

pp. 65-69, Feb. 1969. 
of single-side band  modulation,” Nachrichtentech. Z., vol. 22, 

based on Whittaker’s  cardinal functions,” in progress. 
F. Stenger  and J. Schwing,  “Numerical  integration  algorithm 

function  and  its derivative,”  in  progress. 
F.  Stegner  and L. Ludin,  “Cardinal-type  approximation  of  a 

673-686,1968. 

t r ~ ~ ~ s t . ,  VOI. AU-19, pp. 103-104, Mar. 1971. 

Other References 
(2451 C. J.  de la  Vallbe  Poussin, “Sur l’approximation  des  fonctions 

d’une  variable  rbelle et  de  leurs  dkiv6es par des  polynomes et  de 
suites  limit&  de  Fourier,” Bull.  Acad.  Roy. de Belg. (Classe de ~~~~ ~ 

Sciences),  pp. 193-254,  1908. 

Math.  Anal. App. ,  vol. 16, p . 574-584,  1966. 
R. T. Proaser, “A  multi-dimensional  sampling  theorem,” 3. 

I. J. Schoenberg, Cardinal Ipline  Interpolation. Regional  Con- 

A. J. ,,Lee, “A  proximate  interpolation  and  the sampling the- 
ference  Monograph  No. 12, SIAM, Philadelphia, PA, 1973. 

orem, SIAM f: Appl.  Math., vol. 32, no. 4 ,  pp. 731-744, June 
1977. 


