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Abstract 

A number of recent methods developed for automatic classification of multiunit 

neural activity rely on a gaussian model of the variability of individual waveforms and 

the statistical methods of gaussian mixture decomposition. Recent evidence has shown 

that the gaussian model does not accurately capture the multivariate statistics of the 

waveform samples’ distribution. We present further data demonstrating non-gaussian 

statistics, and show that the multivariate t-distribution, a wide-tailed family of 

distributions, provides a significantly better fit to the true statistics. We then adapt a new 

Expectation-Maximization (EM) based competitive mixture decomposition algorithm and 

show that it can efficiently and reliably performs mixture decomposition of t-

distributions. Our algorithm determines the number of units in multiunit neural 

recordings, even in the presence of significant noise contamination resulting from 

random threshold crossings and overlapping spikes. 
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Introduction 

Extracellular recordings of neural activity provide a noisy measurement of action 

potentials produced by a number of neurons adjacent to the recording electrode. 

Automatic and semiautomatic approaches to the reconstruction of the underlying neural 

activity, or ‘spike-sorting’ were the subject of extensive development over the past 4 

decades and reviews of early and recent efforts can be found in the literature (Schmidt 

1984; Lewicki 1998). It is generally assumed that each neuron produces a distinct, 

reproducible shape, which is then contaminated by noise that is primarily additive. 

Identified sources for noise include: Johnson noise in the electrode and electronics, 

background activity of distant neurons (Fee et al. 1996), waveform misalignment 

(Lewicki 1994), electrode micromovement (Snider and Bonds 1998) and the variation of 

the action potential shape as a function of recent firing history (Fee et al. 1996; Quirk and 

Wilson 1999). Given this signal+noise structure, the problem of automatically classifying 

the different shapes is a clustering problem and can be addressed either in the context of 

the full time-sampled spike-shape or of a reduced feature set, such as the principal 

components or a wavelet basis (Hulata et al. 2002). 

While the application of general clustering methods such as k-means (Salganicoff 

et al. 1988), fuzzy c-means (Zouridakis and Tam 2000), a variety of neural-network 

based unsupervised classification schemes (Ohberg et al. 1996; Garcia et al. 1998; Kim 

and Kim 2000) and ad-hoc procedures (Fee et al. 1996; Snider and Bonds 1998) have 

been pursued by some authors, a number of other studies (Lewicki 1994; Sahani et al. 

1997; Lewicki 1998; Sahani 1999), attempting to provide statistically plausible, complete 

and efficient solutions to the waveform clustering problem have focused their attention 

on clustering based on a gaussian mixture model.  The assumption underlying the latter 

approach is that after accounting for non-additive noise sources (e.g., misalignment, 

changes during neural bursts), the additive noise component is gaussian-distributed. As a 
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result, the waveforms resulting from each neuron are samples from a multidimensional 

gaussian distribution with a certain mean and covariance matrix. Given this statistical 

structure, it is possible to construct an appropriate statistical model of the data and apply 

the powerful method of gaussian mixture decomposition to solve the clustering problem 

(Jain et al. 2000; McLachlan and Peel 2000). This allows estimation of model parameters 

such as the shape of the individual waveforms and the noise characteristics; further, the 

number of clusters (or ‘components’) itself can be the subject of statistical selection, 

allowing objective determination of the unknown number of neurons being observed. The 

estimated model parameters are used to classify each ‘spike’ to one of several source 

neurons.  

Although the statistical framework resulting from the multivariate gaussian model 

is extremely powerful and well studied, recent evidence suggests that it may provide an 

inaccurate description of the spike statistics (Harris et al. 2000). Examination of the 

distribution of Mahalanobis distances of spikes produced by a single unit reveals a 

discrepancy between the expected 2χ distribution and the empirical distribution, which 

exhibits wider tails. Algorithms based on the gaussian assumption may therefore be ill 

suited for the task of automatic spike sorting, in particular as it is well known that they 

are not robust against a significant proportion of outliers. Moreover, the estimation of the 

number of clusters present is likely to be inaccurate. 

In this study, we provide additional evidence for the non-gaussian nature of spike-

shape statistics and demonstrate that an alternative model, one using multivariate t-

distributions instead of multivariate gaussians is better suited to model the observed 

statistics. Multivariate t-distributions have attracted some recent attention in the applied 

statistics literature, and we show here that, combined with a new approximation, mixture 

decomposition algorithms for t-distributions based on the Expectation-Maximization 

(EM) algorithm have comparable computational complexity to the popular gaussian 

algorithm.  Finally, we combine the new model with a recent powerful modification of 
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the EM algorithm that allows automatic determination of the number of sources through a 

process involving competitive elimination of components. 

Experimental methods  

The extracellular signals analyzed were recorded with a 100-microelectrode array 

(Jones et al. 1992) (Bionic Technologies, LLC, Salt Lake City, Utah). The array consists 

of a rectangular grid of silicon electrodes with platinized tips (200-500 kΩ impedances 

measured with a 1kHz, 100 nA sine wave). The array was chronically implanted in the 

arm region of a macaque monkey’s (M. mulatta) primary motor cortex using surgical 

implantation procedures described elsewhere (Maynard et al. 2000), with the electrode 

tips approximately located in layers IV and V. A chronic connector system was used, 

allowing simultaneous access to signals from 48 electrodes. Recordings were obtained 

while the monkey was awake and performing a manual tracking task (Paninski et al. 2001 

submitted). Signals were band-pass filtered (250-7500 Hz, 5th order Butterworth), 

amplified (5000x), digitized (30 kHz sampling), and acquired to a Pentium-based PC 

using a 100-channel data acquisition system (Guillory and Normann 1999) (Bionic 

Technologies, LLC, Salt Lake City, Utah). Thresholds were manually set, at relatively 

low values, and threshold-crossing events were saved to disk. The events consisted of 48 

time samples (1.6 ms), 10 of which preceded the threshold crossing. Of the 48 available 

electrodes, 14 provided single or multiunit activity. All of the subsequent data analysis 

procedures were performed using Matlab (Mathworks, Natick, MA.). 

Figure 1 shows data collected from a well-isolated unit with signal-to-noise ratio 

of 16.9 (peak to peak/noise RMS), which was selected for much of the analysis below. Of 

the nearly 200,000 threshold-crossing events recorded in one behavioral session, 10,000 

were selected. Random threshold-crossing events, which constituted nearly one half of 

the events, were very identifiable and manually removed using amplitude windows. This 

left approximately 5,300 events to be considered as unit waveforms. The absence of 
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detectable waveform overlaps in the raw events further suggests that this is a single unit. 

The unit displayed cosine modulation (Georgopoulos et al. 1982) with the instantaneous 

direction of arm motion (data not shown).  

The waveform peak locations were estimated with subsample resolution by up-

sampling the waveform at a 10 times finer resolution, and finding the new peak (Sahani 

1999). All peaks were then aligned, and the waveforms interpolated at the original 

sampling resolution.  Five points on the waveform edges were discarded to eliminate the 

need for extrapolation, leaving 43-sample waveforms. Our simulations indicate that this 

technique achieves an alignment accuracy of roughly 0.1 samples (standard deviation). 

Statistics of spike-shape variability 

In mixture modeling we assume that each sample ix (in general, a vector) 

originates from one of g components. In spike sorting, ix represents a sampled spike 

waveform or a vector of features, and the different components correspond to g different 
units. Assuming that each unit accounts for a proportion jπ  of the total spikes, and that 

the distribution of spikes from unit j has parameters jθ , the likelihood of the data (the 

probability of obtaining the given data set from this model) is (Lewicki 1998; McLachlan 

and Peel 2000): 
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has been used by a number of authors (Lewicki 1998; Sahani 1999) as a model, where 
( ) ( )jij

T
jijji µxΣµxΣµx −−= −1);,(δ  is the squared Mahalanobis distance between xi 

and the template jµ . The distribution of Mahalanobis distances of the different samples 

from the multivariate gaussian is expected to approximately follow the chi-square 

distribution with p degrees of freedom (only approximately, since we are dealing with 

sample mean and covariance). The left panel in Figure 2 illustrates that the empirical and 
2χ  distributions have significant discrepancies, over the entire data range. These 

discrepancies are further illustrated in Figure 3a where the quantiles of the cumulative 2χ  

distribution and the cumulative distribution of squared distances are compared. The two 

figures present complementary views of the overall disagreement and the large 

discrepancy of a few outlier data points. The solid line in Figure 3a presents the expected 

cumulative distribution of 2χ with 43 degrees of freedom ( )43(2χ ), while the dashed line 

is the best fitting line plotted by Matlab on Quantile-Quantile (Q-Q) distribution plots of 

this type. The discrepancy between the best-fit line and the data are limited to the last few 

percent of data, while the disagreement with the expected )43(2χ  model is essentially 

everywhere. 

Multivariate t-distributions (Lange et al. 1989; Peel and McLachlan 2000) 

represent an alternative to multivariate gaussians. Similar to gaussians, multivariate t-
distributions are parameterized by a unique mean jµ , and covariance matrix jΣ . In 

addition, they have a ‘degrees of freedom’ (DOF) parameter ν. Effectively, ν 

parameterizes the distribution’s ‘robustness’, that is, how wide the tails are, or how many 

outliers are expected. The case ν→∞ corresponds to a gaussian distribution and when 

ν=1 we obtain the wide tailed multivariate Cauchy distribution (the expected covariance 

is infinite for ν≤2). The p-dimensional t-distribution probability density function is:  
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where Γ is the Gamma function. The distribution of squared Mahalanobis distances in the 

case of t-distributions can be evaluated analytically, and is equal to: 
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where ( )βα ,;xbeta  is the beta probability density function with parameters α  and β at 

point x. 

Figures 2 (right panel) and 3b demonstrate the superior performance of the t- 

distributions as models of neural waveform variability. The model parameters were fit 

using a procedure that will be explained in the next section. In Figure 3b the expected 

distribution (solid line) and the best fit exactly overly each other. The t-distributions are, 

however, not a perfect fit. They clearly fail to explain a small proportion of points (0.1%-

0.2%) with extremely large Mahalanobis distances. In a typical sample often used for 

spike sorting (2000-3000 waveforms) this proportion amounts to two to six spikes. In 

fact, removing the 6 outliers in our example had only a small effect on the optimal 

distribution parameters ( 9.51=ν  vs. 7.46=ν ). 

The optimal DOF parameter for t-distributions becomes smaller (more non-

gaussian) as we try to fit a projection onto a smaller subset of the leading principal 

components. Principal components analysis finds high-variance dimensions in the data, 

which appear to be less gaussian. This point is illustrated in Figures 2 (lower panel) and 

4. As the data suggests that gaussians are a poor model of the waveform statistics while t-

distributions may provide an adequate description, we continue by discussing and 

developing algorithms for fitting mixtures of t-distributions. 
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Clustering with mixtures of multivariate t-distributions 

The most widely used method for estimating the parameters of mixture models is 

through an iterative procedure called the Expectation-Maximization (EM) algorithm 

(Dempster et al. 1977; Jain et al. 2000; McLachlan and Peel 2000). The EM algorithm for 

mixtures of gaussian distributions has been widely used for over three decades. Recently, 

an EM algorithm for estimating the parameters of mixtures of multivariate t-distributions 

was presented (Peel and McLachlan 2000). Without repeating the derivation here, we 

summarize the E and M steps of the solution below. The EM algorithm for this problem 

requires the introduction of two sets of auxiliary variables, twice their number in gaussian 

mixture-decomposition (in the gaussian case only the memberships are used):  

ijz - Membership of spike i to unit j ( 10 ≤≤ ijz , 1 indicates unit j produced spike i).  

iju - Weights indicating ‘typicality’ of spike i w.r.t. unit  j ( 1<<iju  for outliers) 

These variables are recalculated in the E step, and subsequently used to generate new 

estimates of the model parameters in the M step. The required calculations at step k of 

the algorithm are: 

E step 

Update the memberships and weights using: 
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with ),,|( )1()1( ν−−≡ k
j

k
jiij pP Σµx as defined in (3) 

M step 

Update the proportions g...1π , component means, and common covariance using: 
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Estimation of the DOF parameter ν, which allows tuning the shape of the 

distribution to the empirical spike distribution, involves solving the following implicit 

nonlinear equation (Peel and McLachlan 2000): 

Where ψ is the digamma function. Solving this implicit equation typically 

involves a one-dimensional search, which adds significant computational overhead to the 

EM algorithm. Instead, we have found the following empirical approximation to provide 
a very accurate and fast approximation to the solution of (7)  ( 03.0* <−νν  tested on 

simulated data with 505 <<ν ) : 
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Where y is an auxiliary variable defined by: 
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and erf is the error function. 

0)
2

(1
2

logˆ
);,(

2log
2

ˆ
1 1

=











−++−











+
+





 +∑∑

= =

N

i

g

j
ij

jji
ij upz νψν

νδ
νψ

Σµx
 

(7) 



 

 

 

10 

  Practical problems often encountered with EM-based mixture decomposition 

algorithms involve the initialization procedure, avoiding convergence to local likelihood 

maxima and parameter singularities and the determination of the number of components. 

In the next section, we present a new strategy that successfully avoids these problems. 

Determining the number of units 

Determination of the number of components in a mixture model has been the 

subject of extensive research (reviewed in (Sahani 1999; McLachlan and Peel 2000; 

Figueiredo and Jain 2002)). The methods most widely used for this task were based on 

selecting the best mixture models from a set of candidates with different numbers of 

components. After fitting the parameters of the different models (using the EM 

algorithm) the different models are compared using a penalized likelihood function, 

which penalizes the likelihood for ‘complexity’ (i.e., a larger number of components) and 

an “optimal” model is found.  This class of methods has the disadvantage of requiring 

estimation of the parameters of multiple mixture models. Other approaches include the 

use of stochastic model estimation using model-switching Markov-Chain Monte-Carlo 

methods (Richardson and Green 1997), and deterministic annealing based approaches 

(Sahani 1999), which we have recently adapted to the case of the multivariate t-mixture 

model (Shoham 2002). These approaches suffer from significant computational 

complexity. 

A recently introduced algorithm (Figueiredo and Jain 2002), appears currently to 

offer the best overall profile in terms of computational simplicity, efficiency and 

selection accuracy, and was adapted by us for the case of multivariate t-distributions. The 

algorithm attempts to maximize a penalized log-likelihood where the penalty is based on 

the Minimum Message Length criterion (Wallace and Freeman 1987):  








 +
++−= ∑∑ ∑

= = j

j
n

i

g

j
ijj

NgngnNPL
2

)1(
12

log
212

log
2

log
1 1

π
π  

(10) 



 

 

 

11 

Where N is the number of parameters per mixture component. Based on this cost 

function, an EM algorithm is derived, where different components compete for data 

points and are eliminated when they become singular. The algorithm is initialized with a 

large number of components, and subsequently eliminates components until convergence. 

The ‘competition’ is achieved using a new update of the components mixing proportions 

that replaces (6): 
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The new algorithm differs in two additional ways from the usual EM 

implementation. First, the solution achieved by simply allowing the algorithm to 

converge may not be optimal, so after convergence to a solution the smallest component 

is eliminated, and a new cycle of iterations is started. Second, (11) has a very simple 

failure mode: if initialized with many small components, all, or many of them will be set 

to zero immediately, which will lead to an erroneous solution. In order to circumvent this 

problem (Figueiredo and Jain 2002) turns to a component-wise EM procedure (Celeux et 

al. 1999) that serves to re-normalize the component proportions after each step and 

therefore avoids full annihilation. We have found that this approach offers significant 

disadvantages when used with our model. In particular, fitting common parameters like 

ν  becomes problematic. A simple alternative does present itself. Maximizing (10) with 
respect to jπ  under the constraint ∑ =

j
j 1π  leads after simple rearrangement to the 

following update rule: 
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Reapplying this expression in an iterative manner until convergence leads to a 
(possibly local) maximization of the penalized likelihood (10) with respect to the jπ . 

The term ∑ ill Pπ  in the denominator assures that the proportions are re-normalized 

when a component is eliminated, and the expression is otherwise closely related to (11). 

This expression differs from (11) in that it maximizes the penalized likelihood (10) 

directly rather than maximize the ‘complete data’ likelihood as is typically done in the 

EM algorithm. Such maximization steps are a part of the ECME framework, an extension 

of the classical EM algorithm (Liu and Rubin 1994). 

Simulation study 

In order to avoid the inherent uncertainty in assessing the true number of units in 

extracellular recordings, we first tested the new algorithm on simulated random mixtures. 

We compared the clustering results of a randomly initialized EM algorithm (with the 

correct number of components) and of the new algorithm using 100 mixtures consisting 

of five components with different covariance matrices and proportions (1000 five-

dimensional vectors in each mixture). The mixture components were t-distributed, and 

simulations were performed with three levels of “contamination”, }20,5,3{=ν . When 

comparing our results to the penalized-loglikelihood (10) of the underlying “true” 

distribution of points, we found that in all cases the new algorithm markedly 

outperformed the unmodified EM algorithm, which obtained incorrect and significantly 

less likely solutions in 40-50% of the trials (see Figure 5). The new algorithm correctly 

determined the number of components (5) in 90%-98% of the mixtures, and in over half 

the cases where it found an incorrect number (always either 4 or 6) the “wrong” answer 

corresponded to a higher penalized-loglikelihood than that of the underlying model used 

to generate the data. In all cases where the correct number of components was found, it 

either corresponded to the underlying model or had better penalized-loglikelihood. In fact 

in 5%-30% of the trials it obtained solutions with a much-higher penalized-loglikelihood 
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than that of the underlying model. The algorithm’s performance therefore appears to be 

limited by the uncertainty inherent to the maximum-likelihood approach. 

While performing this simulation study we found that the theoretical value of N 

(the number of parameters per component - pppN +
+

=
2

)1(  for an unconstrained mean 

and covariance) led to over-clustering, and we replaced it with an empirically obtained 

value (i.e., we consider it to be a user-assigned parameter). We continued this practice 

when applying the algorithm to real data.  

Spike classification results 

Results of applying our algorithm to real multi-unit motor data appear in Figures 

6 and 7. The algorithm in both cases was initialized with 10 components, and rapidly 

converged to a result that appears to have the correct number of clusters as illustrated in 

Figure 6 (a). In both figures there are ‘noise collection’ clusters that are not a neural unit. 

These results were obtained using the full sampled waveforms, however the algorithm 

works well with a reduced feature set, such as the leading principal components. The 

results also illustrate that the performance is successful in spite of large noise 

contamination. The automatic tuning of the DOF parameter helps achieve this 

performance. The range of DOF in the solutions to these examples was 10-15, while 

isolated spike distributions have DOF parameters in the range 30-50. When using the 

projection on the first five principal components, DOF solutions obtained were in the 

range 3-8. 

We summarize the new unsupervised spike classification scheme in Table 1. 

Discussion 

One of the most promising recent advances in basic and applied neuroscience 

research is the fabrication of arrays of electrodes that allow multiple site recording and 

stimulation in various neural systems (Jones et al. 1992; Hoogerwerf and Wise 1994; 

Rousche et al. 2001). Recording neural activity with such arrays can be used to address a 
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multitude of basic neuroscience questions, and has also been suggested as a brain-

computer interface for use by paralyzed individuals (Maynard et al. 1997; Wessberg et al. 

2000; Schwartz et al. 2001; Serruya et al. 2002). However, the traditional practice of 

optimizing SNR by micro-manipulating the electrode placement is no longer possible or 

practical when using these arrays. In practical terms this means that significant effort 

must be expended to signal detection and classification under “low” SNR scenarios (Kim 

and Kim 2000). This need motivated the present study, in particular as studies suggest 

that automatic methods potentially possess a significant accuracy advantage over manual 

spike sorting (Lewicki 1994; Harris et al. 2000), and are clearly more suitable for high 

electrode count arrays. 

 As model-based mixture decomposition clustering algorithms appear to currently 

offer the best prospects for the classification subunit in a fully automatic spike sorting 

routine (Lewicki 1998; Sahani 1999), we started out by testing the popular gaussian 

model, and replacing it with an improved, t-distribution model, at the cost of adding a 

single global parameter ν . An EM algorithm for mixture decomposition of t-distributions 

has recently been developed, and is well suited for this application, providing a robust 

alternative to the use of gaussian mixture algorithms by automatically down-weighing the 

effect of outlier waveforms (Peel and McLachlan 2000). Previous studies of t-distribution 

model fitting have focused on the difficult problem of fitting the degrees of freedom 

parameter, which we circumvent by adding a simple and accurate numerical 

approximation. We finally adapt a new EM based competitive agglomeration algorithm 

to this problem, which solves some of the difficulties associated with the use of the EM 

algorithm, and simplifies the determination of the number of units in the data. 

Unfortunately, at present this algorithm relies on an empirically determined penalty 

parameter, which weakens the advantage of using the superior statistical model. Our 

current implementation of the algorithm clusters 2000 five-dimensional waveforms in 10-
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20 seconds on a Pentium-800 computer, and can therefore probably be implemented in a 

fully automatic multi-channel data acquisition system. 

Our results regarding the statistics of waveform variability support those of a 

recent study (Harris et al. 2000) (figure 3A) where intracellular recordings were used to 

reliably identify the action potentials fired by individual neurons. Our results are, in fact, 

stronger in rejecting the gaussian model, possibly because Harris et al. (Harris et al. 

2000) presented the best fitting line in their 2χ  distribution plot, rather than the 

distribution with the correct degrees of freedom (see Figure 3).   Interestingly, previous 

studies concluded that the statistics were normal. The discrepancy can be explained by 

noting that the distribution plots presented in (Lewicki 1994) (Figure 2b) and (Fee et al. 

1996) (Figure 1e) collapse together residuals at different time-delays. By eliminating the 

dependence structure between the different time-delays this operation reduces a 

multivariate distribution to a univariate one. In contrast, the distribution of Mahalanobis 

distances is a measure that is well suited for looking at the distribution of multivariate 

elliptical distributions. Moreover, close examination of the distribution plots appearing in 

these studies reveals larger-than-normal tails, and that the plotted gaussians were 

matched to the central region of the bell curve, rather than the standard variation. An 

additional study looked at the multivariate statistics of the background noise (Sahani 

1999) (Figure 5.4), examining the marginal distributions along different principal 

directions, and demonstrated that the distribution exhibited extra kurtosis along the first 

few (i.e. most significant) principal directions. 

 The reason for the superior fit provided by the multivariate t-distributions is 

clearly the flexibility provided by the degrees of freedom parameter, and its wider tails. 

However, it may also be viewed as related to underlying characteristics of the 

background noise process. A previous study (Fee et al. 1996) provided compelling 

evidence that the neural background noise is highly nonstationary, and therefore the spike 

waveform distribution results from the mixed contributions of noise samples with 
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different characteristics. This “double randomness” is a characteristic of compound 

probability models of which the t-distribution is a member (Johnson et al. 1994). t-

distributed variables can be generated as normally distributed with covariance matrix 

u/Σ  where u is a random variable itself with a gamma distribution (Peel and McLachlan 

2000). The nonstationarity of the background noise thus provides a potential reason why 

the noise statistics do not follow the normal distribution, in spite of the central limit 

theorem.  

Alternatives and possible extensions 

One solution to the problem of outlier waveforms (Banfield and Raftery 1993; 

Sahani 1999) is adding an additional large component whose influence encompasses the 

entire data set and serves as a ‘garbage collector’. We found that adding the resulting 

component is highly sensitive to the definition of the ‘data range’. Instead, in our 

implementation, following the clustering procedure we use heuristics to select those 

components thought to contain random threshold crossings and overlapping waveforms. 

Additional robust mixture-based clustering algorithms found in the literature are based on 

Huber’s M-estimators (Huber 1982) like the hybrid of a gaussian distribution with 

laplacian tails called the ψ-function (Tadjudin and Landgrebe 2000) or Least Trimmed 

Squares estimators (Medasani and Krishnapuram 1998). It is quite possible that mixtures 

with nonelliptical mixture components (in contrast to multivariate gaussian or t-

distributions) will improve the fit to the real statistics. 

The problem of nonadditive waveform changes (resulting from rapid bursts or 

slow drift) and the detection problem (of single or overlapping spikes) remain as the two 

most significant hurdles to the general applicability of any unsupervised spike 

classification method. One approach to overcoming the problems resulting from changing 

templates is to abandon the mixture decomposition approach and develop ad-hoc 

clustering algorithms (Fee et al. 1996; Snider and Bonds 1998). Another approach is to 
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extend the basic mixture model to one in which the waveform shape depends on the 

recent spiking history, e.g., by the use of a sophisticated Hidden Markov Model (Sahani 

1999). To address the problem of slow nonstationarity, one can replace the EM algorithm 

with an adaptive version that updates the model parameters recursively as the spikes are 

acquired (Neal and Hinton 1998; Sahani 1999).   The quality of spike detection in the raw 

electrophysiological signal, significantly affects the amount and nature of contamination, 

and thereby the clustering results. One solution to this problem relies on using filters that 

are optimally matched to the distribution of templates and noise (Fee et al. 1996). 

Generic preemphasis techniques based on Teager’s Energy operator (Kim and Kim 2000) 

and wavelet packets (Hulata et al. 2002) have been suggested to improve the detection 

quality. It remains to be evaluated how such algorithms perform in the nongaussian noise 

environment we have described.  
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Table 1 

algorithm 
Initialization: use simple clustering method (e.g. k-means or FCM) to 
determine centers max...1 gµ  of gmax>>gtrue components. Set 

ΝL
g gg  determinepre;;50;;1

max...1
max

...1 −−∞==== νπ IΣ  

While g≥gmin 
      Repeat 
            E Step 
                Update memberships zij and weights uij  (5) 
            M step 

                While 4

1
101 −

=

>−∑
g

j
jπ  

         For j=1:g 
                            Update jπ  (12) 

                        End For 
                        g ← # of  0>jπ  

                End While 
                Purge components where 0=jπ   

                Update µj, Σj  (6) 
                Update ν (9),(8) 
            Update Pij (3) 
            Update L (10) 
      Until Convergence ( 1.0<∆L & 210−<∆ν ) 
       If  L>Lmax 

                 Lmax=L; store parameters {πj, µj, Σj,ν} as ‘optimal’; 

                 Set smallest component to zero; g=g-1; 
      Else 
            Break 
      End if 
End While  



Figure Legends 
Figure 1.  Representative statistics for a well-isolated motor cortical unit. (a) collection of 
~5300 aligned waveforms. (b) Projection of waveforms from (a) onto their first two 
principal-components. (c) ISI histogram. Cell fired at an average rate of roughly 30Hz.  
(d) Histogram of collapsed residuals from (a) after the removal of the mean waveform. 
Inset shows right ‘tail’.  
 
Figure 2.   Comparison of predicted and actual distributions of Mahalanobis squared 
distances. Plots show results for the same unit as in Figure 1, using both gaussian (left 
panels) and t-distribution (right panels) models. Both upper panels are the distributions 
using the full sampled waveforms (43 dimensions), and the lower panels are calculated 
using the first two principal components. The t-distributions used had 7.46=ν (upper) 
and 4.7=ν (lower). The predicted distributions (solid lines) are chi-square (gaussian), 
and a beta distribution (t). 
 
Figure 3.   Analysis of cluster shape using cumulative distribution plots (a) 2χ  
cumulative distribution plot (43 degrees of freedom). 2χ (43) is the expected distribution 
of distances for normally distributed residuals. (b) Cumulative distance distribution using 
a beta distribution model. A beta distribution of the distances is expected for t-distributed 
residuals.  Inserts in both plots are blow-up views of the central region. 
 
Figure 4.   Q-Q plots for the Mahalanobis squared distances for the gaussian (black) and 
t-distribution (light gray) models. The data used were from same unit as in Figure 1. A 
good model fit is indicated when the plot falls along the slope 1 line. Both axes of all 
plots are in squared distance units.  
 
Figure 5. Failures of EM and new algorithm with simulated data. Plots display 
projections on first two principal components. Left panels: clustering results with regular 
EM (a) and new algorithm (b-c). Right panels: Underlying mixture. Ellipses indicate 2σ 
lines. Note that the while the EM failures are gross, erroneous solutions obtained by the 
new algorithm are nearly equivalent.    
 
Figure 6.   Clustering of multi-unit motor data I. (a) Snapshots of the algorithm progress 
illustrated in the space of the first two principal components (ellipses mark the 2σ lines). 
Top: initialization (10 components). Middle: Intermediate stage (four components). 
Bottom: final (three components representing two units + noise waveforms).  (b) Top: 
Aligned raw data (3000 events). Middle: Classified waveforms. Bottom: ISI histogram 
for the two units and the noise cluster (shown in black). Insert shows the waveform 
templates.  
 
Figure 7.  Clustering of multiunit motor data II. (a) Raw data (3000 events), and its 
projection on the first two principal components. (b) Results of automatic clustering 
algorithm. Insert in right panel shows the learned templates. Ellipses on right mark the 2σ 
lines. Gray cluster consists of random threshold crossings and local field potential 
waveforms. Black cluster includes overlapping waveforms and noise waveforms. 
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