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Estimating partial group delay
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SUMMARY

The partial group delay between two channels of a multiple time series has an
interpretation as the time lag between frequency components of the two channels after
adjustments have been made for the influence of the remaining channels. A procedure
for estimating partial group delay is proposed, and conditions for consistency and
asymptotic normality of the estimating sequence are obtained.
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Partial phase; Time series analysis; Time-lagged relationship.

1. INTRODUCTION

Partial group delay parameters characterize the relationships among the channels of
a multiple time series in the following ways. Let X, Y, and Z, ,, ..., Z, , be the spectral
components of continuous time processes X, Y and Z,, ..., Z, for frequencies in a band
A.Zhang & Foutz (1987) showed that as A shrinks to a single frequency Ao, the relationship
between X, and (Y,,Z,4,...,Z,,) simplifies to the elementary, linear time-lagged
relationship,

Xa(t)=aYa(t—71)t o, Zy \(t—1)+.. .+ a,Z,\(t—7,) T Er(2) (—00<t<00), (1-1)
where the residual process ¢, is uncorrelated with Y,, Z, 4, ..., Z, 4. In particular, the
time-lag parameter 7 in (1-1) is the partial group delay at frequency A, of X behind Y
adjusted for Z,, ..., Z,.

In the special case that p=0 in (1-1), 7 is the unadjusted group delay at A, between
X and Y (Deaton & Foutz, 1980a).

Partial group delay parameters are used in the thesis by Deaton and by Deaton &
Foutz (1980b) to define causal relationships among frequency components of a multiple
time series and to propose a corresponding causal analysis of time series. For example,
if the unadjusted group delay parameters 7x, and 7y, are both positive in the limiting
frequency domain relationships

Xa(0)=B1ZA(t—7xz) t exza(t), Ya(t)=BrZ\(t—Tyz)+eyza(D),
then Z is a common cause of both X and Y at frequency A,. In this case a causal
relationship between X and Y, that is not spurious due to the common relationship with
Z, is characterized by the partial group delay 7 in the relationship
XA(t) = aYA(t_ T)+aIZA(t_ Tl)+€(t).
If 7>0 then Y causes X at frequency A, after adjusting for the common relationship
of both X and Y to Z
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Procedures for estimating partial group delay are required to investigate the time-lagged
relationships in (1-1) and to perform causal analyses. Thus, the purpose here is to propose
a consistent procedure for estimating partial group delay. The asymptotic distribution of
the proposed estimating sequence is also obtained.

Problems of estimating unadjusted group delay are treated by Cleveland & Parzen
(1975), Hannan & Thomson (1988, 1981, 1973), Hannan & Robinson (1973), Carter
(1981), Chiu (1986), Foutz (1980a), and elsewhere; however, corresponding estimates
for partial group delay have yet to be treated in the literature. The procedure of § 2 for
estimating partial group delay is closely related to the procedure of Hannan & Thomson
(1973) for estimating unadjusted group delay.

2. AN ESTIMATION PROCEDURE
Suppose that X(t), Y(¢) and Z,(t),..., Z,(t) are zero-mean, weakly stationary pro-
cesses defined for —oo<t <0, and that they have absolutely continuous spectra with
continuous spectral densities. The process X, for example, has a spectral representation

X(t)= Jw e™MdZy (L) (—co<t<o0),

—0o0

and the frequency component of X for frequencies in A has the spectral representation

XA\(t) = J e™MdZy(A) (—co<t<o).
A
Similar spectral representations exist for Y, Z,,...,Z, and for Y5, Z;A,...,Z,4.
Partial group delay is defined in terms of partial phase (Koopmans, 1974, p. 156). The
Hilbert space L, contains random variables having mean zero and finite variances, and
the norm of each random variable in L, is defined to be its standard deviation. Let H
be the closed linear subspace of L, that is generated by the random variables
{Z,(1),...,2Z,(1); —oo<t<oo}. It is well known that the processes X and Y can be
decomposed into unique processes I[Ix and Iy, respectively, in H plus processes £x and
ey that are uncorrelated with the elements of H,

X()=Ix(t)+ex(1), Y()=Iy(1)+ey(2).

Let the spectral densities and cross spectral density of ex(¢) and ey (t) be gxx (1), gyy(A)
and gxy(A). The partial coherence between X and Y adjusted for Z,,...,Z, is

o) = |gxy()t)|/|gxx()\)ng()\)|%~
The partial phase is the argument of the complex partial coherence,
b (1) =arg [gxy(1)/{gxx (X)gyy (A)}1].

Finally, the partial group delay is the derivative of the partial phase, 7(A) =3¢ (A)/A.

Suppose that the N equally spaced observations X(t), Y(¢) and Z,(¢),..., Z,(t) for
t=1,..., N are available for estimating 7(A) at frequency A,. The discrete Fourier
transforms of the observations are

Wx (1) =(Q2mN)" i X (1) e™, WY(A)=(27TN)-%§ Y (1) ™,

W) =0rN Y 20 e (=1,...,p).
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The discrete Fourier transforms may be used to define the periodograms
Ixx (X)) = Wx (M) Wx (1), Iyy(A) = Wy (M) Wy (1), L;(A) = W;(A) W;(1)5,
and the cross periodograms
I j(A) = Wx (M) Wi(A), Iy ;(A) = Wy (D) W), L(A) = Wi(A) Wi (R)S,

where, for example, W (A)° is the complex conjugate of Wi (A).
Let B, be a band of frequencies centred at A, and containing m of the N fundamental
frequencies A, =27v/ N for integers v (—3(N —1)<wv<iN). Then, for M = N/(2m),

By={A: Ag—7/(2M) <A <Agt+7/(2M)}. (2-1)

For [x] the largest integer less than or equal to the real number x, let L=[3p]+1, and
define the smoothed spectral and cross spectral estimators

fu)=@L+1)™" ﬁ Li(A +17/ M), (2-2)

with corresponding definitions for fxy, ij, fyj. Corresponding estimates for the cross
spectral density, gxy(A), between ex and ey, for the spectral density, gxx(A), of ey,
and for the spectral density gyy(A), of &y take the form for A=X,Y and B=X,Y

8a(A) = Fas (V) = {La A L1, (23)

where f"A(}) is the p X1 row vector of elements fAJ(A) and f’A is the p X p matrix with
elements f;(A). Finally, define

ﬁ(7)=m_120§x1’()‘)9_m, (2-4)

where 2 is the sum over the m fundamental frequencies, A, =27v/ N for integers v, in
the band B,. The proposed estimate of the partial group delay at frequency A, between
X and Y adjusted for Z,,...., Z, is the value 7y maximizing §(7) =|p(7)|".

Note that the procedure of Hannan & Thomson (1973) for estimating the unadjusted
group delay between X and Y is to take L=0 in (2-2), so that fxy()t) =Ixy(A), and to
define p*(7) by replacing gxy(A) in (2:4) by fxy(A). The Hannan & Thomson (1973)
estimate of unadjusted group delay is the 7 value maximizing | p*(7)|*.

Next, the proposed estimate for partial group delay is shown to be consistent and
asymptotically normal.

3. ASSUMPTIONS AND THEORETICAL RESULTS

Results on the asymptotic properties of the sequence of partial group delay estimators
{7~} for increasing N require the Conditions A of Hannan & Thomson (1973) that the
processes X, Y and Z,, ..., Z, be ergodic, weakly stationary, and nondeterministic with
zero means, positive-definite covariance matrices, and with absolutely continuous spectra
having boundedly differentiable spectral densities, and that ¢ (A), the partial coherence,
be positive. We also require Conditions B of Hannan & Thomson (1973) that ex and &y
have finite fourth moments and that the fourth cumulant « ;,(m, n, p, q) for &,(m), ¢;(n),
ex(p) and g/(q) (i, j, k,1=X, Y) be a Fourier transform, namely

Kijkl(m, ",P,Q)zj J J J eXP{i(m)h+")\2+P)‘3+q)‘4)}ﬁjk1()\1,Az,)‘s,)u) dA,dA,drs dAry,
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where |A;|< 7 for j=1,2,3,4, where the region of integration contains the points for
which A,+...+1,=0, and where f;;, is a boundedly differentiable function on this
region. For each nonnegative integer u, define

exy(u) = NT'Y ex()ey(t+u), yxy(u)=E{ex(t)ey(t+u)}
Conditions B also provide for the joint asymptotic normality of the quantities
N%{ny(u) —yxy(u)}

for each fixed u.

Finally, we require Conditions C from Brillinger (1975, Assumption 2.6.1, p. 26): The
p +2 vector-valued series X (1), Y(t), Z,(t), ..., Z,(t) is strictly stationary; all moments
of its components exist; and all the joint cumulant functions of order k for the vector-
valued series are absolutely summable, for k=2, 3, . ... The following results are proved
in the Appendix.

THEOREM 3-1. Under Conditions A and C, there exists a sequence of integers
{m= N/(2M)}, increasing with N, such that 7 converges in probability to T(A,).

Define

p(r)=@2L+1-p)" 2ZP L gxy(A+jm/M) e da, (3-1)

j=0
and let 7%, be the value of 7 that maximizes |p(7)|* for fixed M.

THEOREM 3-2. If Conditions A, B and C are met then there exists a sequence of integers
{m= N/(2M)}, increasing in N, such that m**>*N~'(7y —1*) is asymptotically normally
distributed with mean zero and variance

6 1 - 02(/\0)}
32
@L—p+ 1)w2{ P I’ (3:2)

where o ()) is the partial coherence between X and Y adjusted for Z,, . .., Z, and where
L=[3p]+1.

4. AN EXAMPLE

The proposed procedure for estimating partial group delay is now illustrated by
simulation. For this let a(t), B(t), n(t) and y(t¢) be mutually independent zero mean,
Gaussian random variables for t=0, 1, . ... The variances of a(t), B(t), n(t) and y(¢)
are taken to be 0-4, 0-4, 3-0 and 0-06 respectively. Let

s(t)=n(t)+0-75n(t-1),

and for t=1,2,... construct ex(t) and ey () as
ex(t)=s(t)+a(t), ey(t)=s(t+3)+pB(1).
Finally, construct the time series X, Y and Z by
Z(t)=05Z(t—1)+y(t), X(t)=0-8Z(t+1)+ex(t),
Y(t1)=0-6Z(t+2)+ ey (1).
The autospectra for ex(¢) and ey (t) are
gxx(A)=gyy(A) = (27)7'(3]1+0-75 ™ [*+0-4),
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and the partial coherence between X and Y adjusted for Z is
o(A)=3]1+0-75 e*|?/(3]1+0-75 e™|*+0-4).
Since
gxy(A)=(2m) ' (3]1+0-75 e™*) e,
the partial phase between X and Y adjusted for Z is ¢)(A) =3A, and the corresponding
partial group delay is 7(A) =3, for —a <A <.

Values for X (t), Y(¢) and Z(t) were simulated for t=1,..., 1000 and used in the
proposed estimation procedure with A,=47 and with m =13 to give the partial group
delay estimate 7y = 1-7. The simulation was repeated to produce 30 independent values
of 7y at each choice of m =13, m =19, m =25 and m =31 in the estimation procedure.
The results are reported in Table 1.

Table 1. Estimates 7 for 7(37) = 3-0 based on simulated samples
of size N =1000

No m=13 m=19 m=25 m=31
1 1-7 33 3-0 41
2 29 3-6 35 37
3 4-4 4-0 54 41
4 2-0 4-1 33 6-5
5 1-8 20 59 5-0
6 31 3-1 52 3.7
7 0-2 4.3 2-5 1-7
8 1-7 2-5 2-6 33
9 5-5 20 3-0 4-8

10 43 5-3 2-3 4-8
11 1-6 1-4 39 5-0
12 0-6 57 5-6 4-6
13 7-0 43 31 4-5
14 33 2-8 1-1 22
15 3-6 0-01 3-0 2:3
16 22 54 35 2-1
17 55 29 1-0 2-1
18 0-6 2-4 1-8 2-8
19 0-1 2-7 6-4 1-1

20 29 0-01 39 27

21 41 2-1 2-5 32

22 0-2 39 5-8 33

23 57 2-4 29 4-2

24 52 7-4 2-5 2-6

25 0-1 2-8 43 1-4

26 3-0 3-0 2-5 3-8

27 3-6 0-9 1-9 4-7

28 8-0 3-9 1-0 1-1

29 6-1 1-6 4-0 1-3

30 6-2 43 4-5 32

Av. Ty 3-24 3-14 3-38 3-33
Lim. mean 3-0 30 30 3-0
Sample var. of 7y 4-73 2-58 2-09 1-81

Lim. var. 24-6 7-88 3-46 1-82
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The asymptotic variance of m*?>N~'(#y — %), from Theorem 3-2, is
3{1—0*(7w/2)}/{m*0*(m/2)} = 0-0541.
With N =1000, the corresponding approximate variance, (N%/m?>)(0-0541), of 7y is
03;=24-6 for m=13, 02,=7-88 for m = 19, 055=3-46 for m =25, and o2, =1-82 for
m=31.

According to Theorem 3-2 the simulated samples for m =13, 19, 25 and 31 should be
from approximate normal distributions with means 3-0 and variances 0%;, 03, 0% and
03, respectively. According to the goodness-of-fit test of Foutz (1980b) the normal fit is
not adequate for the sample with m = 13 but is marginally adequate for the samples with
m =19, 25 and 31. The simulated means of 7y are all close to the asymptotic means of
3-00. However, when m =13 and the normal approximation is inadequate, the simulated
variance of 7y differs greatly from the asymptotic variance. Further study is required of
the relationship between the choice of N and m and the normal approximation.

APPENDIX
Proofs of Theorem 3-1 and Theorem 3-2
Assume A 0 (mod 7). The components of the matrix
40 = [gfxu) g:xy()«)]
&xv(A)  Byy(A)

are defined in (2-3). Under Conditions C, it follows (Brillinger, 1975, pp.305-6) that
(2L-p+1)g(A) is asymptotically distributed as a complex Wishart matrix. Also (Brillinger, 1975,
p. 238) a matrix with the same asymptotic distribution is (2L—p+1)§°(A), where

[ é§<y()~)]
g [gfyxm v (1)
=Iee()t)+I€€()t+7T/M)+...+I££{A+(2L—p)7r/M},

where
Sex(A) I;y()«)]
¥x(A)  Iyy(Q)
is the matrix of periodograms I5x(A), Iyy(A) and cross periodograms I%y(A), I5x(A) based

directly on the values ex(t), ey(¢t) for t=1,..., N.
Let A;(N),...,A,,(N) be the m fundamental frequencies in the band B, in (2-1), and define

the following sequences for N=1,2,...

Ul,N ={§XY(A1(N))’ ) gXY(Am(N))’ 0’ 0, e }’

UZ,N ={§§(Y(A1(N))’ ceey §§(Y(Am(N))9 0’ 0’ e }'
Also, let W={W,, W,,...} be an infinite sequence of independent, complex-valued random
variables each distributed with the common asymptotic distribution of gxy(Ao) and g%y (A,). It
follows from Brillinger (1975, p.94) that U, 5 converges weakly to W, for i=1,2 (Billingsley,
1968, p. 19).

The proposed estimate for partial group delay is the value 7y maximizing the function
4(r)= 'ﬁ(7)|2 =|m™ Zo Exy(A) e_iﬂ‘|2~

To emphasize that this is also a functional on R, write

6(7) =hy (7, U1,N)-

Ise()t)=[



Estimating partial group delay 63

An estimate 7% for partial group delay based directly on the values ex(t) and ey (¢) fort=1,..., N
is the value of 7 that maximizes hy(7, U, ).

Since 7 satisfies dhn (7, U; n)/37=0, a form of the Implicit Function theorem (Brillinger,
1975, pp. 75-6) shows that 7 has the representation 7y = E (U, n) for some continuous function
=y of the first N components of U, n. For the same reasons 7% has the representation 73 =
En(Usn)-

Proofs of Hannan & Thomson (1973) show that, under Conditions A, 75 = E(U, y) converges
weakly to the degenerate distribution at 7(A,). Since U, n and U, y both converge weakly to W,
it follows (Topsoe, 1967, Th.2) that 7y =E(U, n) also converges weakly to the degenerate
distribution at 7(A,), and this proves Theorem 3-1.

Write

hn( Ui,N) = ms/zNﬁl{EN( Ui,N) -5 (i=1,2).

Since under Conditions A and B m*2N "' (#° — 7%,;) = hy (U, n) converges weakly to a zero-mean
Gaussian random variable Q’, and since U, 5 and U, n both converge weakly to W, it follows
(Topsoe, 1967, Th. 2) that m*>*N~'(7y — 7%) = hn (U, n) also converges weakly to Q'. This proves
the asymptotic normality asserted in Theorem 3-2.

The proof that the variance of Q' is (3-2) closely follows the proof of Theorem 2 of Hannan
& Thomson (1973).
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