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11.1 Introduction

The spectral analysis of time series is one of the most commonly used data
analysis techniques in the physical sciences. The basis for this analysis is a
representation for a time series in terms of a linear combination of sinusoids
with different frequencies and amplitudes. This type of representation is
called a Fourier representation. If the time series is sampled at instances in
time spaced At units apart and if the series is a realization of one portion
of a real-valued stationary process {X;} with zero mean, then we have the
representation (due to Cramér [1])

favy
X, = / e2mIAL 47 (f), t=0,+1,42,..., (11.1)
—f(v)

where finy = 1/(2 At) is the Nyquist frequency (if the units of At are mea-
sured in, say, seconds, then f(y) is measured in Hertz (Hz), i.e., cycles per
second); i = v/—1; and {Z(f)} is an orthogonal process (a complex-valued
stochastic process with quite special properties). This representation is
rather formidable at first glance, but the main idea is simple: since, by def-
inition, 2™/t At = cos (27 ft At) + isin(2n ft At), Equation 11.1 says that
we can express X; as a linear combination of sinusoids at different frequen-
cies f, with the sinusoids at frequency f receiving a random amplitude
generated by the increment dZ(f) = Z(f +df) — Z(f) (here df is a small
positive increment in frequency). The expected value of the squared mag-
nitude of this random amplitude defines the spectral density function Sx ()
for the stationary process {X;} in the following way:

E[|ldZ(f)I?] = Sx (f) df, —fivy < F < fowy

(the notation ‘E(X)’ refers to the expected value (mean) of the random
variable (rv) X). Because |dZ(f)|? is a nonnegative rv, its expectation
must be nonnegative, and hence the sdf Sx (-) is a nonnegative function of
frequency. Large values of the sdf tell us which frequencies in Equation 11.1
contribute the most in constructing the process { X;}. (We have glossed over
many details here, including the fact that a ‘proper’ sdf does not exist for
some stationary processes unless we allow use of the Dirac delta function.
See Koopmans [2] or Priestley [3] for a precise statement and proof of
Cramér’s spectral representation theorem or Section 4.1 of Percival and
Walden [4] for a heuristic development.)

Because {X;} is a real-valued process, the sdf is an even function; i.e.,
Sx(—=f) = Sx(f). Our definition for the sdf is ‘two-sided’ because it uses
both positive and negative frequencies, the latter being a nonphysical —
but mathematically convenient — concept. Some branches of the physical



sciences routinely use a ‘one-sided’ sdf that, in terms of our definition, is
equal to 25x (f) over the interval [0, f(x)].
Let us denote the 7th component of the autocovariance sequence (acvs)

for {X;} as Cr x; ie.,
Crx =Cov(Xy, Xyr) = E(Xi Xy47)

(the notation ‘Cov(X,Y)’ refers to the covariance between the rv’s X and
Y’). The spectral representation in Equation 11.1 can be used to derive the
important relationship

Jvy )
Crx = / Sx (f)e2 I f (11.2)
—fv)

(for details, see [4], Section 4.1). In words, Sx(f) is the (nonrandom) am-
plitude associated with the frequency f in the above Fourier representation
for the acvs {Cr x}. If we recall that Cy x is just the process variance, we
obtain (by setting 7 = 0 in the above equation)

fav

V(X)) = Cox = / Sx(f)df

—fn

(the notation ‘V(X)’ refers the variance of the rv X). The sdf thus repre-
sents a decomposition of the process variance into components attributable
to different frequencies. In particular, if we were to run the process {X;}
through a narrow-band filter with bandwidth df centered at frequencies + f,
the variance of the process coming out of the filter would be approximately
given by 2Sx (f) df (the factor of 2 arises because Sx (-) is a two-sided sdf).
Spectral analysis is an analysis of variance technique in which we portion
out contributions to V(X;) across different frequencies. Because variance
is closely related to the concept of power, Sx (-) is sometimes referred to as
a power spectral density function.

In this chapter we discuss estimation of the sdf Sx (-) based upon a time
series that can be regarded as a realization of a portion Xi,...,X, of a
stationary process. The problem of estimating Sy (-) in general is quite
complicated, due both to the wide variety of sdf’s that arise in physical
applications and also to the large number of specific uses for spectral anal-
ysis. To focus our discussion, we use as examples two time series that are
fairly representative of many in the physical sciences; however, there are
some important issues that these series do not address and others that we
must gloss over due to space (for a more detailed exposition of spectral
analysis with a physical science orientation, see [4]). The two series are
shown in Figure 11.1 and are a record of the height of ocean waves as a
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Figure 11.1: Plot of height of ocean waves versus time as measured by
a wire wave gauge (a) and an infrared wave gauge (b). Both series were
collected at a rate of 30 samples per second. There are n = 4096 data
values in each series. (These series were supplied through the courtesy of
A. T. Jessup, Applied Physics Laboratory, University of Washington. As
of 1993, they could be obtained via electronic mail by sending a message
with the single line ‘send saubts from datasets’ to the Internet address
statlib@lib.stat.cmu.edu — this is the address for StatLib, a statistical
archive maintained by Carnegie Mellon University).

function of time as measured by two instruments of quite different design.
Both instruments were mounted 6 meters apart on the same platform off
Cape Henry near Virginia Beach, Virginia. One instrument was a wire wave
gauge, while the other was an infrared wave gauge. The sampling frequency
for both instruments was 30 Hz (30 samples per second) so the sampling
period is At = 1/30 second and the Nyquist frequency is f(ny = 15 Hz.
The series were collected mainly to study the sdf of ocean waves for fre-
quencies from 0.4 to 4 Hz. The frequency responses of the instruments are
similar only over certain frequency ranges. As we shall see, the infrared
wave gauge inadvertently increases the power in the measured spectra by
an order of magnitude at frequencies 0.8 to 4 Hz. The power spectra for



the time series have a relatively large dynamic range (greater than 50 dB),
as is often true in the physical sciences. Because the two instruments were
6 meters apart and because of the prevalent direction of the ocean waves,
there is a lead/lag relationship between the two series. (For more details,
see Jessup et al. [5] and references therein.)

11.2 Univariate Time Series

11.2.1 The Periodogram

Suppose we have a time series of length n that is a realization of a portion
X1,Xs, ..., X, of azero mean real-valued stationary process with sdf Sx(+)
and acvs {Cr x} (note that, if E(X;) is unknown and hence cannot be
assumed to be zero, the common practice is to replace X; with X, — X
prior to all other computations, where X = % Z?:l X is the sample mean).
Under a mild regularity condition (such as Sx(-) having a finite derivative
at all frequencies), we can then write

Sx(f)=At > Cpxe ?HITAL (11.3)

T=—00

Our task is to estimate the sdf Sx(-) based upon Xi,...,X,. Equa-
tion 11.3 suggests the following ‘natural’ estimator. Suppose that, for
|7| <n—1, we estimate C x via

n—|7|

w1
O =~ > XiXoaps
t=1

(the rationale for the superscript ‘(p)’ is explained below). The estimator

C’ip ))( is known in the literature as the biased estimator of C; x since its
expected value is

n—|7|
- 1 il

E(CP)) = = E(X, X =(1-")c 11.4

(Crx) =~ ;:1 (XeXiqpr)) - X (11.4)

and hence E(CA’ip ))() # C; x in general. If we now decree that CA'ip ))( =0

for |7| > n and substitute the C’g))(’s for the C; x’s in Equation 11.3, we
obtain the spectral estimator
n—1
SO =at 3 CWemmITAL (11.5)

T=—(n—1)



This estimator is known in the literature as the periodogram — hence the
superscript ‘(p)’ — even though it is more natural to regard it as a function
of frequency f than of period 1/f. By substituting the definition for C’(p

into the above equation and making a change of variables, we find also that

n
E XtefiQTrft At
t=1

Hence we can interpret the periodogram in two ways: it is the Fourier
transform of the biased estimator of the acvs (with C’ ( ) defined to be zero
for |7| > n), and it is — to within a scaling factor — the squared modulus of
the Fourier transform of Xq,...,X,.

Let us now consider the statistical properties of the periodogram. Ide-
ally, we might like the following to be true:

2

SP(f) = % (11.6)

E[S’g’)(f)] ~ Sx(f) (approximately unbiased);
V[S’gf)(f)} — 0 as n — oo (consistent); and

3. Cov[Sﬁ?)(f), ggf)(f’)] ~ 0 for f # f’ (approximately uncorrelated).
The ‘tragedy of the periodogram’ is that in fact

1. ng) (f) can be a badly biased estimator of Sx (f) even for large sample
sizes (Thomson [6] reports an example in which the periodogram is
severely biased for n = 1.2 million data points) and

2. V[ng)(f)] does not decrease to 0 as n — oo (unless Sx(f) =0, a
case of little practical interest).

As a consolation, however, we do have that ng)( f) and ng)( f) are ap-
proximately uncorrelated under certain conditions (see below).

We can gain considerable insight into the nature of the bias in the
periodogram by studying the following expression for its expected value:

. feovy . Atsin?(nrf At)
(p) _ gt ’ "W _ ey g a8y
E[SY ()] = /f(N) F(f = 1)Sx(f)df', with F(f) nsin? (nf AL

(11.7)
(for details, see [4], Section 6.3). The function F(-) is known as Fejér’s ker-
nel. We also call it the spectral window for the periodogram. Figure 11.2(a)
shows F(f) versus f with —f(x) < f < f) for the case n = 32 with At = 1
so that f(ny = 1/2 (note that F(—f) = F(f); i.e., Fejér’s kernel is an even
function). Figure 11.2(b) plots 10 - log;,(F(f)) versus f for 0 < f < 1/2
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Figure 11.2: Fejér’s kernel for sample size n = 16 with f) = 1/2.

(i.e., F(-) on a decibel scale). The numerator of Equation 11.7 tells us that
F(f) = 0 when the product nf At is equal to a nonzero integer — there
are 16 of these nulls evident in 11.2(b). The nulls closest to zero frequency
occur at f = +1/(nAt) = £1/32. Figure 11.2(a) indicates that F(-) is
concentrated mainly in the interval of frequencies between these two nulls,
the region of the ‘central lobe’ of Fejér’s kernel. A convenient measure of

this concentration is the ratio f_lﬁ(/z?i)f) F(f) df/ ff;’?;) F(f)df. An easy

exercise shows that the denominator is unity for all n, while — to two dec-
imal places — the numerator is equal to 0.90 for all n > 13. As n — oo,
the length of the interval over which 90% of F(-) is concentrated shrinks to
zero, so in the limit Fejér’s kernel acts like a Dirac delta function. If Sx ()
is continuous at f, Equation 11.7 tells us that lim,, E[S’g?)(f)] = Sx(f);
i.e., the periodogram is asymptotically unbiased.

While this asymptotic result is of some interest, for practical applica-
tions we are much more concerned about possible biases in the periodogram
for finite sample sizes n. Equation 11.7 tells us that the expected value of
the periodogram is given by the convolution of the true sdf with Fejér’s
kernel. Convolution is often regarded as a smoothing operation. From
this viewpoint, E[S’gf)()] should be a smoothed version of Sx(-) — hence,
it Sx(-) is itself sufficiently smooth, F [ng)()] should closely approximate
Sx(+). An extreme example of a process with a smooth sdf is white noise.
Its sdf is constant over all frequencies, and in fact F [ng)( ] = Sx(f) for
a white noise process.

For sdf’s with more structure than white noise, we can identify two
sources of bias in the periodogram. The first source is often called a loss
of resolution and is due to the fact that the central lobe of Fejér’s kernel



will tend to smooth out spectral features with widths less than 1/(n At).
Unfortunately, unless a priori information is available (or we are willing
to make a modeling assumption), the cure for this bias is to increase the
sample size n, i.e., to collect a longer time series, the prospect of which
might be costly or — in the case of certain geophysical time series spanning
thousands of years — impossible within our lifetimes.

The second source of bias is called leakage and is attributable to the
sidelobes in Fejér’s kernel. These sidelobes are prominently displayed in
Figure 11.2(b). Figure 11.3 illustrates how these sidelobes can induce bias in
the periodogram. The thick curve in Figure 11.3(a) shows an sdf plotted on
a decibel scale from f = —f(ny to f = f(x) with f(x) = 1/2 (recall that the
sdf is symmetric about 0 so that Sx(—f) = Sx(f)). The thin bumpy curve
is Fejér’s kernel for n = 32, shifted so that its central lobe is at f = 0.2. The
product of this shifted kernel and the sdf is shown in Figure 11.3(b) (again
on a decibel scale). Equation 11.7 says that E[ggf)(O.Q)] is the integral
of this product. The plot shows this integral to be mainly determined by
values close to f = 0.2; i.e., E[S’g?)(OQ)] is largely due to the sdf at values
close to this frequency, a result that is quite reasonable. Figures 11.3(c)
and (d) show the corresponding plots for f = 0.4. Note that E[S’g?)(OA)] is
substantially influenced by values of Sx () away from f = 0.4. The problem
is that the sidelobes of Fejér’s kernel are interacting with portions of the sdf
that are the dominant contributors to the variance of the process so that
E[ng) (0.4)] is biased upwards. Figure 11.3(e) shows a plot of E[S’g?)(f)]
versus f (the thin curve), along with the true sdf Sx(-) (the thick curve).
While the periodogram is essentially unbiased for frequencies satisfying
0.1 < |f| < 0.35, there is substantial bias due to leakage at frequencies
close to f =0 and f = £1/2 (in the latter case, the bias is almost 40 dB,
i.e., 4 orders of magnitude).

While it is important to know that the periodogram can be severely
biased for certain processes, it is also true that, if the true sdf is sufficiently
lacking in structure (i.e., ‘close to white noise’), then Sx(-) and E[S‘g?)()]
can be close enough to each other so that the periodogram is essentially
bias free. Furthermore, even if leakage is present, it might not be of impor-
tance in certain practical applications. If, for example, we were performing
a spectral analysis to determine the height and structure of the sdf in Fig-
ure 11.3 near f = 0.2, then the bias due to leakage at other frequencies is
of little concern.

If the portions of the sdf affected by leakage are in fact of interest or if
we are carrying out a spectral analysis on a time series for which little is
known a prior about its sdf, we need to find ways to recognize when leakage
is a problem and, if it is present, to minimize it. As is the case for loss of
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Figure 11.3: Illustration of leakage (plots (a) to (e)). The Nyquist frequency
f(n) here is taken to be 1/2. Plot (f) shows the alleviation of leakage via
tapering and is discussed in Section 11.2.2.



resolution, we can decrease leakage by increasing the sample size (more
data can solve many problems!), but unfortunately a rather substantial
increase might be required to obtain a periodogram that is essentially free
of leakage. Consider again the sdf used as an example in Figure 11.3. Even
with a 32 fold increase in the sample size from n = 32 to 1024, there is still
more than a 20 dB difference between E[Sg?) (0.5)] and Sx(0.5).

If we regard the sample size as fixed, there are two well-known ways
of decreasing leakage, namely, data tapering and prewhitening. Both of
these techniques have a simple interpretation in terms of the integral in
Equation 11.7. On the one hand, tapering essentially replaces Fejér’s kernel
F(-) by a function with substantially reduced sidelobes; on the other hand,
prewhitening effectively replaces the sdf Sx () with one that is closer to
white noise. Both techniques are discussed in the next subsection.

11.2.2 Correcting for Bias

Tapering

For a given time series X1, Xo,...,X,, a data taper is a finite sequence
hi,ha, ..., hy, of real-valued numbers. The product of this sequence and
the time series, namely, hy X1, hoXo,..., h,X,, is used to create a direct

spectral estimator of Sx (f), defined as
2

n
Z htXte—iQTrft At

t=1
Note that, if we let hy = 1/4/n for all ¢ (the so-called rectangular data
taper), a comparison of Equations 11.8 and 11.6 tells us that Sg?)() reduces

S@(f) = At (11.8)

to the periodogram. The acvs estimator corresponding to S'g?)() is just

n—|7| n—|7|
Cid))( = Z he Xehy o Xoy|r), and so E(CT (d) =Crx Z hihiy|r)-
t=1

(11.9)
If we insist that C'(gd))( be an unbiased estimator of the process variance Cj x,
then we obtain the normalization Y ;. , h7 = 1 (note that the rectangular
data taper satisfies this constraint).
The rationale for tapering is to obtain a spectral estimator whose ex-
pected value is close to Sx(-). In analogy to Equation 11.7, we can express
this expectation as

) o
BS@ ()] = / NG - )Sx ) df (11.10)

—fvy



10

4 (@ 20 % (b)

0L .| 1 I I 1

Al @ (h)

ol e .mmm/\ﬂ/\mm Annn
0 33 0.5

t f

Figure 11.4: Four data tapers (left-hand column of plots) and their spectral
windows (right-hand column) for a sample size of n = 32. From top to
bottom, the tapers are the rectangular taper, the Hanning taper, the dpss
data taper with nW = 2/At and the dpss data taper with nW = 3/At
(here At =1).
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where H(+) is proportional to the squared modulus of the Fourier transform
of the hy’s and is called the spectral window for the direct spectral estimator
S’g?)() (just as we called Fejér’s kernel the spectral window for the peri-
odogram). The claim is that, with a proper choice of h;’s, we can produce
a spectral window that offers better protection against leakage than Fejér’s
kernel. Figure 11.4 supports this claim. The left-hand column of plots
shows four data tapers for sample size n = 32, while the right-hand plots
show the corresponding spectral windows. For the sake of comparison, the
data taper in 11.4(a) is just the rectangular data taper, so the correspond-
ing spectral window is Fejér’s kernel (cf. Figure 11.2(b)). The data taper
in 11.4(c) is the well-known Hanning data taper, which we define to be
ht = +/2/3(n+1)[1 + cos (2nt/(n+1))] for t =1, ..., n (there are other
— slightly different — definitions in the literature). Note carefully the shape
of the corresponding spectral window in 11.4(d): its sidelobes are consid-
erably suppressed in comparison to those of Fejér’s kernel, but the width
of its central lobe is markedly larger. The convolutional representation
for E[S‘g?)(f)] given in Equation 11.10 tells us that an increase in central
lobe width can result in a loss of resolution when the true sdf has spectral
features with widths smaller than the central lobe width. This illustrates
one of the tradeoffs in using a data taper, namely, that tapering typically
decreases leakage at the expense of a potential loss of resolution.

A convenient family of data tapers that facilitates the tradeoff between
sidelobe suppression and the width of the central lobe is the discrete pro-
late spheroidal sequence (dpss) tapers. These tapers arise as the solution to
the following ‘concentration’ problem. Suppose we pick a number W that
— roughly speaking — we think of as half the desired width of the central
lobe of the resulting spectral window (typically 1/(n At) < W < 4/(n At)
although larger values for W are sometimes useful). Under the requirement
that the taper must satisfy the normalization )}, h? = 1, the dpss taper
is, by definition, the taper whose corresponding spectral window is as con-
centrated as possible in the frequency interval [-W, W] in the sense that

the ratio ffVW H(f)df/ ff(f]?;]) H(f)df is as large as possible (note that, if

H(-) were a Dirac delta function, this ratio would be unity). The quantity
2W is sometimes called the resolution bandwidth. For a fixed W, the dpss
tapers have sidelobes that are suppressed as much as possible as measured
by the concentration ratio. To a good approximation (Walden [7]), the
dpss tapers can be calculated as hy = C' X IO(W 1—(1-=g)?)/1 (W) for
t=1,...,n, where C is a scaling constant used to force the normalization
SSh2=1; W =aW(n—1)At; g, = (2t — 1)/n; and Io(-) is the modified
Bessel function of the first kind and zeroth order (this can be computed
using the Fortran function bessjo0 in Section 6.5 of Press et al. [§]).
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Figures 11.4(e) and (g) show dpss tapers for n = 32 and with W set
such that nW = 2/At and nW = 3/At, while plots (f) and (h) show the
corresponding spectral windows H(-) (the quantity 2nW is known as the
duration-bandwidth product). The vertical lines in the latter two plots
mark the locations of W. Note that in both cases the central lobe of
H(-) is approximately contained between [—W, W]. As expected, increasing
W suppresses the sidelobes and hence offers increasing protection against
leakage. A comparison of the spectral windows for the Hanning and nWW =
2/ At dpss tapers (Figures 11.4(d) and (f)) shows that, whereas their central
lobes are comparable, their sidelobe structures are quite different. While
specific examples can be constructed in which one of the tapers offers better
protection against leakage than the other, generally the two tapers are quite
comparable in practical applications. The advantage of the dpss tapers is
that, if, say, use of an nW = 2/At dpss taper produces a direct spectral
estimator that still suffers from leakage, we can easily obtain a greater
degree of protection against leakage by merely increasing nW beyond 2/At.
The choice nW = 1/At yields a spectral window with a central lobe closely
resembling that of Fejér’s kernel but with sidelobes about 10 dB smaller.

Let us now return to the example of Figure 11.3. Recall that the thin
curve in 11.3(e) shows E[S’gf)(f)] versus f for a process with an sdf given

by the thick curve. In 11.3(f) the thin curve now shows E[S’g?)()] for a
direct spectral estimator employing an nWW = 2/At dpss taper. Note that
tapering has produced a spectral estimator that is overall much closer in
expectation to Sx(-) than the periodogram is; however, mainly due to the
small sample n = 32, Sg?)() still suffers from leakage at some frequencies
(about 10 dB at f = 0.5).

In practical situations, we can determine if leakage is present in the
periodogram by carefully comparing it with a direct spectral estimate con-
structed using a dpss data taper with a fairly large value of W. As an
example, Figure 11.5(a) shows the periodogram for the wire wave gauge
time series shown in Figure 11.1. Since these data were collected mainly to
investigate the rolloff rate of the sdf from 0.8 to 4 Hz, we have only plotted
the low frequency portion of the periodogram. Figure 11.5(b) shows a direct
spectral estimate for which we have used a dpss taper with nW = 4/At.
Note that the direct spectral estimate is markedly lower than the peri-
odogram at frequencies with a relatively small contribution to the overall
variance — for example, the former is about 10 dB below the latter at fre-
quencies close to 4 Hz. This pattern is consistent with what we would
expect to see when there is leakage in the periodogram. Increasing nW
beyond 4/At to, say, 6/At and comparing the resulting direct direct spec-
tral estimate with that of Figure 11.5(b) indicates that the nW = 4/At
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Figure 11.5: Periodogram (plot (a)) and a direct spectral estimate (plot (b))
using an nW = 4/At dpss data taper for the wire gauge time series of
Figure 1(a). Both estimates are plotted on a decibel scale. The small
subplots in the upper right-hand corner of each plot give an expanded view
of the estimators at 0 < f < 0.5 Hz (the vertical scales of the subplots are
the same as those of the main plots).

estimate is essentially leakage free; on the other hand, an examination of
an nW = 1/At direct spectral estimate indicates that it is also essentially
leakage free for the wave gauge series. In general, we can determine an ap-
propriate degree of tapering by carefully comparing the periodogram and
direct spectral estimates corresponding to dpss tapers with different values
of nW. If the periodogram proves to suffer from leakage (as it often does in
the physical sciences), we then seek a leakage free direct spectral estimate
formed using as small a value of W — and hence nW — as possible. A small
W is desirable from 2 viewpoints: first, resolution typically decreases as W
increases, and, second, the distance in frequency between approximately
uncorrelated spectral estimates increases as W increases (this causes a loss
in degrees of freedom when we subsequently smooth across frequencies —
see Section 11.2.3 for details).

In checking for the presence of leakage, comparison between different
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spectral estimates is best done graphically in the following ways:

1. by comparing spectral estimates side by side (as in Figure 11.5) or on
top of each other using different colors;

2. by plotting the ratio of two spectral estimates on a decibel scale versus
frequency and searching for frequency bands over which an average
of this ratio is nonzero (presumably a statistical test could be devised
here to assess the significance of departures from zero); and

3. by constructing scatter plots of, say, S§§’>( f) versus 5‘§(d)( f) for f’s
in a selected band of frequencies and looking for clusters of points
consistently above a line with unit slope and zero intercept.

The use of interactive graphical displays would clearly be helpful in deter-
mining the proper degree of tapering (Percival and Kerr [9]).
Prewhitening

The loss of resolution and of degrees of freedom inherent in tapering can
be alleviated considerably if we can prewhiten our time series. To explain
prewhitening, we need the following result from the theory of linear time-

invariant filters. Given any set of p 4 1 real-valued numbers ag, ai, ..., ap,
we can filter Xq,..., X, to obtain
p
Wi=> apX;p, t=p+1,....n (11.11)
k=0

The filtered process {W;} is a zero mean real-valued stationary process with
an sdf Sy (+) related to Sx () via

Sw(f) =1A(f)I? Sx(f), where A(f) = ape KA (11.12)
k=0

A(-) is the transfer function for the filter {a)}. The idea behind prewhiten-
ing is to find a set of ay’s such that the sdf Sy (-) has substantially less
structure than Sx (-) and ideally is as close to a white noise sdf as possible.
If such a filter can be found, we can easily produce a leakage-free direct spec-
tral estimate 5'1(;) (+) of Sw (+) requiring little or no tapering. Equation 11.12

tells us that we can then estimate Sx () using ggfc)(f) = Ség)(f)/ JA(F)%,
where the superscript ‘(pc)’ stands for postcolored.

The reader might note an apparent logical contradiction here: in order
to pick a reasonable set of ay’s, we must know the shape of Sx(-), the very
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function we are trying to estimate! There are two ways around this inherent
difficulty. In many cases, there is enough prior knowledge concerning Sx(+)
from, say, previous experiments so that, even though we don’t know the
exact shape of the sdf, we can still design an effective prewhitening filter. In
other cases we can create a prewhitening filter based upon the data itself.
A convenient way of doing this is by fitting autoregressive models of order
p (hereafter AR(p)). In the present context, we postulate that, for some
reasonably small p, we can model X; as a linear combination of the p prior

values X;¢_1,..., Xy, plus an error term; i.e,
P
Xe=Y opXe ok +Wi, t=p+1,....n, (11.13)
k=1

where {W;} is an ‘error’ process with an sdf Sy () that has less struc-
ture than Sx(-). The stipulation that p be small is desirable because the
prewhitened series {W;} will be shortened to length n—p. The above equa-
tion is a special case of Equation 11.11, as can be seen by letting ag = 1
and a = —¢y, for k > 0.

For a given p, we can obtain estimates of the ¢;’s from our time series
using a number of different methods (see [4], Chapter 9). One method that
generally works well is Burg’s algorithm, a computationally efficient way
of producing estimates of the ¢;’s that are guaranteed to correspond to
a stationary process. The Fortran subroutine memcof in [8], Section 13.6,
implements Burg’s algorithm (the reader should note that the time series
used as input to memcof is assumed to be already adjusted for any nonzero
mean value).

Burg’s algorithm (or any method that estimates the ¢p’s in Equa-
tion 11.13) is sometimes used by itself to produce what is known as an
autoregressive spectral estimate (this is one form of parametric spectral
estimation). If we let ¢, represent Burg’s estimate of ¢, then the corre-
sponding autoregressive spectral estimate is given by

S = 7 A (11.14)
X = - . 2 :

|1 _ £=1 ¢k677,27rfk At|
where G2 is an estimate of the variance of {W;}. The key difference be-

tween an autoregressive spectral estimate and prewhitening is in the use
of Equation 11.13: the former assumes the process {W;} is ezactly white
noise, whereas the latter merely postulates {WW;} to have an sdf with less
structure than {X;}. Autoregressive spectral estimation works well for
many time series, but it depends heavily on a proper choice of the order p;
moreover, simple approximations to the statistical properties of S'g(m)(-)
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Figure 11.6: Determination of a prewhitening filter.

are currently lacking. (Autoregressive spectral estimation is sometimes
misleadingly called mazimum entropy spectral estimation — see [4] for a
discussion about this misnomer.)

Figure 11.6 illustrates the construction of a prewhitening filter for the
wire gauge series. The dots in plot (a) depict the same direct spectral es-
timate as shown in Figure 11.5(b). This estimate is essentially leakage free
and hence serves as a ‘pilot estimate’ for comparing different prewhitening
filters. Using Burg’s algorithm, we computed autoregressive spectral esti-
mates for various orders p via Equation 11.14. The thin and thick solid
curves in plot (a) show, respectively, the AR(2) and AR(4) estimates. The
AR(4) estimate is the estimate with lowest order p that reasonably captures
the structure of the pilot estimate over the frequency range of main interest
(namely, 0.4 to 4.0 Hz); moreover, use of these ¢;’s to form a prewhitening
filter yields a prewhitened series W;, t = 5, ..., 4096, with a sdf that has
no regions of large power outside of 0.4 to 4.0 Hz. The periodogram of
the W;’s appears to be leakage free for f between 0.4 and 4.0 Hz. The
spectral estimate in plot (b) is S’gfc) (f), the result of postcoloring the peri-

odogram S'I(/f;)() (i.e., dividing ISA’I(A];)(f) by |1 — Zi:l pre~ 2R A2)  Note
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that S’gfc)(-) generally agrees well with the leakage-free pilot estimate in
plot (a).

We close this section with three comments. First, the prewhitening
procedure we have outlined above might require a fairly large order p in
order to work properly and can fail if Sx(-) contains narrow-band features
(i.e., line components). Low order AR processes cannot capture narrow-
band features adequately — their use can yield a prewhitened process with
a more complicated sdf than that of the original process. Additionally,
Burg’s algorithm is known to be problematic for certain narrow-band pro-
cesses for which it will sometimes incorrectly represent a line component
as a double peak (this is called ‘spontaneous line splitting’). The proper
way to handle narrow-band processes is to separate out the narrow-band
components and then deal with the resulting ‘background’ process. One at-
tractive method for handling such processes uses multitapering (for details,
see [6], Section XIII, or [4], Sections 10.11 and 10.13).

Second, in our example of prewhitening we actually introduced leakage
into the very low frequency portion of the sdf. To see this fact, note that
the spectral level of the prewhitened estimate of Figure 11.6(b) near f =0
is about 10 dB higher than those of the two direct spectral estimates in
Figure 11.5. This happened because we were mainly interested in creating
a prewhitening filter to help estimate the sdf from 0.4 to 4.0 Hz. An AR(4)
filter accomplishes this task, but it fails to represent the very low frequency
portion of the sdf at all (see Figure 11.6(a)). As a result, the prewhitened
series {W;} has an sdf that is evidently deficient in power near zero fre-
quency and hence suffers from leakage at very low frequencies. Use of a
much higher order AR filter (say, p = 256) can correct this problem.

Finally, we note that, if prewhitening is not used, we define W; to be
equal to X; and set p equal to zero in what follows.

11.2.3 Variance Reduction

A cursory examination of the spectral estimates for the wire gauge series
in Figures 11.5 and 11.6 reveals substantial variability across frequencies
— so much so that it is difficult to discern the overall structure in the
spectral estimates without a fair amount of study. All direct spectral es-
timators suffer from this inherent choppiness, which can be explained by
considering the distributional properties of S’I(/g)( f). First, if f is not too
close to 0 or f(y) and if Sy () satisfies a mild regularity condition, then

254 (f)/Sw(f) 42 ie., the 1v 2S’£$)(f)/SW(f) is approximately equal
in distribution to a chi-square rv with 2 degrees of freedom. If tapering is
not used, f is considered ‘not too close’ to 0 or finy if 1/(n —p) At < f <
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fvy — 1/(n — p) At; if tapering is used, we must replace 1/(n —p) At by a
larger term reflecting the increased width of the central lobe of the spectral
window (for example, the term for the Hanning data taper is approximately
2/(n—p) At so f is ‘not too close’ if 2/(n—p) At < f < fn)—2/(n—p) At).

Since a chi-square rv x2 with v degrees of freedom has a variance of 2v,
we have the approximation V[Sl(,g) (f)] = S&,(f). This result is independent
of the number of W;’s we have: unlike statistics such as the sample mean
of independent and identically distributed Gaussian rv’s, the variance of
5"(;)( f) does not decrease to 0 as the sample size n — p gets larger (except
in the uninteresting case Sy (f) = 0). This result explains the choppiness of
the direct spectral estimates shown in Figures 11.5 and 11.6. In statistical
terminology, S&Cﬁ)( f) is an inconsistent estimator of Sy (f).

We now outline three approaches for obtaining a consistent estimator of
Sw (f). Each approach is based upon combining rv’s that — under suitable
assumptions — can be considered as approximately pairwise uncorrelated
estimators of Sy (f). Briefly, the three approaches are to:

1. smooth 31(,3)( f) across frequencies, yielding what is known as a lag
window spectral estimator;

2. break {X;} (or {W;}) into a number of segments (some of which can
overlap), compute a direct spectral estimate for each segment, and
then average these estimates together, yielding Welch’s overlapped
segment averaging (WOSA) spectral estimator; and

3. compute a series of direct spectral estimates for {W;} using a set of
orthogonal data tapers and then average these estimates together,
yielding Thomson’s multitaper spectral estimator.

Lag Window Spectral Estimators

A lag window spectral estimator of Sy (-) takes the form

R fiv «
350 = [ Wl = ISP ar (11.15)

—f(v)

where W,,,(+) is a smoothing window whose smoothing properties are con-
trolled by the smoothing parameter m. In words, the estimator Sl(/f,w)() is
obtained by convolving a smoothing window with the direct spectral esti-
mator 5'%) (). A typical smoothing window has much the same appearance
as a spectral window. There is a central lobe with a width that can be
adjusted by the smoothing parameter m: the wider this central lobe is, the



19

smoother S‘(,ll,w)(-) will be. There can also be a set of annoying sidelobes
that cause smoothing window leakage. The presence of smoothing window
leakage is easily detected by overlaying plots of géf,w)() and 5'1(,3)() and
looking for ranges of frequencies where the former does not appear to be a
smoothed version of the latter.

If we have made use of an AR prewhitening filter, we can then postcolor
S"S‘l,w)(-) to obtain an estimator of Sx(-), namely,

& (1w)
&0 4y — Sw_(f) .
x () 11— Y0, dre—i2nit At|2

The statistical properties of SI(/‘Z}I ) (+) are tractable because of the follow-
ing large sample result. If S‘I(,g)() is in fact the periodogram (i.e., we have
not tapered the W;’s), the set of rv’s S‘(,g)(j/(n —p)At), 5 =1,2,...,J,
are approximately pairwise uncorrelated, with each rv being proportional
to a x3 rv (here J is the largest integer such that J/(n —p) < 1/2). If

we have used tapering to form 5"(,5)(-), a similar statement is true over a
smaller set of rv’s defined on a coarser grid of equally spaced frequencies
— as the degree of tapering increases, the number of approximately uncor-
related rv’s decreases. Under the assumptions that the sdf Sy (-) is slowly
varying across frequencies (prewhitening helps to make this true) and that
the central lobe of the smoothing window is sufficiently small compared to
the variations in Sy (+), it follows that Sl(,f,l)(f) in Equation 11.15 can be
approximated by a linear combination of uncorrelated x2 rv’s. A standard
‘equivalent degrees of freedom’ argument can be then used to approximate
the distribution of S"(,g)(f) (see Equation 11.17 below).

There are two practical ways of computing S"(,f,w) (). The first way is to
discretize Equation 11.15, yielding an estimator proportional to a convolu-
tion of the form ), Wy, (f — f,g)g‘(,g)(f,g), where the f}’s are some set of
equally spaced frequencies. The second way is to recall that ‘convolution in
one Fourier domain is equivalent to multiplication in the other’ to rewrite
Equation 11.15 as

n—p—1
S = > wen Clem A (11.16)

T=—(n—p—1)

where éid%, is the acvs estimator given in Equation 11.9 corresponding

to S'%)(o), and {wrm,} is a lag window (this can be regarded as the in-
verse Fourier transform of the smoothing window W,,(-)). In fact, because
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S’I(,g)(-) is a trigonometric polynomial, all discrete convolutions of the form
Do Winlf — f,;)g‘(,g)(f,g) can also be computed via Equation 11.16 with an
appropriate choice of w; ,’s (for details, see [4], Section 6.7). Our two prac-

tical ways of computing Sé‘l,w) (+) thus yield equivalent estimators. Unless the
discrete convolution is sufficiently short, Equation 11.16 is computationally
faster to use.

Statistical theory suggests that, under reasonable assumptions,

Vgéll,w)(f) d X2
Sw(f) v

to a good approximation, where v is called the equivalent degrees of freedom

(11.17)

for Sl(,ll,w) (f) and is given by v = 2(n— p) By At/Ch. Here By is a measure
of the bandwidth of the smoothing window W, (-) and can be computed via
Bw =1/At Soroet ) w2, ; on the other hand, C), depends only on the

T=—(n—p—1) Y'7,m>

taper applied to the W}’s and can be computed via Cj, = (n—p) Z?=p+1 hi.
Note that, if we do not explicitly taper, then h; = 1/y/n— p and hence
Ch = 1; for a typical data taper, the Cauchy inequality tells us that Cj > 1
(for example, C, ~ 1.94 for the Hanning data taper). The equivalent
degrees of freedom for S‘(,f,w)( f) thus increase as we increase the smoothing
window bandwidth and decrease as we increase the degree of tapering.
Equation 11.17 tells us that E[g‘(,f,w)(f)] ~ Sw(f) and that V[S’é‘l/w)(f)] ~
SZ,(f)/v, so increasing v decreases V[S"(/é,w)(f)}

The approximation in Equation 11.17 can be used to construct a con-
fidence interval for Sy (f) in the following manner. Let 7, («) denote the
a x 100% percentage point of the x2 distribution; i.e., P[x2 < n,(a)] = a.
A 100(1 — 2a)% confidence interval for Sy (f) is approximately given by

vSW () S
[m(l—a)’ n@ | (1-15)

The percentage points 7, () are tabulated in numerous textbooks or can
be computed using an algorithm given by Best and Roberts [10].

The confidence interval of 11.18 is inconvenient in that its length is
proportional to g‘(,ll,w)( f)- On the other hand, the corresponding confidence
interval for 10 - logyo(Sw (f)) (i-e., Sw(f) on a decibel scale) is just

10 Jogyg (v/n,(1 — @) + 10+ logy, (S5 (1))

10 -logsq (v/n,()) + 10 -logyg (%’”’(f))] ,
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Figure 11.7: Parzen lag window (a) and the corresponding smoothing win-
dow (b) for m = 32. The smoothing window bandwidth is By = 0.058.

which has a width that is independent of S‘(,é,w) (f). This is the rationale for
plotting sdf estimates on a decibel (or logarithmic) scale.

A bewildering number of different lag windows has been discussed in the
literature (see [3]). Here we give only one example, the well-known Parzen
lag window (Parzen [11]):

1—-672+ 6‘7’|3, |T| < m/2;
Wrm =4 2(1—7)3, m/2 < |7] < m;
0, |7] > m,

where m is taken to be a positive integer and 7 = 7/m. This lag window
is easy to compute and has sidelobes whose envelope decays as f~* so that
smoothing window leakage is rarely a problem. To a good approximation,
the smoothing window bandwidth for the Parzen lag window is given by
Bw = 1.85/(m At). As m increases, the smoothing window bandwidth
decreases, and the resulting lag window estimator becomes less smooth
in appearance. The associated equivalent degrees of freedom are given
approximately by v = 3.71(n — p)/(mC}). The Parzen lag window for
m = 32 and its associated smoothing window are shown in Figure 11.7.
As an example, Figure 11.8(a) shows a postcolored lag window estimator
for the wire wave gauge data (the solid curve), along with the corresponding
postcolored direct spectral estimator (the dots — these depict the same
estimate as shown in Figure 11.6(b)). The Parzen lag window was used
here with a value of m = 237 for the smoothing window parameter (the
corresponding equivalent degrees of freedom v is 64). This value was chosen
after some experimentation and seems to produce a lag window estimator
that captures all of the important spectral features indicated by the direct
spectral estimator for frequencies between 0.4 and 4.0 Hz (note, however,
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Figure 11.8: Postcolored Parzen lag window spectral estimate — solid curve
on plot (a) — and WOSA spectral estimate — solid curve on (b) — for wire
wave gauge time series. The smoothing window parameter for the Parzen
lag window was m = 237, yielding v = 64 equivalent degrees of freedom.
The WOSA spectral estimate was formed using a Hanning data taper on
blocks with 256 data points, with adjacent blocks overlapping by 50%. The
equivalent degrees of freedom for this estimate is v = 59.

that this estimator smears out the peak between 0.0 and 0.4 Hz rather
badly). We have also plotted a crisscross whose vertical height represents
the length of a 95% confidence interval for 10-log,,(Sx (f)) (based upon the
postcolored lag window estimator) and whose horizontal width represents
the smoothing window bandwidth Byy.

WOSA Spectral Estimators

Let us now consider the second common approach to variance reduction,
namely, Welch’s overlapped segment averaging (Welch [12]; Carter [13] and
references therein). The basic idea is to break a time series into a number
of blocks (i.e., segments), compute a direct spectral estimate for each block
and then produce the WOSA spectral estimate by averaging these spectral
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estimates together. In general, the blocks are allowed to overlap, with
the degree of overlap being determined by the degree of tapering — the
heavier the degree of tapering, the more the blocks should be overlapped
(Thomson [14]). Thus, except at the very beginning and end of the time
series, data values that are heavily tapered in one block are lightly tapered
in another block, so intuitively we are recapturing ‘information’ lost due
to tapering in one block from blocks overlapping it. Because it can be
implemented in a computationally efficient fashion (using the fast Fourier
transform algorithm) and because it can handle very long time series (or
time series with a time varying spectrum), the WOSA estimation scheme
is the basis for many of the commercial spectrum analyzers on the market.

To define the WOSA spectral estimator, let ng represent a block size,
and let hq,..., h,, be a data taper. We define the direct spectral estimator
of Sx(f) for the block of ng contiguous data values starting at index [ as

2

ng
S'l(il))((f) = At Z htXt_A,_l_]e_iQWftAt 5 1 S l S n+1-— ns
t=1

(there is no reason why we cannot use a prewhitened series {W;} here
rather than the X;’s, but prewhitening is rarely used in conjunction with
WOSA, perhaps because block overlapping is regarded as an efficient way of
compensating for the degrees of freedom lost due to tapering). The WOSA
spectral estimator of Sx(f) is defined to be

ng—1

Hlwosa 1 A

SYTWN) = o D Elax (), (11.19)
7=0

where np is the total number of blocks and s is an integer shift factor
satisfying 0 < s < ng and s(ng — 1) = n — ng (note that the block for
j = 0 uses data values Xi,..., X, , while the block for j = ng — 1 uses
Xn—ngtls-erXn)

The large sample statistical properties of S;ﬂosa)( f) closely resemble
those of lag window estimators. In particular, we have the approximation

that vS**(f) /Sx(f) 4 X2, where the equivalent degrees of freedom v
are given by

_ 2np
- np— m n 2
1+ QZmlel (1 - E) |Zt=31 htht—i-ms‘

14

(here hy = 0 by definition for all ¢ > ng). If we specialize to the case of
50% block overlap (i.e., s = ng/2) with a Hanning data taper (a common
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recommendation in the engineering literature), the above can be approxi-
mated by the simple formula v ~ 36n% /(19nz — 1). Thus, as the number
of blocks np increases, the equivalent degrees of freedom increase also,
yielding a spectral estimator with reduced variance. Unless Sx(-) has a
relatively featureless sdf, we cannot, however, make npg arbitrarily small
without incurring severe bias in the individual direct spectral estimators
mainly due to loss of resolution. (For details on the above results, see [4],
Section 6.17.)

Figure 11.8(b) shows a WOSA spectral estimator for the wire wave
gauge data (the solid curve). This series has n = 4096 data values. Some
experimentation indicated that a block size of ng = 256 and the Hanning
data taper are reasonable choices for estimating the sdf between 0.4 and
4.0 Hz using WOSA. With a 50% block overlap, the shift factor is s =
ns/2 = 128; the total number of blocks is ng = 1(n—ng) +1 = 31; and v,
the equivalent degrees of freedom, is approximately 59. The 31 individual
direct spectral estimates that were averaged together to form the WOSA
estimate are shown as the dots in Figure 11.8(b).

We have also plotted a ‘bandwidth/confidence interval’ crisscross simi-
lar to that on Figure 11.8(a), but now the ‘bandwidth’ (i.e., the horizontal
width) is the distance in frequency between approximately uncorrelated
spectral estimates. This measure of bandwidth is a function of the block
size ng and the data taper used in WOSA. For the Hanning taper, the band-
width is approximately 1.94/(ng At). The crisscrosses in Figures 11.8(a)
and (b) are quite similar, indicating that the statistical properties of the
postcolored Parzen lag window and WOSA spectral estimates are compa-
rable: indeed, the actual estimates agree closely, with the WOSA estimate
being slightly smoother in appearance.

Multitaper Spectral Estimators

An interesting alternative to either lag window or WOSA spectral estima-
tion is the multitaper approach due to Thomson [6]. Multitaper spectral
estimation can be regarded as a way of producing a direct spectral esti-
mator with more than just 2 equivalent degrees of freedom (typical values
are 4 to 16). As such, the multitaper method is different in spirit from the
other two estimators in that it does not seek to produce highly smoothed
spectra. An increase in degrees of freedom from 2 to just 10 is enough,
however, to shrink the width of a 95% confidence interval for the sdf by
more than an order of magnitude and hence to reduce the variability in
the spectral estimate to the point where the human eye can readily discern
the overall structure. Detailed discussions on the multitaper approach are
given in [6] and Chapter 7 of [4]. Here we merely sketch the main ideas.
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Multitaper spectral estimation is based upon the use of a set of K data
tapers { by, : t =1,...,n}, where k ranges from 0 to K — 1. We assume
that these tapers are orthonormal (i.e., Y7 hy jher = 1if j = k and 0 if
j # k). The simpliest multitaper estimator is defined by

2

n
Z hy kXteﬂQ“ft At

K-1
o(m 1 o(m . &(m
SV = g2 20 SN (F) with S(f) = At
— t=1

(Thomson [6] advocates adaptively weighting the S’,(cn};)( f)’s rather than
simply averaging them together). A comparison of the above definition
for S”,(c";(t)() with Equation 11.8 shows that S(m )() is in fact just a direct
spectral estimator, so the multitaper estlmator is just an average of direct
spectral estimators employing an orthonormal set of tapers. Under certain
mild conditions, the orthonormality of the tapers translates into the fre-
quency domain as approximate independence of the individual S ,(cth)( f)s;

ie., Sj(n;(t)(f) and S,(f;)(f) are approximately independent for j # k. Ap-
proximate independence in turn implies that 2K S’g(mt) (/)/Sx(f) 4 Xax ap-

proximately, so that the equivalent degrees of freedom for S’g(mt)( f) is equal
to twice the number of data taper employed.

The key trick then is to find a set of K orthonormal sequences, each
one of which does a proper job of tapering. One appealing approach is to
return to the concentration problem that gave us the dpss taper for a fixed
resolution bandwidth 2W. If we now refer to this taper as the ‘zeroth-
order’ dpss taper and denote it by {h; ¢}, we can recursively construct the
remaining K — 1 ‘higher-order’ dpss tapers {h;x} as follows. For k = 1,

, K — 1, we define the kth-order dpss taper as the set of n numbers
{htk tfl .,n } such that

1. {hyx} is orthogonal to each of the k sequences {hio}, ..., {htk—1}
(iee, Yopy hejhe =0for j =0, ..., k—1);

2. {ht} is normalized such that >3;' ; h7, = 1; and,

3. subject to conditions [1] and [2], the spectral window Hy(-) corre-
sponding to {h;\} maximizes the concentration ratio

fiv
/ Hi(f df//f() £)df = e(n, W).
(N)

In words, subject to the constraint of being orthogonal to all lower-order
dpss tapers, the kth-order dpss taper is ‘optimal’ in the restricted sense that
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Figure 11.9: Multitaper spectral estimation.

the sidelobes of its spectral window are suppressed as much as possible as
measured by the concentration ratio. Methods for calculating the dpss data
tapers are discussed in [4], Chapter 8.

In a series of papers, Slepian [15] (and references therein) has extensively
studied the nature of the dpss’s. One important fact he discusses is that the
concentration ratio Ag(n, W) strictly decreases as k increases in a manner
such that Ag(n, W) is close to unity for k < 2nW At, after which it rapidly
approaches zero with increasing k (the value 2nW At is sometimes called
the Shannon number). Since Ag(n, W) must be close to unity for {h s} to
be a decent data taper, multitaper spectral estimation is restricted to the
use of at most — and, in practice, usually less than — 2nW At orthonormal
dpss tapers.

An example of multitaper spectral estimation is shown in Figure 11.9.
The left-hand column of plots shows the kth-order dpss data tapers for
n = 4096, nW = 4/At and k ranging from 0 (top plot) to K —1 =5 (bot-
tom plot). The thin horizontal lines in each of these plots indicate the zero
level, so, whereas the zeroth-order dpss is strictly positive everywhere (but
quite close to zero near ¢ = 1 and ¢t = n), the higher-order tapers assume
both positive and negative values. Note also that the zeroth-order taper
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heavily downweights values of the time series close to t = 1 and t = n,
but that these values are given successively more weight by the higher-
order tapers (one interpretation of multitapering is that the higher-order
tapers are recapturing information ‘lost’” when but a single data taper is
used). The solid curve in Figure 11.9(b) shows a multitaper spectral esti-

mate Sg(mt) (+) for the wire wave gauge data based upon these 6 dpss tapers,

whereas the dots show the 6 individual direct spectral estimates S’,(Cn};)()
Note that the number of tapers that we have used is below the Shannon
number 2nW At = 8 and that v, the equivalent degrees of freedom, is here
2K = 12. The multitaper spectral estimate is much choppier in appearance
than either the lag window spectral estimate of Figure 11.8(a) or the WOSA
estimate of 11.8(b), both of which have a markedly higher number of equiv-
alent degrees of freedom (v = 64 and v = 59, respectively). Nonetheless,
the variability in the multitaper spectral estimate is small enough so that
the eye can readily detect the overall structure (cf. S’;mt)() with the two
spectral estimates in Figure 11.5), and, because it is not highly smoothed,
the multitaper estimate does markedly better at capturing the spectral
structure near f = 0.

Based upon performance bounds, Bronez [16] argues that the multitaper
spectral estimator has statistical properties that are superior to WOSA for
sdf’s with very high dynamic ranges (more research is required, however,
to verify that these bounds translate into an actual advantage in practice).
In comparison to prewhitening, multitapering is useful in situations where
leakage is a concern but it is not practical to carefully design prewhiten-
ing filters (this occurs in, for example, exploration geophysics due to the
enormous volume of time series routinely collected). Finally, we note that
Thomson and Chave [17] describe an appealing scheme in which multita-
pering is used in conjunction with WOSA.

11.2.4 Evaluating the Significance of Spectral Peaks

A common use for spectral analysis is the detection of a periodic signal in
the presence of noise. In the simpliest case, we assume that the periodic
signal is a sinusoid and that the noise is additive zero mean white noise
{W:}; i.e., we assume that our time series can be modeled as

X =Dcos2ufit At + @)+ Wy, t=1,...,n,

where D, f; and ¢ are constants. Suppose first that the frequency f; of the
sinusoid is known a priori to be equal to the Fourier frequency 1/(n At),
where [ is an integer such that 0 < I/n < 1/2. We wish to test the null
hypothesis that D is zero (i.e., that our time series in fact does not contain
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a significant sinusoidal component at the proposed frequency f;). Let J
be the largest integer such that J/n < 1/2, and let f; = j/(nAt) for
J=1,..., J be the set of all nonzero Fourier frequencies less than f(n. If
the null hypothesis is true and if {W,} is a Gaussian process, then the set of
periodogram ordinates S®) (f;), S®)(f,), ..., S®(f;) constitute a set of
independent and identically distributed x3 rv’s multiplied by the constant
V(W;)/2. The ratio

thus follows an F; 5(;_1) distribution under the null hypothesis. Under the
alternative hypothesis D # 0, the periodogram ordinate S(P) (fi) will tend to
be large, and hence the above ratio will also tend to be large. We thus reject
the null hypothesis at level of significance « if the ratio exceeds the upper
(1—a)x100% percentage point of the F, 5(;_1) distribution. In general, this
percentage point for an F j, distribution is given by k(1 — a2/k)/(2a2/k).

The above test statistic can be easily modified to handle a periodic
nonsinusoidal signal with known period 1/f;. In general, such periodic
signals can be written as a linear combination of sinusoids with frequencies
fis 2f1, 3f1, ..., where f; is known as the fundamental frequency of the
signal and (k + 1)f; is called the kth harmonic frequency. For example,
suppose that the signal can be assumed a priori to be represented by a
fundamental frequency f; and its first harmonic 2f; with 2f; < 1/(2 At);
i.e., because 2f; = f9;, our assumed model is

X = Dy cos(2m fit At + ¢1) + Do cos(27 fort At + ¢o) + Wi

We can then test the null hypothesis D1 = Dy = 0 using the ratio

(7 =2) [SO(R) + 8P| [2 >0 8Dy,
G=1,e0sd
J#L, §#21
Under the null hypothesis, this ratio follows an Fj 5(;_o) distribution. We
thus reject the null hypothesis with level of significance « if the above ratio
exceeds the upper (1 — «) x 100% percentage point of this distribution.
Suppose now that we do not know a priori the period of the potential
signal in our time series, but that the periodogram for X;, X, ..., X, has
apparent large values at one or more Fourier frequencies. To assess whether
these large values are ascribable to just random fluctuations, we can use
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Fisher’s g statistic, defined by

J
— G(P) (£ §(P) (£,
g = max 5 ’(fg)/;s ().
Under the null hypothesis that our time series is a portion of a realization
of a Gaussian white noise process, Fisher [18] derived the exact distribution
for g. In practice, a simple approximation to this distribution tells us to
reject the null hypothesis at the (approximate) level of significance « if g
exceeds the value 1 — (a/J)Y (/=Y. Siegel [19] proposed a test statistic
similar to Fisher’s test, with the key modification that it considers all large
values of the periodogram and hence is more powerful against an alternative
hypothesis of multiple sinusoidal components plus Gaussian white noise (for
details — including some simple approximations to the percentage points for
Siegel’s test — see [4], Section 10.9).

The three statistical tests we have briefly discussed so far can all give
misleading results when the additive noise {W;} cannot reasonably be as-
sumed to be white noise. An appealing approach in this case is to use
Thomson’s multitaper F-test, which is based the notion of frequency do-
main regression analysis. Details concerning — and examples of the use of
— this test are given in [6] and Sections 10.11 and 10.13 of [4].

11.3 Bivariate Time Series

11.3.1 Basic Concepts

Let us now consider the bivariate real-valued stationary process { Xy, Y;}
(see Chapter 3 of this book). We assume that the univariate real-valued
stationary processes { X;} and {Y;} are both zero mean processes with sdf’s
given by, respectively, Sx () and Sy (). Under these conditions, the cross-
spectral properties of {X;,Y;} are given by the cross spectrum (sometimes
called the cross spectral density function), which can be written as

Sxy(f) = At Z Crxye 2mTAal —fony < f < fivy (11.20)

T=—00

(cf. Equation 11.3), where {C; xy} is the cross covariance sequence (ccvs)
defined by
CT,XY = COW(Xt,YtJrT) = E(Xtyt+r)-

To learn what the cross spectrum can tell us, let us consider a specific
example appropriate for the bivariate wave height time series described in
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Section 11.1 and shown in Figure 11.1. Let {O,} be a zero mean stationary
process (with sdf So(+)) that represents the true height of the ocean waves at
the wire wave gauge. Because of instrumentation noise, what the wire wave
gauge actually records at index t is X; = Oy + U, where we assume that
{U:} is a zero mean stationary process (with sdf Sy (+)) that represents the
instrumentation noise and is pairwise uncorrelated with {O;} (i.e., Crov =
E(OiUiyr) = 0 for all 7). At the infrared wave gauge, we assume that we
measure {Y;}, which is the sum of a displaced version of {O,} and a separate
instrumentation noise process {V;}; i.e., Y3 = Oyqy + Vi, where [ is a fixed
integer, and {V;} is a zero mean stationary process (with sdf Sy (-)) that is
pairwise uncorrelated with both {O;} and the other instrumentation noise
process {U,} (i.e., Cr.ov = 0 and C; yy = 0 for all 7). Note that, if [ <0,
we can say that the process {Y;} lags the process {X;} by —I At time units
because both X;; and Y; depend on Oy, and the index ¢+ occurs before
the index ¢. Conversely, if | > 0, we say that {Y;} leads the process {X;}
by [ At time units.

If we denote the acvs’s for {O,}, {U;} and {V;} by, respectively, {C; 0},
{C:; v} and {C; v}, then the ccvs for {X,,Y;} is given by

Crxy = E(XiYi17) = E[(O¢ + Up)(Oti4+ + Vitr)] = Ciir,05

i.e., the ccvs is just a shifted version of the acvs for {O;}, and the amount
of the shift is just given by the lead/lag factor I. The cross-spectrum for
{X:,Y:} is just Sxy (f) = e2™/1A185(f). Note that this cross-spectrum
expresses the commonality between {X;} and {Y;}; i.e., it does not depend
on either {U;} (which is part of {X;} but not of {Y;}) or {V;} (part of {Y:}
but not {X;}).

Because Sxy (f) = e2™1855(f) in this simple example, we can de-
duce that, whereas the sdf is always real-valued, the cross-spectrum is in
general complex-valued. This fact makes it difficult to interpret Sxy (+)
and leads us to search for quantities related to it, but easier to deal with.
If we express the conjugate of Sxy (f) in terms of its real and imaginary
components, ie., Sxy(f) = Rxy(f) —ilxy(f), we can define the co-
spectrum Rxvy () and the quadrature spectrum Ixy (-); on the other hand,
if we express Sxy(f) as its absolute value times a complex exponential,
ie., Sxy(f) = Axy (f)e’? () with Axy (f) = |Sxy(f)|, we can define
the cross amplitude spectrum Axy (-) and the phase spectrum ¢xvy (f). Note
that, if in fact |Axy (f)] = 0, then ¢xy (f) is ill-defined; if |[Axy (f)| > 0,
then ¢xy (f) is defined only up to an integer multiple of 27. In contrast
to Sxy(+), the derived functions Rxy (), Ixy(-) and Axy () are all real-
valued and hence can at least be plotted easily. The function ¢xy (-) is
also real-valued, but the ‘27’ ambiguity in its definition makes plotting it
somewhat problematic (see the discussion in the next section).
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Let us now see what these derived functions are for our simple ocean
wave example. Since then Sxy (f) = e?™/121S5(f), we have Rxy(f) =
cos (2m fLAL) So(f), Ixy(f) = —sin (2 flAL) So(f), Axy(f) = So(f)
and, assuming that Axy (f) > 0, ¢xy (f) = 27 fl At. For this example, the
cross amplitude spectrum and the phase spectrum are most easily inter-
pretable: the former is just the sdf for the ocean wave process {O;}, while
the latter is linear with a slope proportional to the lead/lag factor I. In
general, if it exists, the function that by —% . dd’xd—}'(f) is called the group
delay (or the envelope delay — cf. [3], p. 664). In our example, the group
delay is equal to —I At at all frequencies, but in general it depends upon
the frequency f.

Whereas the co—, quadrature, cross amplitude and phase spectra and the
group delay can all be derived solely from the cross spectrum, the complex
coherency, defined as wxy (f) = Sxv (f)/+/Sx(f)Sy (f), depends on both
the cross spectrum and the sdf’s for {X;} and {Y;}. If we write the spectral

representations for {X;} and {Y;} as

fovy Jovy
Xt — / 6127rftAt dZX(f) and Yt :/ 6127rft At dZy(f)
—fvy —fv

(cf. Equation 11.1), it can be shown that

wry () = CovldZx (f),dZy (f)]
VVIdZx (f)IVIdZy (f)]

(see [3], p. 661). The complex coherency is thus a complex-valued frequency
domain correlation coefficient that measures the correlation in the random
amplitudes assigned to the complex exponentials with frequency f in the
spectral representations for {X;} and {Y;}. Since it is a complex-valued
correlation coefficient, we must have 0 < |wxy (f)|?> < 1. The quantity
lwxy (f)]? is called the magnitude squared coherence (msc) at the frequency
f. Note that

oy (AP = S5 DE AR ()
Sx(f)Sy(f)  Sx(f)Sy(f)’

i.e., the msc is a normalized version of the square of the cross amplitude
spectrum. The msc essentially captures the ‘amplitude’ part of the cross
spectrum, but completely ignores its phase, so the msc and the phase spec-
trum together are useful real-valued summaries of the ‘information’ in the
complex-valued cross spectrum.

To derive the msc for our ocean wave example, we first note that, be-
cause {O;}, {U;} and {V;} are pairwise uncorrelated processes, the sdf’s for
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{X;} and {Y;} can be expressed as, respectively, Sx(f) = So(f) + Sv(f)
and Sy (f) = So(f) + Sv(f). The msc for {X;,Y;} is thus given by

lwxy (NI =1/[1+ Su(f)/So(HL+ Sv()/So(H)],

which tells us that the msc is

1. zero if So(f) = 0 while either Sy (f) > 0 or Sy (f) > 0 (because then
the variability in {X;} and {Y;} at frequency f is due to instrumen-
tation noise, assumed to be uncorrelated between gauges);

2. close to zero if either Sy (f) or Sy (f) is large compared to So(f)
(because then the variability at f in at least one of the component
processes of {X¢,Y;} is mainly due to instrumentation noise);

3. close to unity if both Sy (f) and Sy (f) are small compared to So(f)
(because then the variability in both {X;} and {Y;} at f is mainly
due to the variability in {O,}; and

4. unity if, for example, both U; = 0 and V; = 0 for all ¢ (because then
{Y:} is just a time-shifted version of {X;}),

all of which lends credence to the interpretation of the msc as a measure of
the correlation between {X;} and {Y;} at particular frequencies.

11.3.2 Bivariate Spectral Estimation

We now turn to the problem of estimating the cross spectrum and various
functions derived from it. Our estimates are based upon a bivariate time
series that can be regarded as a realization of a portion X;,Y;, t =1,...,n,
of the bivariate stationary process { X¢, Y3} with cross spectrum Sxy () and
sdf’s Sx(+) and Sy(:). In view of Equation 11.20, an ‘obvious’ estimator
for Sxy (f) is the cross periodogram given by

n—1
SE(N =t Y Clye A

T=—(n—1)

(cf. the periodogram of Equation 11.5), where C’ip))(y =15, XY, (here
the summation ranges from t = 1 to ¢ = n — 7 for nonnegative 7’s and
from ¢t = 1 — 7 to t = n for negative 7’s). Note that this expression for
CA’ip ))G, implicitly assumes that both {X;} and {Y;} are known a priori to
be zero mean processes — if this is not the case, the common practice is to

use X; — X and Y; — Y in place of X; and Y; in all computational formulae,
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where X and Y are the sample means. In analogy to Equation 11.6, the
cross periodogram can also be written as

Sg?z/(f) — % (Z Xte—iQﬂ'ftAt) (Z Y;e—iQﬂ'ftAt> , (1121)
t=1

t=1

where the asterisk denotes complex conjugation.

Unfortunately, the bias and variance properties of the cross periodogram
are as poor as those of the periodogram, so ngz,(f) must be used with great
caution. For example, suppose we use the cross periodogram along with
the individual periodograms to form the ‘obvious’ estimator for the msc,
namely, |§§?;(f)|2/§§?)(f)§$)(f) Because of Equations 11.21 and 11.6,

we have

‘S(p) (f) ’ZX —zwatAt _ Sﬁ?)(f)§§f)(f)

n 2
E Y'te—iQTrft At
t=1

so that the ‘obvious’ estimator for the msc is in fact always unity! Priest-
ley [3], p. 708, gives a reasonable explanation for this seemingly unrea-
sonable result, namely, that the frequency domain correlation coefficient
lwxy (f)]? is essentially being estimated using just a single observation of
a bivariate frequency domain process at frequency f. It is thus vital to
reduce the inherent variability in the cross periodogram if the correspond-
ing msc estimator is to make any sense. In principle, variance reduction
can be achieved using straight-forward extensions of the approaches dis-
cussed in Section 11.2.3 for univariate sdf estimation, namely, smoothing
across frequencies, WOSA and multitapering. In practice, however, WOSA
and multitapering are the methods of choice because of subtle (but sur-
mountable) problems that can arise when smoothing across frequencies (in
addition, Walden [20] demonstrates an improvement in msc estimation us-
ing multitapering instead of smoothing across frequencies). For brevity, we
consider just the multitaper estimator (see Carter [13] for details on WOSA;
Thomson and Chave [17] discuss WOSA, multitapering and a combination
of the two methods).
The simpliest multitaper estimator of the cross spectrum is given by

At (& n _ .
S&n;t) (f) — f Z (Z ht,kXte—ZZﬂ'ft At) (Z ht7k}/te—z27rft At) 7
k=0 \t=1 P

where, as before, {h;} is the kth-order dpss data taper for a sequence
of length n and a fixed resolution bandwidth 2WW. As in the univariate
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Figure 11.10: Bivariate spectral analysis (see text for details).

case, each data taper is designed to prevent leakage, whereas the use of
multiple tapers yields an estimator of the cross spectrum having less vari-
ability than the cross periodogram. The number of equivalent degrees
of freedom for S’g?;f)( f) is v = 2K. The corresponding multitaper es-
timators for the co-spectrum and related quantities follow directly from
their definitions. For example, the estimators for the phase spectrum

and the msc are given by qb(mt)(f) = arg (S(mt)(f)) and |w§?§f (A7 =
15§ mt)( )|2/S§(mt)(f)5§,mt)(f). In the expression for gb( t)(f), we can as-

sume that the ‘arg’ function returns a value between —7 and 7 so that
A();n}f)( f) assumes values modulo 27 and hence can be discontinuous as

phases pass over the +7 boundaries. These discontinuities can hinder

ascertaining whether or not the phase spectrum varies linearly with fre-

quency (an indication of a lead/lag relationship between {X;} and {Y;}).

To avoid these difficulties, Priestley [3], p. 709, advocates plotting gb(mt)( ),
(mt)(f) + 27 and qb(mt (f) — 27 versus f all together.

Figure 11.10 summarizes a bivariate spectral analysis of the wire wave
gauge time series {X,;} of Figure 11.1(a) and the infrared wave gauge time
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series {Y;} of Figure 11.1(b). The thick solid curve in 11.10(c) is a repro-
duction of the multitaper spectral estimate Sg(mt)( f) shown previously in

Figure 11.9(b). The thin solid curve is the corresponding estimate S’&mt)(f)
for the infrared wave gauge time series. The two spectral estimates agree
almost perfectly between the frequencies f = 0.04 Hz and f = 0.34 Hz
(these frequencies are marked by two thin vertical lines) and reasonably
well between f = 0.34 and f = 0.97, beyond which the level of 5’§,mt)(f) is

consistently higher than that of S G(mt) ( f). This finding is in agreement with
the fact that the infrared wave gauge has substantially more measurement
noise at high frequencies than does the wire wave gauge. The dots in Fig-
ure 11.10(c) show the multitaper estimate A(mt (+) of the cross amplitude
spectrum. Recall that, in terms of the snnple lead /lag model for this data,
the cross amplitude spectrum is just the sdf for the common ocean wave
process. Again there is very good agreement between A()gf)() and either
ST () or S () at the low frequencies delineated by the two thin ver-
tical lines, after which flg?;f)() is in general agreement with g&mt)() but

not S&mt)() This finding is consistent with the measurement noise at high
frequencies for the wire wave gauge being smaller than that of the other

gauge. There are some small (less than 10 dB) differences between S (mt)( )

and AXY (+), particularly between the frequencies f = 0.34 and f = 1.0,

where /lg?l}f)( f) is consistently lower than S&mt)(-). Our simple lead/lag
model would suggest that the common ocean wave process {O;} is weak at
these frequencies compared to local effects, all of which are lumped together
with instrumentation noise in our simple model.

The solid curve in Figure 11.10(a) shows the corresponding estimated
msc |zbg(";;)( )|? for 0 < f < 1 Hz (the two thin vertical lines mark the
same frequencies as the corresponding lines in 11.10(c)). We can test —
at the level of significance o — the null hypothesis that the true msc is
zero at frequency f by comparing {2 (f)[? to the value 1 —a2/(*=2 and
rejecting the null hypothesis if |w(mt)( )|? exceeds this value (for details,
see [2], p. 284). As before, v represents the number of equivalent degrees
of freedom associated with the spectral estimates. Because we have used

= 6 tapers in the multitaper estimates S (-), SU™(-) and ST (1), we
have v = 2K = 12 degrees of freedom. The thick and thin horizontal lines
on Figure 11.10(a) define the rejection regions for levels of significance of,
respectively, @ = 0.01 and o = 0.05. We see that the region of nonzero msc
is bounded by the thin vertical lines marking f = 0.04 Hz and f = 0.34 Hz,
between which ,é'g(mt)(~), Sg”t)() and flg?@}f)() are all in good agreement
(for 1.0 < f < 4.0, the estimated msc is such that, except at a few isolated
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frequencies, we cannot reject the null hypothesis of zero msc). In terms
of our simple lead/lag model, the small msc at frequencies higher than
f = 0.34 Hz can be attributed to the large instrumentation noise associated
with the infrared wave gauge.

Finally, the dots in Figure 11.10(b) show the estimated phase spectrum

Ag?;f)( f) versus f for 0 < f <1 Hz, plotted per Priestley’s recommendation

(the dots for qigg?;)(f) + 27 are smaller than the dots for gf)g;n}f)(f)) Again,
vertical lines delineate the frequencies of apparent nonzero msc, between
which the estimated phase spectrum increases approximately linearly. A
linear least squares fit to (/ggzn;)( f) versus f at these frequencies yields an
estimated slope of 1.02 radians per Hz. In terms of the lead/lag model, this
slope translates into a lead/lag factor of I = 4.9 ~ 5 units or 1/6 second
since one unit is equal to 1/30 second. Because [ is positive, the prevailing
ocean waves are arriving at the infrared wave gauge approximately 1/6 sec-
ond ahead of the wire wave gauge; moreover, because the two gauges were
6 meters apart, the prevalent direction of the ocean waves is approximately
perpendicular to a line drawn between the two gauges. Note that, in re-
gions where the estimated msc is small, the estimated phase spectrum is
erratic. This pattern is consistent with well-known approximations to the
statistical properties of éﬁ;’;ﬁ’ (f), which indicate that it has large variability
when the true msc is zero ([3], p. 703).

Detailed discussions on bivariate spectral analysis can be found in Koop-
mans [2] and Priestley [3]. Thomson and Chave [17] describe resampling
schemes for assessing variability in bivariate spectral estimates.
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