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The Importance of Phase in Signals 

Invited Paper 

Absmzct-In the Fourier representation  of  signals, spectral magnitude 
and phase  tend to play  different roles and in m e  situations  many of 
the important features of  a signal are preserved if only the phase is re- 
tained. Furthennore, under  a variety of conditions,  such as when  a Sig- 
nal is of finite length,  phase  information  alone is sufficient to completely 
reconstruct  a signal to within  a scale factor. In this paper, we  review 
and discuss these observations and results in a number of different  con- 
texts and  applications. Speci f ica l ly ,  the intenigibility of ph-dy re- 
construction  for images, speech,  and crystaUographic structure% are 
iuustrated. Several approaches to justifying the relative importance of 
phase through statistical  arguments are presented,  along with a  number 
of  informal  arguments suggesting reasons  for the importance  of phm. 
SpeciFii  conditions  under  which  a  sequence can be exactiy  recon- 
structed  from  phase are reviewed, both for one-dimensional  and  multi- 
dimensional sequences,  and  algorithms  for both approximate  and exact 
reconstruction of signals from  phase  information are presented. A 
number of  applications  of the observations  and  results  in this paper  are 
suggested. 

I 
I. INTRODUCTION 

N THE FOURIER representation of signals, spectral mag- 
nitude  and phase tend to  play different roles and  in some 
situations,  many of the  important features of a signal are 

preserved  if only  the phase is retained. A corresponding  state- 
ment  cannot in general be  made for  the spectral magnitude. 
This observation  about phase has been made  in a number of  dif- 
ferent  contexts  and applications and including onedimensional, 
two-dimensional and three-dimensional signals. For example, 
both  phaseonly and magnitude-only acoustical and  optical 
holograms  have  been studied. For phase-only  holograms (also 
referred to as kinoforms)  only the phase  of the scattered wave- 
front is recorded  and the magnitude is assumed to be  constant 
while in  the magnitude-only hologram the phase is assumed to  
be zero  and  only the magnitude of the scattered wavefront is 
recorded. In general, with  reconstruction  from magnitude-only 
holograms, the reconstructed  object is not of much value in 
representing the original object whereas reconstructions  from 
phase-only  holograms  have many important  features  in com- 
mon with the original objects. Closely related to phase-only 
and magnitude-only holograms are phase-only and magnitude- 
only images.  As with  kinoforms, a phase-only image has  Fourier 
transform phase equal to that of the original  image and a Fourier 
transform  magnitude of unity  or perhaps  more generally repre- 
sentative of the spectral  magnitude of images such as the aver- 
age  over an ensemble  of unrelated images.  As is demonstrated 
by  the examples in  Section 11, many of the features of the 
original  image are clearly identifiable in the phase-only image 
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but  not  in  the magnitude-only image.  Similar observations 
have also been  made  in the  context of speech s igna ls  and X-ray 
crystallography. Specifically, for speech it has been shown that 
the intelligibility of a sentence is retained if the phase  of the 
Fourier  transform of a long segment of speech is combined  with 
unity magnitude. In the  context of X-ray crystallography, d e  
tails of the crystallographic structure  are  often  inferred  from X- 
ray  diffraction data. The Fourier  synthesis of the  structure from 
only the correct magnitude of the diffraction  data  with  zero 
phase in general does not preserve the atomic  structure whereas 
Fourier  synthesis using only  the correct  phase.with  unity mag- 
nitude does reflect the correct  atomic  structure. These exam- 
ples, elaborated on in Section 11, suggest very strongly the fact 
that  in many contexts  the phase contains  much of the essential 
“information”  in a signal. 

The above  discussion relates to the fact that if the  true mag- 
nitude  information is eliminated many of the  important char- 
acteristics of the signal are nevertheless retained. In the experi- 
ments  outlined above, the  true magnitude  information is simply 
replaced by a standard magnitude. With so much intelligibility 
incorporated  in the phase, it is natural to consider the possi- 
bility of recovering some or perhaps all of the magnitude  infor- 
mation  from  the phase. It is well known  that this is possible 
under  certain assumptions, such as when the signal  is  minimum 
phase.  Under this  assumption, the Hilbert transform can be 
used to recover the spectral  magnitude to within a gain factor 
from the phase.  However, many signals  of practical importance 
are not minimum-phase  signals and  consequently  this proce- 
dure  has  limited applicability. However,  as  we describe in Sec- 
tion IV, there are other  conditions which can be imposed on a 
signal such that it is exactly recoverable to within a scale  fac- 
tor from the phase. As we show, one  such  condition, which 
applies to discrete-time signals, is that  the signal be of finite 
duration  and have no zero-phase components. This set of con- 
ditions applies to a relatively broad class  of  signals and provides 
the potential for more precise synthesis of signals from phase 
information alone. 

Sections 11, 111, and IV demonstrate  the  importance of  phase 
both empirically and analytically. In Section V, we consider 
specific algorithmic procedures for  reconstructing a signal 
from phase information alone. This includes combining the 
phase with a standard  magnitude, combining the phase with 
an estimate of the magnitude,  and recovering all or some of 
the magnitude  information  from the phase using the  theory 
outlined in Section IV. 

The importance of  phase in signal representation has a num- 
ber of  important  implications  with regard to applications. In 
Section VI, we  review  several that have been developed or 
proposed. 

II. PHASE-ONLY FOURIER SYNTHESIS 
Apparently  independently,  and in a number of different con- 

texts, it has been recognized that many features of a signal 
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are retained in a phase-only Fourier synthesis but  not in a 
magnitude-only Fourier synthesis. Specifically, let f(x) denote 
an n-dimensional signal and F ( o )  = IF(o)l  ep(") its n-dimen- 
sional Fourier  transform where x = ( X I ,  x 2 ,  * , x n )  is the 
vector of independent variables o = (a1, w2, * ,on) is the 
vector of frequency variables, and IF( o)l and No) are the 
magnitude and phase, respectively, of F ( o ) .  The magnitude- 
only Fourier synthesis f,,,(x) is defined as the signal with 
Fourier transform IF(o) l ,  i.e., 

3{fm(x)1 = IF(w)l. (1) 

Correspondingly, the phase-only synthesis f p ( x )  is to  have 

S { f p ( x ) }  = M ( u )  efl(") (2) 

where M( a) is either  unity or perhaps more generally a magni- 
tude  function which is in some  way representative of the class 
of signals but  not obtained  from  any knowledge of the specific 
signal fb). 

Apparently, the first context  in which the similarity between 
a signal f(x) and  its phase-only synthesis fp (x) had been  recog- 
nized and  demonstrated was in  the Fourier synthesis of crystal- 
lographic structures [ 1 I -[41. Typically, in X-ray  crystallog- 
raphy, a crystal structure is  deduced from the magnitude of 
the Fourier  transform of the structure, as represented by X-ray 
diffraction data. A commonly used test for  the correctness of 
the deduced crystal structure is to perform a Fourier  synthesis 
using the observed structure  amplitudes  and the calculated 
phases associated with the deduced structure  and to verify that 
this diagram  gives  peaks  of the correct magnitudes at the as- 
sumed positions of atoms  and  none elsewhere.  Motivated  by 
this procedure,  in  1961 Srinivasan [ 3 ]  reported the results of 
a number of empirical tests carried out to assess the relative 
importance of the phase  angles and  structure  amplitudes in 
a Fourier synthesis. The results of these  tests  are illustrated 
in Fig.  1. In Fig. 1 (a) is shown a contour diagram  of a specific 
projection of L-tyrosine HCL  using correct  Fourier  transform 
magnitude and phase information.  The  contours  correspond 
to constant  electron density with peaks occurring at  the  atomic 
positions. In Fig. l(b) is shown the electron density contour 
plot  for the same projection  obtained by  using the same phase 
information used for Fig. l(a)  but with a magnitude which is 
constant multiplied by a tapering so that it gradually falls off 
to zero at  the limit of the observed data  in  the frequency d e  
main.  Overlaid in solid lines is the correct  atomic  structure. 
It is evident that  for  the  most part the locations  and  in  some 
cases  even the relative strengths of some  of the  atoms have 
been synthesized correctly. To  further emphasize the impor- 
tance of the phase information relative to  the Fourier magni- 
tudes, Fig. l(c) shows the synthesis in which the correct phase 
is combined  with  Fourier magnitudes which are a random per- 
mutation of the  true magnitudes. In  Fig. l(d),  the Fourier 
synthesis was obtained using the phase associated with the 
same structure synthesized in Fig. l(a) and  with a transform 
magnitude associated with a totally  different  structure.  Thelo- 
cations of the  atoms  in  the  structure associated with the trans- 
form  magnitude  are indicated by  crosses.  Clearly, the synthe- 
sized structure in Fig. l(d) more closely  resembles in atomic 
positions, the  structure associated with the phase used in the 
synthesis, as compared with the  structure associated with the 
magnitude. 

the Fourier  transform 
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Fig. 1.  (a)Contour diagram of  a  projection of L-tyrosine HCL syn- 
thesized  from  correct Fourier transform  magnitude  and  correct  phase. 
The contours  correspond  to  constant electron density  with  peaks 
occurring at the atomic  positions.  (b) Same as  (a),  but  synthesized 
from  correct phase  and a  tapered  constant  magnitude.  (c)  Same  as 
(a), but  synthesized  from  correct phase  and the  magnitude  which is 
a  random  permutation of the true magnitude. (d) Same  as (a), but 
synthesized  from  correct phase and  a  magnitude  associated  with  a 
totally  different  structure  whose locations of  the  atoms are indicated 
by crosses  (after Ramachandran  and  Srinivasan [ 2 I). 
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Fig. 2. (a) Original image. (b) Image synthesized  from  the  Fourier 
transform  magnitude of (a)  and zero phase. (c) Image synthesized 
from  the Fourier transform phase of (a) and  unity  magnitude. 
(d) Image synthesized  from  the  Fourier  transform phase of (a)  and  a 
magnitude averaged over an  ensemble  of  images. 

Closely related to  the above  experiments but apparently car- 
ried out independently is a set of  similar experiments in which 
phase-only and  magnitude-only images  were compared  with  an 
original [ 51, [ 61. The results of such an experiment  are illus- 
trated in Fig. 2.  Fig. 2(a) corresponds to  the original  image 
and  thus  contains  both spectral magnitude  and phase. In Fig. 
2(b) is shown the magnitude-only image, and in Fig. 2(c) the 
phase-only  image with unity magnitude, i.e., with M(u)  in (2) 
equal to  unity. Fig. 2(d)  shows the phase-only image with  a 
spectral magnitude  which is the average spectral magnitude 
over  an ensemble of  images. From  comparison of Figs. 2(a)-(d), 
it is clear that  the phase-only  image, but  not  the magnitude- 
only image retains many of the features of the original.  Simi- 
lar to Fig. 2(d)  and as a  further illustration of the relative im- 
portance of phase versus magnitude in synthesizing an  image, 
Fig. 3(c)  shows  the  synthesis of an image  using the Fourier 
transform  phase  associated  with the image  of  Fig. 3(a)  and  the 
Fourier  transform  magnitude  associated  with the image of Fig. 
3(b). Fig. 3(d) shows the synthesis using the Fourier  transform 
phase of Fig. 3(b)  and  the  Fourier  transform  magnitude of 
Fig. 3(a). Clearly, in  both cases, the reconstructed image most 
closely resembles the  one  with  the  same phase. 

A similar set of experiments have been carried out with 
speech,  with similar results. Fig. 4(a) is the spectrogram of a 
sentence  and Fig. 4(b) is the spectrogram of the magnitude- 
only equivalent, obtained  by  computing the Fourier  transform 
of the  entire  sentence  and inverse Fourier  transforming  after 
setting the phase to zero. In Fig. 4(c) is the spectrogram of 
the phase-only equivalent  for which the  true phase is retained 
and  the  Fourier  transform  magnitude is unity. As suggested 
by the spectrograms  and conf i i ed  by listening, intelligibility 
is lost in the magnitude-only  reconstruction but  not in the 
phase-only reconstruction. Analogous to  the images  in  Fig. 3, 
we show in Figs. 5(a) and (b)  the spectrograms of two original 
sentences. Fig. 5(c) is the spectrogram  for  the  sentence result- 
ing from  combining the phase  of the sentence in Fig. 5(a) yith 
the  magnitude of the sentence in Figs. 5(b)  and  (d) is the spec- 
trogram for  the sentence resulting from  combining the phase 
of the sentence in Fig. 5(b)  with the magnitude of the sentence 
in Fig. 5(a). As with images, the reconstructed  speech  most 
closely  resembles the one  with the same  phase. 

Another context in which the  potential  importance of phase- 
only  Fourier synthesis has  been  recognized is in both acoustical 
and optical holography [71-[ 191. In both cases, the hologram 
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Fig. 3. (a) Original image A.  (b) Original image B. (c) Image synthe- 

tude of image B. (d) Image synthesized  from the Fourier transform 
sized from the Fourier transform phase of image A and the magni- 

magnitude of image A and the phase of image B. 

corresponds to  the diffraction  pattern at a reference plane due 
to  the illumination of an  object  by a monochromatic source. 
For a two-dimensional object  for example, if the reference 
plane is sufficiently far  from the object, the Fraunhofer a p  
proximation can be made  and the spatial diffraction  pattern 
U(u, u )  is approximately [ 201 

U(U, u )  =J +- j-;m f ( x ,  y )  exp - j  - (ux + uy) dx dy 
-00 [ ;: I 

(3 1 
where f ( x ,  y )  is the light or  sound  amplitude  distribution at 
the two-dimensional object, x and y are  the spatial coordinates 
at  the object, u and u are the spatial coordinates at  the refer- 
ence plane, h is the wavelength of the source  and z is the dis- 
tance  from the object to the reference plane. From (3), werec- 
ognize the diffraction  pattern as the two-dimensional Fourier 
transform of the object  with 2 m / X z  and 2nu/hz representing 
the spatial frequency variables w, and my, respectively. For 
the reference plane closer to  the object so that  the Fresnel ap- 
proximation to the diffraction  pattern is more  appropriate, the 

spatial diffraction  pattern is approximately 

exp j -(xz + y ' )  [:: I 
(4) 

In  this case, the double integral is recognized as the two-dimen- 
sional Fourier  transform of f ( x ,  y )  * exp [ j ( k / 2 z )  (xz + y z ) ]  
and thus  the Fresnel diffraction  pattern is the Fourier trans- 
form multiplied by a known phase factor. In both  the acous- 
tical case and the optical case, the possibility of reconstructing 
the object  from only the phase  of the diffraction  pattern  has 
been proposed and investigated and in particular it has been 
demonstrated that reasonable representations of the object can 
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Fig. 4. (a)  Spectrogram of an  original sentence  “Line  up  at  the  screen 
door.”  (b) Spectrogram  obtained  from  the Fourier transform magni- 
tude of the  entire  sentence  in  (a)  and  zero phase. (c) Spectrogram  ob- 
tained  from  the Fourier transform phase of  the entire  sentence  in  (a) 
and  unity  magnitude. 

0 

be obtained using this phase-only synthesis. In the optical case, 
such holograms  have  been referred to as kinoforms.  They a p  
pear to have potential  importance  for  computer generated 
holograms since they suggest that  in some  cases, only the 
phase  of the diffraction  pattern need be synthesized. 

The above examples serve to demonstrate that  in a number 
of contexts,  the Fourier  transform phase contains  more of the 
“important”  information than  the Fourier  transform magni- 
tude,  and that  the phase-only synthesis has a high degree of 
“intelligibility.” Clearly, elimination of the  true spectral mag- 
nitude  destroys  some aspects of the signal, and  the implication 
is that these  are  not as important in the implied task for which 
the s i g n a l  is to be used. As summarized in  the  next section, 
there have  been a number of attempts  to justify both heuristi- 
cally and analytically the observation that  the spectral phase 
appears to be more  important  than  the  spectral magnitude. 
While none of the individual justifications can be considered to 
be  general and  totally conclusive they all, in  different ways, 
support  the general observation. 

111. SOME JUSTIFICATION FOR  THE  IMPORTANCE 
OF PHASE 

Several approaches to justifying the relative importance of 
phase  have  been  based on statistical arguments. For example, 
Tescher [21] has considered the rms error  due to spectral 
phase and  amplitude  quantization  for  random signals and con- 
cluded that  quantization of the phase requires  approximately 
two  more  bits  than  quantization of the  amplitude  for  the same 
rms error. A similar conclusion was reported  by Pearlman and 

0 5 1.5 

(d) 
TIME (sac )  

Fig. 5.  (a)  Spectrogram of original sentence A. (b) Spectrogram  of 
original sentence B. (c) Spectrogram  obtained  from  the  Fourier 
transform phase of  sentence  A and  the  magnitude of sentence B. 

sentence B and the  magnitude of sentence  A. 
(d)  Spectrogram  obtained from the Fourier transform phase of 

Gray [ 221. In  their analysis, distortion  rate  theory is applied 
to real-part, imaginary-part, and magnitude-phase encoding of 
the discrete Fourier  transform of random sequences, and  they 
conclude that  for equivalent distortion, the phase  angle  must 
be encoded  with 1.3 7 bits  more  than the magnitude. 

From a very different point of view,  Kermisch [ 101 has 
reached a similar conclusion based on  an analysis  of  image  re- 
construction  from kinoforms. In his analysis, he develops an 
expansion of the phase-only reconstructed image Z(x, y )  in the 
form 

Z(x,y)=A[ZA(x,y)+(1/8)ZA(x,y)*Rb(x,y) 

+(3/64)Z~(x,y)*Rb(x,y)*Rb(x,y)+... l  

(5) 

where ZA(x, y )  is the normalized irradiance of the original ob- 
ject, R b ( x ,  y )  is the two-dimensional autocorrelation  function 
of ZA(x, y )  and * denotes the two-dimensional convolution op- 
erator. The second and higher order  terms  in (5) represent the 
degradation. Integrating (5) and using the fact that ZA(x, y )  has 
been normalized to have unit area,  Kermisch concludes that 
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Fig. 6. Comparison of correlation coetfcients for  true  structures, mag- 
nitudeonly structures, and phaseonly structures  (after [4]). 

the f i t  term IA(x,y) contributes  approximately  78  percent 
to  the  total radiance in  the image plane  and the higher order 
terms  approximately 22 percent, or a  ratio of approximately 
1.8 bits. 

Srinivasan and  Chandrasekaran [4]  approached the explana- 
tion of the “intelligibility” of phase-only synthesis  in  a slightly 
different way. In  the  context of their  application,  the recon- 
struction of atomic  structures,  they carried out  a  statistical 
analysis, relating the correlation of two  structures to  the  corre 
lation of their magnitude-only reconstructions  and phase-only 
reconstructions.  Their  results  for the case  of nonsymmetric 
structures  are shown plotted  in Fig. 6, where tke horizontal axis 
is the correlation  between two structures. The curve CA repre- 
sents the correlation  between the corresponding magnitude 
only  reconstructions as a  function of the correlation  between 
the true structures. Likewise, the curve C, represents  the cor- 
relation  between  the  phaseonly  reconstructions as a  function 
of the correlation  between  the  true  structures.  The  line C, 
then  represents  the true correlation  for  the original structures. 
We note  in  particular  that the correlation C, between the 
phase-only reconstructions follows very closely the  true corre- 
lation C, whereas the magnitude-only correlation CA has  a 
much smaller range of variation and is not close to  the true 
correlation. 

The  fact  that  phaseonly  reconstruction preserves much of the 
correlation  between signals would suggest that  the “locationy’ 
of events  tends to be preserved. A related  observation that can 
be made about  the examples of  Figs. 1, 2, and 3 is that much 
of the intelligibility  in  the original and  reconstructed signals is 
related to  the location of “events” such as lines, points,  etc. It 
is generally plausible that  the phase reflects the location of 
events  more  than  magnitude  and, at least  for simple examples, 
this is exactly true. For example,  a  translation  in  position  (time 
or  space) of a signal has no  effect  on the Fourier  transform 
magnitude  and  affects  only the phase, in  particular, by adding 
a  linear phase term. As a further  indication of the plausibility 
of this statement,  consider the effect of filtering  a  onedimen- 
sional signal with  a system whose frequency response has  zero 
phase. The  impulse response ofsuch a  system  tends to be con- 
centrated  about the origin and consequently the effect of this 
on  a narrow event in  time  such as an impulse will be to replace 
it by the filter impulse response concentrated  around the Same 
time as the original event.  In  fact, if the zero-phase filter con- 
tains  only zeros in  its  transfer  function, the impulse  response 
will consist of a linear combination of impulses, doublets  and 
higher order singularities, all occurring at t = 0. The  effect of 

this  on  a narrow event in  time  such as an  impulse is to  replace 
it  at  the same time  location by this linear combination of 
singularity  functions.  Thus,  in  fact, zero-phase filtering, which 
may seriously distort the spectral  magnitude will st i l l  preserve, 
and may  in  fact  sharpen narrow time events. Clearly, a similar 
argument applies for zero-phase filtering  in the multidimen- 
sional case. 

The above informal discussion suggests one  interpretation of 
the  importance of  phase. in  relation to the preservation of the 
location of  “events.” Another similarly informal  justification 
for  the intelligibility of the phase-only reconstructions  in Sec- 
tion I1 derives from the  interpretation of the  generation of the 
phaseonly signal with  unity  magnitude as a  spectral whitening 
process. Specifically, withM(o) chosen as unity  in (2), 

Since the spectral  magnitude of speech  and  pictures  tends to 
fall off at high frequencies, the phase-only signal f p ( x )  will, 
among other  effects,  experience  a high-frequency emphasis 
which will accentuate lines, edges and other  narrow  events 
without modifying their  position.  Although the above argu- 
ment provides a general basis for  an  intepretation of the results, 
it is not precise enough for  a  complete  explanation. The basic 
processing to obtain the phase-only signal is of course highly 
nonlinear  and the simplified interpretation above assumes that 
it can be viewed as a  linear process. Furthermore, while it is 
reasonable to identify l/lF(a)l as generally emphasizing high 
frequencies over low  frequencies, it will also have specific spec- 
tral details associated with it which for some examples could 
certainly  affect or obliterate  important  features  in the original 
signal.  Several simple examples serve to illustrate the point. 
Consider, for  example,  any zero-phase or linear-phase signal. 
Clearly, the phase-only counterpart will consist only of a single 
impulse  with  a  position  dictated  by the slope of the  linear 
phase. Thus,  for example, as was illustrated  in Fig. 4, the phase 
only  equivalent of speech is highly intelligible. However,  we 
can consider  constructing  a zerephase sentence by concatenat- 
ing this original with itself reversed in  time,  with  an  impulse 
separating  them to ensure that  the Fourier  transform is posi- 
tive. In this  case,‘the phase-only equivalent signal will contain 
only an impulse. As another  illustration, if, instead of a sen- 
tence as was the case in Fig. 4,  we consider a steadystate vowel, 
the magnitude of the long-time Fourier  transform will again 
fall off at high frequencies as we would expect  but it will also 
contain the resonances associated with the formants of the 
steadystate vowel. Thus the signal obtained  from  only the 
phase of the long-time Fourier  transform would not  be ex- 
pected to contain the formants of the original vowel and  thus 
the essential features of the original signal will have been  lost. 
This is illustrated  in Fig. 7 where Fig. 7(a) is the  spectrogram 
of a  steady-state vowel and Fig. 7(b) is the  spectrogram of the 
phase-only reconstruction. 

The above examples suggest that  there  are  factors to consider 
in addition to  the basic whitening  property of the phase-only 
reconstruction.  In  particular, we propose that  for  both speech 
and pictures, if the  longtime Fourier  transform is “sufficiently 
smooth,”  then  intelligibility will be  retained in  the phase-only 
reconstruction. This condition  can be interpreted  in several 
ways. For speech, if the long-time transform is relatively 
smooth, the essential formant  structure of the  short-time 
transform will remain  intact  in  the  whitening process. For  the 
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Fig. 7. (a) Spectrogram of a  steady-state vowel. (b) Spectrogram Ob- 
tained from thP Fourier  transform  phase of the  steady-state vowel in 
(a)  and  unity  magnitude. 

case  of  images, if the long-time transform  magnitude is smooth 
and falls off at high frequencies then  the principal effect of the 
whitening process is to emphasize the high frequencies and 
therefore the edges in the image, thereby retaining many of 
the recognizable features. Smoothness of the long-time trans- 
form  magnitude equivalently implies a short impulse response 
for  the whitening fiter, and a short  correlation  function  for 
the original  signal.  Although shortness of the correlation func- 
tion does not by  itself guarantee a smooth  transform magni- 
tude, we  believe that it is an important  factor. 

Importance of the long-time phase does not, of course, im- 
ply importance of short-time phase. This is certainly evident 
in the case of speech where it is well known  that  on a short- 
time basis, phase is relatively unimportant [ 231 , [ 241 whereas, 
as evidenced in  our discussion  above, on a long-time basis, the 
signal constructed  from only the phase is intelligible and re- 
tains many of the  important features of the original. 

The difference in importance of  phase on a long-time versus 
short-time basis has consequences in a variety of practical areas 
including filtering and transform coding. In filtering, the im- 
portance of the phase of the filters is, of course, associated 
with the importance of phase on  the  time  (or space) scale  com- 
mensurate  with the length of the filter impulse response. Thus, 
for example, the  fact  that  for many pictures, the phase of the 
overall  image is important does not by  itself imply that  in image 
filtering, particular  attention  must be paid to  the phase charac- 
teristics of the filter. In transform coding, the difference in 
importance of magnitude  and phase as the size of the trans- 
form increases clearly indicates that  the relative importance of 
accurate coding of each of these  components changes. 

w. EXACT REPRESENTATION OF A SIGNAL BY ITS PHASE 

In Section 11, we considered the  Fourier  synthesis of  signals 
using correct phase information  and a spectral  magnitude which 
is perhaps representative of the class of signals but is otherwise 
unrelated to  the specific signal to be synthesized. The reason- 
ably high “intelligibility” of the results demonstrates the fact 
that much of the  important information resides in the phase 
and raises the question as to whether  some or perhaps all of 
the magnitude  information  can be extracted  or  inferred  from 
the phase. 

In general, a signal is not uniquely defined by its phase, as is 
illustrated  by the observation that a signal  convolved with  any 
zero-phase  signal  will produce  another signal with  the same 
phase. Thus, without  some  assumptions  about the signal, the 
phase may, at best,  uniquely specify a signal only to within  an 
arbitrary zero-phase factor. However, if some additional knowl- 
edge is available, then  under  certain  conditions a signal may be 
uniquely defined by its phase. One  well-known set of condi- 
tions  under which a signal  may  be uniquely recovered to within 
a scale factor  from  its phase is the minimum-phase or maxi- 
mum-phase condition.  For  continuous-time signals with ra- 
tional Laplace transforms, this condition corresponds to re- 
quiring that all the poles and zeros lie only  in the  left half or 
only in  the right half of the s-plane. For discrete-time signals 
with  rational z-transforms, the corresponding condition is that 
all poles and zeros lie only inside or only outside the  unit  cecle 
in the z-plane.  Under these  conditions, the log  magnitude of 
the Fourier  transform is the Hilbert transform of +he phase. 

For many signals  of interest, including those illustrated in 
Section 11, the minimum-phase or maximum-phase condition 
does not generally apply.  There are, however, other  sets of 
conditions  unrelated to  the minimum-phase or maximum-phase 
conditions  under which a signal is recoverable (again, to within 
a scale factor)  from  its phase. In particular, we  summarize  be- 
low a number of statements relating to conditions which  would 
seem to be satisfied by a broad class  of  signals, under which 
onedimensional  and multidimensional discrete-time signals 
can  be exactly recovered from  their phase [ 25 I . The proofs of 
these statements can be found in the related references. 

Theorem 1: A onedimensional sequence which  is finite  in 
length  and has a z-transform with no zeros on  the  unit circle 
and no zeros in conjugate reciprocal pairs is uniquely specified 
to within a scale factor  by  the phase of its  Fourier transform 
(or  by  the tangent of its phase). 

The  condition which excludes zeros from the  unit circle S 
made  only  for convenience. The  condition which excludes 
zeros in conjugate reciprocal pairs, however, is necessary to 
eliminate the possible ambiguity due to zero-phase  compo- 
nents. This theorem can be modified to  be applicable to all- 
pole sequences since the convolutional inverses  of these se- 
quences are finite in length. 

Although Theorem 1 is formally stated  for one-dimensional 
sequences, an extension to n-dimensional sequences has been 
accomplished by  using the projection-slice theorem. This 
theorem establishes the result that an n-dimensional sequence 
having a rational z-transform may be mapped into a one- 
dimensional sequence (projection)  by means of an invertible 
transformation [ 2 6 ] .  This transformation has the  important 
property that  the phase  of the projection is uniquely defined 
by the phase of the n-dimensional sequence; specifically, the 
phase  of the projection is equal to a slice of the phase of the 
n-dimensional sequence. Consequently, the multidimensional 
phaseonly  problem can be mapped into a one-dimensional 
phaseonly problem and the phase-only reconstruction theo- 
rem for one-dimensional sequences may be used. 

The  approach of transforming n-dimensional sequences into 
onedimensional  projections provides one basis for  extending 
Theorem 1 to n-dimensional signals.  However, this approach 
imposes constraints on a projection of the n-dimensional se- 
quence  rather  than directly on  the n-dimensional sequence. 
To impose the constraints  directly on  the n-dimensional se- 
quence, a more general theorem that reduces to Theorem 1 for 
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onedimensional sequences has been developed. In essence, this 
Theorem  states that an n-dimensional sequence which is finite 
in  extent  and which has an n-dimensional z-transform  with no 
symmetric  factors is uniquely specified by its n-dimensional 
Fourier  transform phase. The proof of this more general thee- 
rem is less straightforward  than that required  in the one- 
dimensional case due to  the absence of a  Fundamental Thee  
rem  of  Algebra. The specific statement  and  proof of this  more 
general theorem can be found  in [ 271 . 

Although the phase-only reconstruction  theorems  specify  a 
set of conditions  under which a  sequence is uniquely specified 
to within  a scale factor by its phase, it is assumed that  the phase 
is known for all frequencies. Since any  practical  algorithm  for 
reconstructing  a  sequence  from its phase will  base the recon- 
struction  on  only  a  finite set of samples of the phase, the 
onedimensional  theorem  has been extended to consider  the 
uniqueness of a  sequence based only  on samples of its phase. 

Theorem 2: A sequence which is known to be zero  outside 
the interval 0 < n  < ( N -  1) is uniquely specified to within  a 
scale factor  by (N - 1)  distinct samples of its phase (or tangent 
of its phase) in  the  interval 0 < w < n if it has a  z-transform 
with no  zeros  on  the  unit circle or in  conjugate  reciprocal pairs. 

Even though Theorem 2  cannot be extended  directly to n- 
dimensional sequences, it has been shown [27]  that an n- 
dimensional sequence which has a  finite  extent of N1 X Nz X 
- - X N ,  points and which has an n-dimensional z-transform 
with no  symmetric  factors is uniquely specified to within  a 
scale factor  by  the phase of its n-dimensional DFT with DFT 
size 2N1 X 2Nz X - * * X 2Nn. This result  forms the basis for 
developing the signal reconstruction  algorithms which are de- 
scribed in  Section V. Unlike Theorem  2 for one-dimensional 
signals, this result  requires more independent phase samples 
than the size of the signal and the phase samples have to  be 
taken  on  a  rectangular grid.  Work to generalize this result so 
that Theorem 2 becomes a special case when n = 1 is currently 
in progress. 

specifically, 

v. ALGORITHMS FOR IMAGE  RECONSTRUCTION 
FROM PHASE 

In the discussion  in the previous section, we  have seen that a 
signal can often be recovered completely or in  part  from 
knowledge of its phase alone. Depending on what is  known 
about  the signal in  addition to the given phase function and 
how this  additional knowledge is specifically exploited  in the 
signal reconstruction,  a  variety of different  algorithms can be 
developed. In  this  section, we consider  a  number of algorithms 
for the reconstruction. While all of the algorithms apply in 
the general context of n-dimensional signals, we  will phrase 
the discussion  and illustrate the procedures specifically in the 
context of images,  and consider a  number of approaches to 
image reconstruction  from  the  Fourier  transform phase when 
no  information or only  partial  information is available about 
the Fourier  transform  magnitude. We begin with  reconstruc- 
tion  procedures based on the discussion  in Section 11, whereby 
the phase is combined with  a "representative" magnitude, or 
with  additional available information  about the magnitude, 
but  no  attempt is actually made to recover correct  magnitude 
information  from the phase. We then consider algorithms  for 
the exact  reconstruction of signals from phase information 
alone, based on  the  theory  outlined in Section IV. 

Based on  the discussion in Section 11, one  approach to image 
reconstruction from its phase function is the  phaseonly syn- 
thesis of (2). As was illustrated in Fig. 2,  the  phaseonly 
synthesis  with M ( o )  taken as unity preserves many of the 
important  features of the original image such as the edge infor- 
mation. Even though image reconstruction based on  the unity 
spectral  magnitude  assumption is simple and preserves many 
important  features of the original image, the  unity  magnitude 
assumption is quite  arbitrary and the overall quality of images 
reconstructed  in this way tends to have the appearance of a 
broad-band noise background. An alternative  approach to 
image reconstruction  from  its phase function is to  assume a 
spectral  magnitude M ( o )  which is more  consistent  with that 
of a  typical image. For example, for a  typical image, the 
spectral  magnitude generally decreases as the frequency in- 
creases. These  spectral  characteristics of images can be incor- 
porated  in the image reconstruction  algorithm  by assuming the 
spectral  magnitude to be the average magnitude over typical 
images or prototype images with similar contents  and  then 
reconstructing  an image by combining this average magnitude 
with the given phase function. This was illustrated  in Fig. 2(d) 
where the spectral  magnitude used  was obtained by averaging 
the spectral magnitudes of  five different images whose contents 
have little  relation  with  the original picture in  Fig. 2(a). 
Clearly, the image  in  Fig. 2(d) has a high degree of intelligibility 
and appears to be somewhat more natural  than the image ob- 
tained  from the unity magnitude  assumption. 

The image reconstruction algorithms discussed above do  not 
require  any  further knowledge about  the image beyond the 
given phase function. As will be  discussed in  Section  VI,  in 
some  applications such as blind deconvolution, some informa- 
tion about  the spectral  magnitude of the image may be  avail- 
able in  a degraded form. For this class  of problems, this  addi- 
tional  information  about  the image may be incorporated  in 
developing an algorithm to reconstruct an image from its 
phase function [ 28 I ,  [ 301 . For example,  suppose  the degraded 
spectral  magnitude M , , ( o )  available for image reconstruction 
can  be represented by 

where Mf(o) represents  the  spectral  magnitude of the original 
image f(x) and M ~ ( o )  represents the degradation  and has the 
property  that  it is a  smooth  magnitude  function.  To  recon- 
struct an image from the given phase function and My(o), we 
may  attempt to k t  estimate Mho) from M , , ( o )  and  then 
combine it with the phase function.  To  estimateMfio) from 
My(o), M , , ( o )  may be smoothed  with  a  smoothing  operator 
"S" so that from (7) 

Since Mb(o) is a  smooth  function, S { M f ( w )  -Mb(o)}may be 
approximated  by S [ M f ( o ) l  . M b ( o ) ,  and therefore 

Combining (7) and (9), 

Assuming that  the smoothed form ofMf(o)  is approximately 
equal to  the  smooth form of the average spectral  magnitude 
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(c 1 
Fig. 8. (a) The image in Fig. 2(a) blurred by  a Gaussian shaped  point 

spread function.  (b) Image reconstructed from the Fourier transform 
phase of  the image in (a) and a magnitude estimated  from  the de- 
graded magnitude. (c) Image reconstructed  from  the Fourier trans- 
form phase of the image in (a) and a magnitude averaged over an 
ensemble of images. 

over typical images, from (lo),  the estimate $f(o) of M f ( o )  
is taken as 

Equation  (1 1) can be  used as a basis for estimating Mf(w) 
from My(o). Once M f ( o )  is estimated,  the  estimate M f ( o )  
can be combined  with the given phase  function e&(@) so that 
the Fourier  transform of the reconstructed image f (x) is 

3 (?(x)} = f i f ( o ) e i e f ( o ) .  (12) 

As an  illustration,  in Fig. 8(a) is shown an image for which the 
degradation  function M b ( o )  is a Gaussian shaped  function.  In 

-- ----______. 
~ 

, f i , l (n , ,n2)  

Fig. 9. Iterative algorithm for  the f f i teextent  image reconstruction 
from  its DFT phase samples. 

Fig  8(b) is the reconstruction based on (11) and  (12). In 
Fig. 8(c) is shown an  image which results when an  average 
magnitude  rather than  the estimate based on  (10) is combined 
with  the given  phase function. 

In  the image reconstruction  algorithms discussed above,  no 
attempt is made to recover spectral magnitude  information 
from the phase function. As discussed in Section  IV,  there 
exist conditions  under  which an  image or  equivalently the 
spectral magnitude is uniquely specified to within  a scaling 
factor  by  its phase function.  For  the class  of  images that 
satisfy this condition,  there exist two numerical  algorithms 
that may  be  used for  the reconstruction.  In  summarizing the 
numerical  algorithms, f ( n l ,  n 2 )  is used to  denote  a twe 
dimensional image and Bf(ol, 02) denotes  the phase of 
f ( n l ,  n 2 ) .  The  sequence f ( n l ,  n 2 )  is assumed to have no 
symmetric factors m its z-transform,  and to be zero  outside 
the interval O < n l  <PIl - 1, O < n 2  < N 2  - 1, so that  the 
conditions for  the  unique specification by phase are satisfied. 
It is further assumed that f(0, 0) is not zero  and is known so 
that  the reconstructed image can be properly scaled. 

The f i t  algorithm is an iterative technique [3  11 which is 
in a  form similar to  the  Gerchberg-Saxton  algorithm [ 321 and 
several iterative algorithms developed by  Quatieri [33] .  This 
method involves repeated  transformation  between the time 
and  frequency  domains  with  the  known constraints imposed 
in each  domain.  Thus, at the i th  iteration,  the  current esti- 
mate of the  sequence is Fourier  transformed  and the resulting 
phase is replaced with  the given  phase.  Inverse Fourier trans- 
forming,  the (i + 1)th estimate is formed by setting the 
points  outside the interval O < n l  <N1 - 1,O < n 2  < N 2  - 1 
equal to  zero.  This iterative algorithm is summarized in Fig. 9 
using the DFT  and inverse DFT (IDFT)  operations. Conver- 
gence of the algorithm has  been shown theoretically [34]  and 
observed empirically. A number of acceleration  techniques 
have also been developed which  considerably  improve the 
rate of convergence  of the iterative procedure 1351. An exam- 
ple  of the iterative algorithm in which an  image  of 128 X 128 
pixels is reconstructed  from its phase function using an  acceler- 
ation  technique 1s shown m Fig. 10. The images in  the figure 
correspond to  the original, the  unity  magnitude  phase-only 
reconstruction used as an initial estimate in the  iteration, 
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(e) 
Fig. 10. (a) Original image. (b) Initial image estimate used in the itera- 

tion.  The  estimate was obtained by combining the Fourier  transform 
phase of the image in (a)  and unity  magnitude. (c) Image recon- 
structed after 10 iterations. (d) Image reconstructed  after 30 itera- 
tions. (e) Image reconstructed after 50 iterations. 

and the results after  10,30, and 50 iterations.  The  result  after  from the  defiition of Of(o1, oz) that 
50 iterations is visually indistinguishable from  the original. 

from  its phase function involves  solving a  set of linear qua -  nl=o nZ=o 
tions  and leads to a closed  form solution.  Representing the ( ~ I ~ ~ z ) # ( ~ ~ ~ )  
phase function of f ( n l ,  nz) by Of(ol, wz),  it can  be shown +tanef(W1,Wz)sSin(olnl  + o 2 n 2 ) 1 = f ( o , 0 ) .  (13) 

An alternative  algorithm  for  exactly  reconstructing  an image 
N1-1 N z - 1  

f(n1,nz) *{cos(wlnl + w z n z )  
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When sampled at 4N1  N2 equally spaced points in m corre- 
sponding to  the 2N1 X 2 N z  point  DFT, this equation can be 
viewed as a  set of 4N1N2 linear equations  in the NlN2 - 1 
unknown values  of f ( n l ,  n 2 ) .  Approximately half of these 
equations  can be eliminated by exploiting the fact that 
Of(wl, 02) = +(-a1, -a2) for real signals and  it can be 
shown [27]  that given f ( O , O ) ,  the remaining set of linear 
equations can be sohed to  uniquely  determine f ( n l ,  n 2 )  for 
0 < n l  < N 1  - 1, 0 < n2 < N 2  - 1 using generalized inverses 
and  this  unique  solution is the desired one. For  onedimen- 
sional signals, sampling at  any N - 1  distinct  frequencies  in the 
interval 0 < o < R in the one-dimensional  form of (13 )  leads 
to  a  set of N - 1  linear  equations  for N - 1 unknowns  and it 
can be shown [ 251 that  the set of N - 1  linear  equations can 
be  solved to uniquely  obtain  the desired result. An example of 
the closed form  solution  in which an mage of 16 X 16 pixels 
is reconstructed  from  its phase function is shown .in Fig. 11. 
The images in  the figure have been expanded  for visual pur- 
poses  by a  zeroth-order  hold  and the reconstructed image is in- 
distinguishable from the original. 

Even though  the two algorithms discussed above may be 
used in  principle to recover an image from its phase function, 
their  application  in  practice is limited  due to  the computational 
complexity  and  their  potential  sensitivity to inaccuracies in 
the given phase function.  Specifically,  the  iterative  technique 
requires  two Ml X M2 point FFT's in each  iteration where 
M1 and M2 are 29 for an image of 256 X 256 pixels and many 
iterations  may be required to  reach  a convergent solution. The 
closed form  solution  technique  requires solving a  set of 
approximately 216 linear  equations  for an image  of 256 X 25  6 
pixels. Furthermore,  in  practice,  the exact phase function of 
the image cannot be expected to be available. For  the first 
three  algorithms discussed in  this  section,  inaccuracy  in  the 
given  phase function does not affect the spectral  magnitude 
used in  the image reconstruction. However, the above two al- 
gorithms  capable of exact image reconstruction  obtain  the 
spectral  magnitude  from the given phase function  and  thus 
such algorithms  tend to be more sensitive to inaccuracies  in 
the phase. 

In this section, we  have discussed various different ways to  
reconstruct  an image from its phase function. Even though 
the algorithms discussed are by no means exhaustive, they 
illustrate that an  intelligible image  may be recovered from  its 
phase function  depending on the  specific  context  in which 
the image reconstruction  problem arises. In the next  section, 
we  discuss a  variety of different image processing problems  in 
which the problem of recovering an image from  its phase func- 
tion  potentially arises. 

VI. APPLICATIONS 
There  are  a  number of practical image processing problems 

in which the importance of phase in images and phaseonly 
image reconstruction  algorithms have been 'exploited or can 
potentially have an impact. For example,  methods have been 
proposed  for using phase-only images for image alignment 
1371, essentially taking advantage of the  fact  that  the auto- 
correlation  function  for  phase-only signals will always be an 
impulse. 

Another  such  problem  frequently  encountered  in image 
processing is that of blind deconvolution  whereby an image 
has been degraded by a  blurring  function  about which detailed 
knowledge is not available, as for  example,  when  an image is 
blurred by an  optical system whose transfer  function is not 

(b) 

Fig. 11. (a) Original image of 16 X 16 pixels. (b) Reconstructed  image 
from its Fourier transform phase using the  closed form solution 
technique of (13). 

known. Since in  blind deconvolution  little is known  about 
either the desired signal or  the distorting signal, this problem 
has been  quite  difficult and proposed techniques have met 
with varied success [281-[301. In some special cases, how- 
ever, such as when images are blurred  by defocused lenses 
with  circular  aperture  stops  or by long-term exposure to 
atmospheric  turbulance, the distorting signal is known to 
have a phase function which ir approximately  zero and con- 
sequently the phase of the blurred image is very similar to 
that of the original image. In  such cases, the blind deconvolu- 
tion problem may be viewed as a  problem  in which image 
reconstruction is desired from its phase function  and  thus 
the algorithms discussed  in Section V may be applicable. 
Oppenheim et aZ. [61 considered u'sing unity or average spectral 
magnitude when the blurring  function is zero phase. The appli- 
cation of this  approach to blind  deconvolution  in the context 
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of seismic data processing was also explored  by  Ulrych [36]. 
Stockham et LIZ. [29] developed a  homomorphic  algorithm  for 
blind  deconvolution appkable  to cases in which the blurring 
function is zero phase and very short  in  its  duration. Pohlig 
et al. [301 proposed an  algorithm  for blind deconvolution 
utilizing  (1  1)  and  (12). This class  of methods is applicable to 
cases in which the blurring function is zero phase and its 
Fourier  transform  magnitude is a  smooth  function. 

As has been discussed in Section IV, an image can be exactly 
recovered from its phase function to  within  a scaling factor if 
the image satisfies the appropriate  conditions.  These  results 
indicate that  the blind deconvolution  problem can in theory 
be exactly solved to  the  extent  that  the blurring function is 
truly  zero and the degradation model is truly  convolutional. 
Despite the computational  complexity and potential sensi- 
tivity to  deviations from  the  zero phase condition of the 
b l d g  function and the  convolutional  degradation  model,  in 
our  opinion  this  approach to the blind deconvolution problem 
deserves further  study. 

Another area in  which the  importance of phase in image 
intelligibility has  been recognized is image coding. In image 
coding by Fourier  transform  techniques [ 381, [39],  both  the 
phase and  magnitude  are  typically coded and transmitted. In 
developing coding schemes for  the phase and magnitude, it 
has been  found that assigning considerably more bits to  coding 
the phase than the magnitude is important  in  the success  of 
Fourier  transform image coding. In view  of our discussions in 
Section V in which various algorithms to reconstruct an image 
from  its phase function are considered, there  appear to be 
several potential  alternative  approaches to Fourier  transform 
image coding. For  example, since in theory most finite  dura- 
tion sequences, and consequently the spectral  magnitude  can 
be recovered to  within a scaling factor  from  the phase function 
alone, it may be reasonable to attempt to recover some magni- 
tude information from the coded phase, supplemented by 
magnitude  information  that was separately coded. 

One area  which  relies  heavily on the high intelligibility of 
phaseonly images and  in which there  appears to be consider- 
able room for  further  improvement is the   k inofon  As we 
have discussed, the  kinoform is a device which records  the 
Fourier  transform phase of an image and then  reconstructs 
the image by  combining the recorded phase with  a  constant 
magnitude. Since the phase of an image is preserved in  the 
kinoform,  other  methods  may be  used in  reconstructing  the 
image. For example, we may combine the phase with  an 
average magnitude  function  rather  than  constant  magnitude  or 
attempt to exactly recover the image from the recorded phase. 
These alternative  approaches could potentially improve the 
performance of the kinoform. 

An  image  processing problem in which an attempt to exploit 
the importance of  phase in images has the potential to have an 
impact is the restoration of images  degraded by additive noise. 
Examples in which such degradations arise include sensor noise 
and  quantization noise [40] in low-data transmission systems. 
A common approach [381,  [391,  [411, [421 to  the restora- 
tion of images degraded by additive noise is to use a  filter 
whose frequency response H(a) is given by 

where P f ( o )  and P , ( o )  represent  the power spectrum of the 
image and the additive noise, respectively. For example, equa- 
tion  (14) corresponds to Wiener filtering when a = p = l and 

(c) 

Fig. 12. (a) Image  degraded by  additive  white noise at SNR of 5 dB. 
(b) Image synthesized  from  the  Fourier  transform  phase  of  the  noisy 
image in (a)  and  the  magnitude of the  original undegraded  image. 
(c) Image synthesized  from the Fourier transform magnitude of  the 
noisy  image in (a)  and  the phase of the original undegraded  image. 

power spectrum filtering when a= 1 and p = 3. From  (14), 
the restoration  filter is noncausal  with an even, real frequency 
response and consequently the phase of the filter is zero.  Thus 
the  output of the restoration  filter, conwponding  to  the esti- 
mate of the original image, has a  spectral  magnitude which has 
been modified by the restoration  Titer, but  the phase of the 
restored image is identical to the phase of the degraded image. 
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If  we attempt  to more accurately estimate the phase as well 
as the magnitude of the image, there is the possibility that 
some improvement may  be made, as is illustrated in  the fol- 
lowing examples. In Fig. 12(a) is shown a  picture degraded by 
additive random noise at S / N  ratio of 5 dB. In Fig. 12(b) is 
shown an image obtained by combining the undegraded mag- 
nitude with the degraded phase obtained from Fig. 12(a). In 
Fig. 12(c) is shown an image obtained by combining the de- 
graded magnitude obtained from Fig. 12(a) with the unde- 
graded phase of the original picture. Comparison of Figs. 12(a), 
(b), and (c) suggest that accurate estimation of the phase  as 
well as the magnitude can be useful in  the restoration of im- 
ages degraded by additive noise. 

In this section, we have  discussed various image processing 
problems in which the importance of phase in images and 
phaseonly image reconstruction algorithms have been or have 
the potential to be exploited. Even though the areas discussed 
are not exhaustive, they are illustrative of  ways in which the 
importance of phase can be exploited. In our opinion, there 
is considerable room for further research in understanding 
these issues. 
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