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Abstract—The problem of delay time estimation in biologic
systems is addressed with the focus on practical applicabilit
methods. Four delay time estimators are described: a c
correlation method and three increasingly sophisticated in
pretations of the phase spectrum, ranging from a pointw
interpretation of the phase spectrum in terms of a delay t
Hilbert transform method. The four methods are compa
through simulation studies showing that, in general, the Hilb
transform method performs best. The methods are then use
estimate delay times in three physiological systems: vestib
stimulation, cerebral autoregulation, and human orthost
tremor. In all three cases, the Hilbert transform method yie
the best results, leading in some cases to physiologically m
sensible interpretations of experiments than the other meth
© 2003 Biomedical Engineering Society.
@DOI: 10.1114/1.1617984#

Keywords—Cross-spectral analysis, Hilbert transform, Ves
bular stimulation, Cerebral autoregulation, Orthostatic trem

INTRODUCTION

The analysis of time series measured from biologi
systems poses many methodological challenges. This
ticle addresses the question of delay time estima
from multivariate biological data. Knowing the dela
time between two signals can often help to underst
the physiology of a given system, e.g., the delay ti
can indicate whether a given neural impulse has trave
via a fast reflex loop or via the central nervous system30

The estimation of delay times is not straightforwar
Often the measured system does not just transmit
signal between input and output with a pure time del
but acts as a filter, while no validated parametric mo
of the system is available. Thus, one has to use a n
parametric method to estimate the delay time. The lite
ture on delay time estimation i
large.2,3,6–8,10–12,14–21,26,31,32,36,47,48The proposed method
stem mostly from linear system analysis. Most biologic
systems exhibit some degree of nonlinearity, making
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uncertain whether methods developed for the analysis
linear systems are applicable. Delay times in biologi
systems could also be frequency dependent. Thus
choice of a procedure for delay time estimation in b
logical systems is a methodological challenge.

In this article, we compare four methods for dela
time estimation:~i! Interpreting the lag at which the
cross correlation between input and output is maxima
a delay time,~ii ! interpreting the phase spectrum b
tween input and output at the frequency with maximu
coherency in terms of a delay time,~iii ! interpreting the
phase spectrum in terms of a delay time by fitting
straight line whose slope gives an estimate of the de
and ~iv! a Hilbert transform method that accounts for t
filter properties of the system by correcting the pha
spectrum before fitting a straight line to it. Although th
four proposed methods require no explicit model of t
measured system, they are all based on aa priori as-
sumptions about the structure of the measured syst
~i!–~iii ! assume a ‘‘delay only’’ model, while~iv! only
assumes that the system between input and output
the so-called minimum phase property. Thus from a t
oretical point of view it is relatively easy to assess t
merits of the four methods. However, our aim is
assess their performance from the point of view of a d
analyst who possesses no validated information about
measured system. It is quite certain that some of
assumptions of all the four models are violated to so
degree by empirical systems. The important question
us is how the methods perform under such circu
stances. We compare the methods using simulation s
ies with five different models: a damped stochastic line
oscillator, a stochastic linear oscillator with nonline
input, a nonlinear threshold system, a linear low-pa
filter, and a linear high-pass filter. The four methods a
then applied to three measured biological data sets ta
from experiments on vestibular stimulation, cerebral a
toregulation, and human tremor.

The article is organized as follows: The Methods se
tion gives some mathematical background on cro
spectral analysis and describes the four proposed d
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1424 MÜLLER et al.
estimation methods. Simulations introduces the simu
tion methods used to compare the estimators and rep
the results of our simulations. Applications employs t
four proposed methods for the analysis of measured
from three different biological systems for which dela
time estimation is important for understanding the phy
ology. Finally, in the Discussion section, the results
our analyses of the measured biological data are
cussed in light of the results from the simulation studi

METHODS

In this section, we give the mathematical backgrou
for the delay time estimators that will be compared
this article. We first outline some methods of cros
spectral analysis and then describe the four delay t
estimators that we will use in the rest of the article.

Cross-Spectral Analysis

Mathematical Background.The power spectrum ~or
power spectral density! SX( f ) of a stationary, zero mean
time discrete processX(t), tPZ, is defined as the Fou
rier transform ~FT! of the autocorrelation function
ACX(t):

ACX~t!5^X~ t !X~ t2t!&, tPZ, ~1!

SX~ f !5 (
t52`

`

ACX~t!exp~22p i f t!, ~2!

where ‘‘̂ &’’ denotes expectation andZ is the set of
integers. For Eq.~2! to be well-defined, one has to a
sume that ACX decays fast enough at large lags~Propo-
sition 10.3.1 in Ref. 5!.

Analogously to the univariate case, thecross spectrum
SXY( f ) of two stationary, zero mean, time discrete pr
cessesX(t) andY(t) is defined as the Fourier transfor
of the cross-correlation function CCXY(t)5^X(t)Y(t
2t)& ~Definition 11.6.1. in Ref. 5!:

SXY~ f !5
1

2p (
t52`

`

CCXY~t!exp~22p i f t!

5^X̃~ f !Ỹ* ~ f !&, ~3!

where * denotes complex conjugation andX̃( f ) and
Ỹ( f ) are the normalized discrete Fourier transforms
X(t) and Y(t), respectively.

The coherency spectrumcohXY( f ) is defined as the
normalized modulus of the cross spectrumSXY( f ):
s

a

-

cohXY~ f !5
uSXY~ f !u

ASX~ f !SY~ f !
, ~4!

where SX( f ) and SY( f ) denote the power spectra o
X(t) andY(t), respectively. The coherency is a measu
for linear predictability: if X and Y are linearly related,
cohXY is equal to its maximum value 1; if there is n
linear relationship betweenX andY, cohXY is equal to its
minimum value 0.

The gain describes the frequency-dependent amp
tude transmission from input to output:

GXY~ f !5
uSXY~ f !u
SX~ f !

. ~5!

The phase spectrumFXY( f ) is defined, up to a
modulus of 2p, by the representation

SXY~ f !5uSXY~ f !uexp@ iFXY~ f !#. ~6!

It is the subject of spectral analysis to estimate th
quantities from measured data.

Cross-Spectral Analysis of Measured Data.Empirical
data are usually measured~sampled! at discrete times
t i5 iDt, i 50,...,N21. The estimation of spectra from
given data is confronted with two main problems, va
ance and leakage. The problem of variance is that
straightforward estimator of the power spectrum, the
called periodogram@Eq. ~11!#, is not consistent: with
increasing amount of data, the variance of this pow
spectrum estimator at a given frequency does not
crease. Leakage is an effect arising from the convolut
theorem: the Fourier transform of a finite stretch of da
is the convolution of the Fourier transform of the unde
lying process and the Fourier transform of a windo
function that selects the finite stretch of data. As th
window has sharp edges, its Fourier transform sho
slowly decreasing sidebands, thus transferring pow
from a peak to adjacent frequency bins. There are w
established methods of spectral estimation available
dealing with these two issues.4,5,38

The procedure used here is as follows: Two giv
time seriesx(t i), y(t i), i 50,...,N21, sampled with sam-
pling interval Dt, are first tapered with a window func
tion Wtap( i ) rising from zero to unity and falling back to
zero again:

xtap~ t i !5x~ t i !•Wtap~ i !, i 50,...,N21. ~7!

This reduces the problem of leakage if one uses a w
dow with smooth edges. We use a triangular window,
so-called Bartlett window:
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1425Estimation of Delay Times in Biological Systems
Wtap~ i !512
u~N21!/22 i u

~N21!/2
, i 50,...,N21. ~8!

Then the discrete Fourier transform of the tapered d

x̃~ f !5
1

AN
(
j 50

N21

xtap~ t j !exp~22p i f t j ! ~9!

is computed via the FFT algorithm.37 In what follows,
we assumeN even for ease of notation. The discrete F
is evaluated at frequencies

f j5
j

NDt
, j 50,...,N/2, ~10!

i.e., from f 050 to the Nyquist frequencyf Nyq5 f N/2

52/Dt, which is the maximum frequency that can b
detected using a sampling interval ofDt. The frequency
resolution is 1/(NDt), i.e., the longer the measuremen
the finer the frequency resolution.

From the discrete FTsx̃ and ỹ of the tapered data, th
periodogramsPx and Py are calculated:

Px~ f j !5ux̃~ f j !u2, Py~ f j !5u ỹ~ f j !u2. ~11!

While the expectation valuêPx( f j )& of the periodogram
is the power spectrumSx( f j ), the periodogram is not a
consistent estimator for the spectrum, since its varia
does not decrease with increasing amount of data, w
increasing N, only the frequency resolution become
finer. One can however trade frequency resolution
variance, and there are a number of ways to do this.
procedure is to smooth the periodogram with a smoo
ing window WS(k), k52h,...,h. The window width
2h11 must be chosen such as to yield a good comp
mise between bias and variance: the largerh, the smaller
the variance of the estimate, but the larger the bias.
use a triangular window normalized to sum to unity:

WS~k!5
1

h
2

uku
h2 , k52h,...,h, ~12!

with h chosen such as to yield a sufficient frequen
resolution. ~There are adaptive algorithms for choosi
the window width as well.42! Our estimatorŜx( f j ) for
the spectrumSx( f j ) at frequencyf j is therefore

Ŝx~ f j !5 (
k52h

h

Px~ f j 1k!•WS~k!. ~13!
r

The estimatesŜy and Ŝxy are defined exactly analo
gously, and estimates for coherency, gain, and phase
obtained by plugging these estimates into the respec
defining Eqs.~4!, ~5!, and ~6! ~Chap. 11 in Ref. 5!. The
variance of the estimated phase spectrum is appr
mated by

var@F̂xy~ f j !#'
1

n S 1

cohxy
2 ~ f j !

21D , ~14!

where the effective number of degrees of freedom,n,
depends on the taper window and the smoothing wind
used~Sec. 8.5 in Ref. 4!:

n5
2q2

2

q4
S (

k52h

h

WS
2~k!D 21

, q25
1

N (
t50

N21

Wtap
2 ~ t !,

q45
1

N (
t50

N21

Wtap
4 ~ t !. ~15!

In Eq. ~14!, the variance of the phase spectrum is mon
tonically related to the inverse of the squared coheren
The approximation of Eq.~14! only holds if, compared
to p2, the variance is small~Ref. 4!.

At significance levela, the value

s5A12a2/~n22) ~16!

gives the threshold below which the null hypothesis
zero coherency cannot be rejected. Under this null
pothesis, the phase spectrum is uniformly distributed
the interval@2p,p# ~Ref. 5!.

Stationarity and Linearity.Data from biological systems
are hardly ever stationary. However, cross-spectral an
sis can be applied fruitfully to such systems as long
the underlying input–output relation is time invarian
which is often the case even outside a system’s ste
state. Cross-spectral methods are based on the ass
tion of a linear input–output relation. This assumption
also generally violated to some extent in real life sy
tems. We explore the limits of the linearity assumpti
via simulation studies.

Influence of Observational Noise.Observational noise in-
fluences the phase spectrum only indirectly. Nevert
less, noise is the main reason for some problems
cussed in this article. If the outputy(t) is linearly related
to the inputx(t), the coherency should be unity. How
ever, if observational white noise is added to the outp
the coherency is determined by the ratio of the varian
s2 of the noise and the spectrumSy( f ) of y(t). Within
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1426 MÜLLER et al.
frequency bands where the power of the spectrumSy( f )
is small compared to the variance of the observatio
noise, the coherency approaches zero. Consequently
phase spectrum in these frequency bands correspon
a uniformly distributed random variable and cannot
used for further analysis. This often leads to the situat
that the frequency band where the coherency estima
significant is rather small, although the underlying pr
cesses might be coherent over a broad band. These
siderations can be generalized to coherency estimate
two linearly related processes both covered by obse
tional noise.43

Delay Time Estimation

Cross-spectral analysis is a key ingredient in m
procedures for time delay estimation. We present f
relatively simple estimators: using the lag with maximu
cross correlation as a delay estimate, interpreting
phase spectrum at a single frequency in terms of a de
fitting a straight line to the phase spectrum, and a Hilb
transform method. Apart from these estimators, param
ric models should of course be considered whene
appropriate. However, in this article we assume tha
delay time is to be estimated in a system for which
validated parametric model is known. Note that t
popular parametric ARMA models~Chap. 3 in Ref. 5!
are largely covered by the Hilbert transform method.

In the following, we assume that datax(t i) ~‘‘input’’ !
and y(t i) ~‘‘output’’ ! are sampled from two stationar
processes at timest i5 iDt, i 50,...,N21.

Using the Maximum of the Cross Correlation.Assuming
that y(t) is a time-shifted copy ofx(t), i.e., y(t1d)
5x(t), the delayd can be estimated as the lag at whi
the estimated cross correlation between input and ou
is maximal:

d̂5max
t

uCĈxy~t!u. ~17!

Under certain assumptions, Eq.~17! is an unbiased esti
mate for the delay timed19 @see Figs. 9~F! and 10~F! for
an illustration of the cross correlation function estimat
from empirical data sets#.

Pointwise Interpretation of the Phase Spectrum.This
method, like the following two, is based on an analy
of the phase spectrum between input and output. In g
eral, for every linear system

y~ t !5E
2`

`

dt axy~t!x~ t2t!5~axy!x!~ t !, ~18!
e
to

s

-
r

-

,

-

t

-

the system’s impulse response function axy(t) can be
written as the convolution of three subsystems with s
cific properties:

axy~t!5~delayd!mp!ap!~t!, ~19!

where the first component is a pure delay, mp is a
called minimal phase system, and ap is an all-pass fi
The phase spectrumFxy( f ) is determined solely by the
function axy , since by Eq.~3! and Eq.~18!,

Sxy~ f !5ãxy* ~ f !Sx~ f !, ~20!

and asSx( f ) is real,

Fxy~ f !5argSxy~ f !5arg ãxy* ~ f !. ~21!

If the system consists of a delay only, axy(t) is a delta
distribution at lagd. The Fourier transform of this trans
fer function is

ãxy~ f !5exp~22p i f d!, ~22!

from which it follows that the phase spectrum is
straight line through the origin with the slope given b
the delay timed:

Fxy~ f !52p f d. ~23!

In the more general case where the transfer function
the form of Eq.~19!, the phase spectrum is given by

Fxy~ f !52p f d1arg mp̃* ~ f !1arg ap̃* ~ f !. ~24!

In the pointwise interpretation method, one assume
delay-only model and uses Eq.~23! at a single frequency
to infer a delay time between input and output. From E
~14! it is clear that the frequency at which the coheren
is maximal will yield the smallest error for the dela
time estimate. Consequently, we use that frequency
the estimate:

d̂5F̂xy~ f c!/2p f c , where f c5max
f

coĥxy~ f !

and F̂xy~ f c!P~2p,p#. ~25!

Fitting a Straight Line to the Phase Spectrum.A point-
wise interpretation of the phase spectrum is certai
suboptimal even if the delay-only model holds, since
ignores the information present in the rest of the ph
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1427Estimation of Delay Times in Biological Systems
spectrum. That information can be used by fitting
straight line to a part of the phase spectrum that sho
significant coherency.

The fit can be achieved by a generic least-square
weighted least-squares procedure giving a maxim
likelihood estimate.37 Applying such a procedure is ham
pered by the fact that the phase estimate can show
continuities as it is only defined up to a modulus of 2p.
One remedy for this problem is to use so-called ph
unwrapping algorithms that produce a continuous ph
spectrum.45 However, such algorithms are generally n
robust in the case of a low signal-to-noise ratio. A bet
approach is to use the cosine of the residuals. The co
function is locally quadratic and automatically takes ca
of the periodicity problem.14 Weights are chosen to re
flect the variance of the phase spectrum estimate@Eq.
~14!#. Thus, one defines the objective function

obj~d!5 (
f j PB

coĥ2~ f j !

12coĥ2~ f j !
cos@F̂xy~ f j !22p f jd#,

~26!

whereB is either the full range of available frequenci
with significant coherency or a subset thereof. T
makes it possible, e.g., to restrict the fitting to phy
ologically important frequencies for a given applicatio
The delay time estimate is given by the delay at wh
the objective function is maximal:

d̂5max
d

obj~d!. ~27!

It can be shown that this estimate asymptotically a
proaches the weighed least-squares maximum likelih
method,14,17 @see Figs. 9~E! and 10~E! for an illustration
of the objective function estimated from empirical da
sets#.

Hilbert Transform Method.Looking back at Eq.~24!, it
is clear that one could improve on the method of t
previous section if one could somehow correct the ph
spectrum before fitting a straight line to it. If one cou
subtract the contributions of the minimum phase syst
and the all-pass system, the delay-only model wo
definitely hold, and the fitting procedure just describ
could be applied to linear systems without any reser
tions.

It is generally not possible to correct the phase sp
trum for both the minimum phase contribution and t
all-pass contribution. However, many physical syste
can be modeled as minimum phase systems withou
all-pass component, e.g., as AR models. The Hilb
transform relation links the phase of the transfer funct
r

-

e

of a minimum phase system to the logarithm of t
system’s gain. This relation allows for subtracting t
contribution of the minimum phase component from E
~24!. Note that this application of the Hilbert transform
different from the usual application of this transform
system analysis, which is signal demodulation~see Chap.
7.3 in Ref. 33!.

The Hilbert transform relation for a minimum phas
system asserts that, see Eq.~7.22! in Chap. 7.2 in
Ref. 33:

arg mp̃xy~ f j !5
1

N (
k51,kÞ j

N/2

log Gxy~ f k!S cot
2p~ f j2 f k!

2

1cot
2p~ f j1 f k!

2 D . ~28!

Gxy( f ) denotes the gain of the minimum phase syste
However, the presence of a delay or even of an all-p
filter does not influence the gain, since both a pure de
and an all-pass have constant gain unity. Thus the gai
the minimal phase system is equal to the gain of the to
system, which can be estimated from the data@cf. Eq.

~5!#. This fact allows for an estimate arg mp˜̂xy( f j ) of the
minimal phase using Eq.~28! directly. By the symmetry
properties of the cotangent function, the estimate is
dependent of any constant scaling factor in Gxy( f ). This
feature is important, since in an application where inp
and output are different physical quantities, the choice
units introduces an arbitrary constant scaling in the ga

Analogously to Eqs.~26! and ~27!, an objective func-
tion is defined and maximized to find an estimated̂ for
the delay timed:31

obj~d!5 (
f j PB

coĥ2~ f j !

12coĥ2~ f j !
cos@F̂xy~ f j !2arg mp̂̃xy~ f j !

22p f jd#, ~29!

d̂5max
d

obj~d!. ~30!

The frequency bandB can again be chosen to reflecta
priori information about the system under consideratio
As the Hilbert transform method relaxes the assumpt
of a simple delay-only model, it is the most gener
method proposed here, but it still assumes that the s
tem is linear and that no all-pass filter is active in t
system@see Figs. 9~D! and 10~D! for an illustration of
the objective function estimated from empirical da
sets#.
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1428 MÜLLER et al.
SIMULATIONS

In this section, the four delay estimators describ
above are compared via simulation studies. These si
lation studies allow us to assess the influence of ob
vational noise, of nonlinear influences, and of vario
model types. Furthermore, as the data from our simula
systems are similar to the measured data analyzed in
next section, the simulations also give important hints
to how the four proposed delay estimators perform in
case of measured data.

We first describe five models used in our simulatio
and then present the results of our simulations. All cr
spectra were estimated after tapering the data wit
triangular window @Eq. ~7!# by smoothing the peri-
odograms with a window ofh5100 frequency bins
@Eq. ~13!#.

Systems used for Simulation

We investigate the performance of the four estimat
using simulated data from five systems: three stocha
oscillators, a linear low-pass filter, and a linear high-p
filter. Data are simulated with a virtual sampling fr
quency of 100 Hz for ease of comparison with empiric
data. Since empirical data are usually affected by ad
tive observational noise, we added observational no
with a signal-to-noise ratio@Eq. ~37!# of 1 to all simu-
lated data sets.

Stochastic Linear Oscillator.As a damped stochastic lin
ear oscillator we choose an autoregressive proces
order two~AR@2# process! y(t) driven by Gaussian white
noise with mean zero and unit variance,x(t)
;WN(0,1). Explicitly, the model is

y~ t j !5x~ t j2d!1a1y~ t j 21!1a2y~ t j 22!, ~31!

whered is the delay time. The parametersa1 anda2 are
linked to the periodT and relaxation timet of the os-
cillator as follows:22

a152 cosS 2p

T DexpS 21

t D , a252expS 22

t D . ~32!

Parameters used werea151.969 07 and a25
20.975 31, corresponding toT50.8 s andt50.8 s.

Figure 1 shows the result of cross-spectral analysis
one realization of the AR@2# process.

Stochastic Oscillator with Nonlinear Input.In the previ-
ous section, the inputx(t) of the stochastic oscillato
@Eq. ~31!# was Gaussian white noise. In this section w
investigate the performance of the delay estimators in
case of a stochastic oscillator driven by a ‘‘nonlinea
-
-

e

f

input: while we retain the AR@2# model of Eq.~31!, we
use as inputx thex1 ~location! component of a stochasti
nonlinear van der Pol oscillator46 driven by Gaussian
white noisee(t);WN(0,s2):

ẋ1~ t !5x2~ t !,

ẋ2~ t !5m@12x1~ t !2#x2~ t !2x1~ t !1e~ t !. ~33!

Equation~33! is integrated using the lowest-order Eul
integration scheme with step sizeh due to the presence
of the noise terme.25,41 For our simulations, the para
meters for the van der Pol oscillator arem52, s251,
andh50.1 time steps (h51 ms), leading to a peak at 1
Hz. Parameters for the AR@2# process are againa1

51.969 07 and a2520.975 31, corresponding toT
50.8 s andt50.8 s.

Figure 2 shows the result of cross-spectral analysis
input @x5x1 component of Eq.~33!# and output@y com-
ponent of the AR@2# process, Eq.~31!# for one realiza-
tion. Note the low coherency everywhere except arou
the peak frequency of the input oscillator,;15 Hz,
which accounts for the poor performance of cros
spectral methods for this particular model~cf. Table 1!.

Stochastic Oscillator with Nonlinear Transfer Functio
In this section we study a system that violates the
sumption of a linear transfer function between input a
output. This assumption underlies all four proposed de
estimators. It is important to study the nonlinear ca
since biological systems typically exhibit some degree
nonlinearity.

As a nonlinear stochastic oscillator, we choose
threshold autoregressive process of order t
~SETAR@2#!.44 This process is derived from the AR@2#
process studied so far by introducing a component tha
sensitive to a thresholds:

y~ t j !5x~ t j2d!1a1y~ t j 21!

1H a2
1y~ t j 22! if y~ t j 22!.s,

a2
2y~ t j 22! if y~ t j 22!<s.

~34!

The driving input x(t) is Gaussian white noise:x(t)
;WN(0,1). Parameters used werea151.6, a2

1522.3,
a2

2520.72, ands52.5.
Figure 3 shows the result of cross-spectral analysis

input and output for one realization. The second peak
the power spectrum@Fig. 3~A!# at double the fundamen
tal frequency is a higher harmonic, which is typical f
nonlinear systems.
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FIGURE 1. Cross-spectral analysis of input and output for one realization of the linear stochastic oscillator with Gaussian white
noise as input. „A… Power spectrum of output; „B… coherency „significance threshold, aÄ0.05, indicated by dotted line …; „C…

phase spectrum; „D… gain. Noise level, SNR inÄSNRoutÄ1. No delay. Parameters: a1Ä1.969 07, a2ÄÀ0.975 31.
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Linear Low-Pass Filter.A simple linear low-pass filter is
given by a moving average process of order four~MA @4#
process!:

y~ t j !5m22x~ t j 22!1m21x~ t j 21!1m0x~ t j !1m1x~ t j 11!

1m2x~ t j 12! ~35!

with parametersm225m257/96, m215m151/4, and
m0517/48. The inputx(t) is Gaussian white noise o
unit variance,x(t);WN(0,1).

Figure 4 shows the result of cross-spectral analysis
input and output for one realization, exhibiting the low
pass characteristic in the gain function. The true ph
spectrum is zero due to the symmetric form of Eq.~35!.

Linear High-Pass Filter.A simple linear high-pass filte
can also be implemented as an MA@4# process@Eq. ~35!#
with parametersm225m2527/96, m215m1521/4,
and m0531/48. The inputx(t) is again Gaussian white
noise of unit variance,x(t);WN(0,1).
The result of cross-spectral analysis looks like for t
low-pass filter, but with high and low frequencies r
versed~not shown!.

Simulation Results

Influence of Observation Noise.The influence of obser-
vational noise was assessed using the AR@2# model @Eq.
~31!#. The dataxin(t) and yout(t) used for delay estima
tion were derived from the seriesx(t) and y(t) by add-
ing uncorrelated Gaussian white noisee in ,eout

;WN(0,1):

xin~ t !5x~ t !1cine in~ t !, yout~ t !5y~ t !1couteout~ t !.
~36!

We present our results in terms of the signal-to-no
ratio ~SNR!, which is related to the constantscin andcout

via
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FIGURE 2. Cross-spectral analysis of input and output for one realization of the stochastic oscillator driven by a nonlinear input.
„A… Power spectrum of input „dashed … and output „solid line …; „B… coherency „significance threshold, aÄ0.05, indicated by
dotted line …; „C… phase spectrum; „D… gain. Noise level, SNR inÄSNRoutÄ1. No delay. Parameters: mÄ2, s2Ä1, hÄ0.1 bins, a1
Ä1.969 07, and a2ÄÀ0.975 31.
ur
the
-
ta

00
ata
s

tors

ed
SNRin5
variance~ input signal!

variance~noise!
5

var@x~ t !#

cin
, ~37!

analogously for SNRout. We use SNRs from 0.5~noise
twice as strong as the signal! to infinity ~no noise added!,
which well covers the range of noise levels found in o
applications. For each noise level, 100 realizations of
AR@2# process, each of length 215 samples, are simu
lated. In order to facilitate comparison with the da
section, we assume a virtual sampling frequency of 1
Hz, which means that the length of our simulated d
sets corresponds to;51

2 min. Figure 5 shows the result
of our simulations.

As can be seen, the performance of the estima
depends on both SNRin and SNRout. The bias of the
estimate is most strongly influenced by SNRout, while
the variance of the estimate is more strongly influenc
by SNRin . The ‘‘single frequency’’ method performs
TABLE 1. Comparison of the four delay estimators using the five models. Numbers given are
estimated delays Ástandard deviation in seconds from 100 trials. Signal-to-noise ratio,

SNRinÄSNRoutÄ1. True delay, 0.2 s. Method names abbreviated in column headings.

Model Max. CC Single freq. Line fit Hilbert meth.

AR[2] 0.3760.02 0.3060.14 0.4160.01 0.2460.01
AR[2] nonlin. input 0.2760.03 0.0260.01 0.0860.04 0.0760.09
SETAR[2] 0.2760.01 0.0160.04 0.3460.12 0.1960.07
low-pass 0.2060.01 0.0560.12 0.2060.01 0.1960.01
high-pass 0.2060.01 0.0060.01 0.2060.01 0.2060.01
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FIGURE 3. Cross-spectral analysis of input and output for one realization of the nonlinear stochastic oscillator. „A… Power
spectrum of output; „B… coherency „significance threshold, aÄ0.05, indicated by dotted line …; „C… phase spectrum; „D… gain.
Noise level, SNR inÄSNRoutÄ1. No delay. Parameters: a1Ä1.6, a2

¿ÄÀ2.3, a2
ÀÄÀ0.72, and sÄ2.5.
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worst, as indicated both by the bias and by the la
variance. That method ignores most of the informat
available from the phase spectrum. Figure 6 shows
distribution of delay time estimates with the single fr
quency method for 1000 realizations, SNRin5SNRout

51. The estimates are distributed over a large range
show many outliers. Thus, the single frequency meth
is inappropriate for delay time estimation in the presen
of noise.

In the presence of noise, all four estimators are
ased. However, the bias disappears in the noise-free
for the Hilbert transform method, while the three oth
methods retain a bias~Fig. 5!. This bias is due to the fac
that the damped stochastic oscillator violates a cen
assumption underlying all methods except for the Hilb
transform method: the system does not consist of a p
delay only. The oscillator has a nontrivial transfer fun
tion whose contribution to the phase spectrum has to
taken into account. This is well achieved by the Hilbe
transform method. Figure 7 compares the methods
fitting a straight line to the phase spectrum and the H
bert transform method. As is to be expected, the corr
e

l

tion of the phase spectrum based on Eq.~28! plays a
crucial role in removing the bias of the estimator.

The phase spectrum between inputx(t) and output
y(t) of an AR@2# process can be calculated analytically43

It exhibits a jump from zero top at the resonance fre
quency of the AR@2# oscillator:

F~ f !5arctanS a1 sin~2p f !1a2 sin~4p f !

12a1 cos~2p f !2a2 cos~4p f ! D .

~38!

The theoretically calculated phase spectrum is sho
superimposed on the estimated minimum phase in F
7~D!, showing good agreement.

Comparison of Various Model Types.Table 1 summarizes
the performance of the four delay estimation procedu
using all the five models. The noise level was fixed
SNRin5SNRout51, and a delay of 0.2 s was used. F
each model, 100 realizations were computed.
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FIGURE 4. Cross-spectral analysis of input and output for one realization of the linear low-pass filter. „A… Power spectrum of
output; „B… coherency „significance threshold; aÄ0.05, indicated by dotted line …; „C… phase spectrum; „D… gain. Noise level,
SNRinÄSNRoutÄ1. No delay. Parameters: mÀ2Äm 2Ä7Õ96, mÀ1Äm 1Ä1Õ4, and m 0Ä17Õ48.
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The table shows that the Hilbert transform method
the most versatile of the four delay estimation metho
proposed in this article. Its performance both in terms
bias and of variance is good in four out of five mode
An especially encouraging result is its performance
the case of the SETAR@2# model: despite the fact tha
this model’s transfer function is nonlinear, the Hilbe
transform method gives an almost unbiased delay t
estimate. The relatively poor performance in the case
the stochastic oscillator driven by a nonlinear input~cf.
Fig. 2! is due to the fact that the coherency is significa
only in a small frequency band around the frequency
the driving force ~;15 Hz!, so that in the frequency
region where the transfer function of the AR@2# process
has a large effect on the phase~cf. Fig. 1!, no data are
available.

APPLICATION TO MEASURED DATA

In this section, we estimate delays in three differe
physiological systems using measured data from exp
ments on vestibular stimulation, cerebral autoregulati
and orthostatic tremor.
-

Vestibular Stimulation

In this section we apply the Hilbert transform metho
to a vestibular stimulation experiment described in de
in Ref. 35. In this study, galvanic vestibular stimulatio
serves to modulate the continuous firing level of t
peripheral vestibular afferents. Our objective was to t
the hypothesis that stochastic galvanic vestibular stim
lation can lead to coherent stochastic postural sway.
polar binaural stochastic galvanic vestibular stimulati
was applied to healthy young subjects. Three differ
stochastic vestibular stimulation signals, each with a d
ferent frequency content~0–1, 1–2, and 0–2 Hz!, were
used. Twenty 60 s trials were conducted on each sub
15 stimulation trials~five trials with each stimulation
signal! and five control~no stimulation! trials.35

Postural sway was evaluated by using a force p
form to measure the displacements of the center of p
sure ~COP! under each subject’s feet. We found signi
cant coherency between the stochastic vestibu
stimulation signal and the resulting mediolateral CO
time series in the majority of trials in eight of the nin
subjects tested.35 Furthermore, we investigated the dela
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FIGURE 5. Comparison of the four proposed delay estima-
tors for simulated data covered with various levels of obser-
vational noise „SNRin and SNRout from 0.5 to infinity …. Data
were simulated from an AR †2‡ model †Eq. „31…‡, parameters:
TÄ0.8 s, tÄ0.8 s. All subplots are on the same scale; the
true delay „0.2 s… is indicated by a solid horizontal line. Re-
sults from 100 trials are plotted as mean ÁSD. Symbols: „¿…

cross correlation method; „s… single frequency method „Ã…

straight line fit to phase spectrum; „* … Hilbert transform
method. SD indicated by vertical lines.

FIGURE 6. Histogram showing the distribution of delay time
estimates for the single frequency method, 1000 trials,
SNRinÄSNRoutÄ1. True delay, 0.2 s.
times between the stimulus signal and the coherent p
tural sway by the delay time estimation procedure t
fits a straight line to the phase spectrum, assumin
‘‘delay-only’’ model.

The estimates reported in Ref. 35 result in sign
cantly different delay times for each of the stimulu
signals. The group averages were 1.09 s for the 0–1

FIGURE 7. Comparison of Hilbert transform method to
straight line fit to phase spectrum for a realization of the
AR†2‡ system „TÄ0.8 s, tÄ0.8 s, SNRinÄSNRoutÄ1…. „A…

Gain; „B… coherency „significance threshold, aÄ0.05, indi-
cated by dotted line …. „C… Estimated phase spectrum „circles …

with best-fit straight line „dashed …, corresponding to a delay
of 0.4 s. 95% confidence intervals indicated for every fifth
point. „D… Argument of the transfer function estimated via the
Hilbert transform method, Eq. „28… „solid line … and true func-
tion computed analytically, Eq. „38… „dashed …. „E… Corrected
phase spectrum „circles … and best-fit straight line „dashed …,
corresponding to a delay of 0.23 s. Confidence intervals as
in „C…. „F… Objective function „scaled to maximum 1 … for the
straight line fit „dashed … and for the Hilbert transform
method „solid line …. True delay, 0.2 s, indicated by a solid
vertical line.
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1434 MÜLLER et al.
stimulus, 0.57 s for the 0–2 Hz signal, and 0.27 s for
1–2 Hz stimulus.

For physiological reasons it is expected that the de
between stimulus and response be roughly the sam~a
few hundred ms! for all stimuli. If there were really
different delay times for different stimulus frequencie
one would have to conclude that different nerve fib
are used to transmit signals of different frequenci
which is physiologically absurd. The frequency depe
dency observed could be due to filter properties of
system that cause a nontrivial transfer function. T
quality of the data is good: the SNR is large~around 10!,
and each trial is more than 100 times longer than
expected delay. Thus, the Hilbert transform method co
be used to correct the phase spectrum for the filter pr
erties of the system.

The results of the Hilbert transform delay time es
mation are indeed encouraging. Table 2 reports the
sults for the nine subjects studied. The average estim
delay is 522 ms, which is in the expected range. Whil
small frequency dependency of the delay time estimat
still present, it is much less pronounced than with t
simple delay estimation method. Figure 8 shows the
erage gain for the 0–2 Hz stimulus, subject 3. The g
shows a high-pass characteristic, resulting in a nontri
transfer function. Both the simulations and the results
Table 2 suggest that the influence of the filter proper
of the system on the phase spectrum can be corre
with the Hilbert transform method.

Analysis of Dynamic Cerebral Autoregulation

Cerebral autoregulation~CA! keeps the perfusion in
the brain relatively constant over a wide range of arte
blood pressure~ABP!. Impairment of CA, often linked to
carotid artery stenosis, might increase the risk
ischemic stroke. As CA is a concept rather than a phy
cally measurable quantity, it is not easy to assess.34 Early

TABLE 2. Delays „in ms … for the vestibular stimulation
experiment, estimated with the Hilbert transform method.
Each number is the average of estimates from at least two
trials. „* … Insufficient data. The total average is 522 Á127 ms.

Subject
0–1 Hz
Stimulus

0–2 Hz
Stimulus

1–2 Hz
Stimulus

1 369 422 359
2 622 735 382
3 637 639 501
4 416 699 387
5 679 * 429
6 539 685 321
7 561 679 493
8 449 * 587
9 412 * 534

Average 520 643 444
Std. dev. 113 113 89
-

-
d

d

measurements of static autoregulation have been su
seded by analysis of dynamic CA, following work b
Aaslid et al.1

Through the advent of transcranial Doppler sonog
phy ~TCD!, it is possible to measure cerebral blood flo
velocity ~CBFV! noninvasively with a high tempora
resolution. ABP can also be measured noninvasively w
the same resolution, using finger plethsymography. T
first paradigm for the assessment of dynamic CA was
introduce drops in ABP via release of thigh cuffs a
record the time course of ABP and CBFV. It has be
observed that impaired CA leads to a slower recovery
CBFV following an initial drop, while intact CA leads
to fast recovery with a delay reported in the range
1–2 s.40 Since the thigh cuff technique cannot be us
for all patients and tends to be inconvenient, it would
of advantage to use cross-spectral methods to quan
CA from data recorded completely noninvasively. Usi
this paradigm, a positive phase shift~i.e., CBFV preced-
ing ABP! in the low frequency range~around 0.1 Hz!
has been interpreted as intact CA according to a hi
pass filter model of the CA feedback control system13

Frequencies of 0.1 Hz were either obtained by de
breathing or by analyzing spontaneous oscillations
ABP and CBFV during supine rest over sever
minutes.28,34,49

We compare data from 18 healthy young volunte
and ten older patients with severe~.80%! unilateral
stenosis of the internal carotid artery. Time-courses
ABP ~input! and CBFV ~output! were recorded over a
period of 3–4 min at a sampling frequency of 100 H
with the person resting in a supine position and breath
slowly at a rate of 6/min~0.1 Hz!. These data were
analyzed without any further preprocessing.

Figure 9 illustrates the result of delay time estimati
for one recording from a healthy subject. Table 3 sho

FIGURE 8. Average gain for subject 3 of the vestibular stimu-
lation experiment, 0–2 Hz stimulus.
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1435Estimation of Delay Times in Biological Systems
the results of delay time estimation using the four me
ods proposed. The cross correlation method yield
small negative delay time around260 ms. Both the
‘‘single frequency’’ method which uses the frequency
maximum coherency for each data set to estimate a
lay, and the method of fitting a straight line to the pha
spectrum yield negative delay times around21 s. The

FIGURE 9. Cross-spectral analysis of autoregulation data
from right Doppler of a 28-year-old healthy woman. „A…

Power spectrum of ABP. „B… Power spectrum of CBFV. „C…

Coherency „significance threshold, aÄ0.05, indicated by
dotted line …. „D… Objective function for the Hilbert transform
method. „E… Objective function for the method of fitting a
straight line to the phase spectrum. „F… Cross-correlation
function.
-

standard deviation is higher in the case of the sin
frequency method. The Hilbert transform method yiel
positive delay times around 1 s.

Times in the range of260 ms, as obtained by th
cross correlation method, have been interpreted as d
times in the CA system,9 but physiological consider-
ations yield a different interpretation: Each pulse wa
originates from the heart, and the pulse wave ta
longer to reach the finger, where ABP is recorded, tha
takes to reach the brain, where CBFV is recorded.
deed, the observed delay computed with the cross co
lation method (20.05660.019 s for all persons! matches
well with the propagation speed of 5 m/s for pressu
waves in arteries given in the physiological literature39

Thus, the cross correlation method does not yield
sought-for delay time of the CA system.

As changes in ABP cause changes in CBFV, a phy
ological delay time in the CA system between ABP
input and CBFV as output should be positive. It is to
expected that the phase spectrum obtained through s
tral analysis, which is used both in the single frequen
method and in the method of fitting a straight line to t
phase spectrum, contains information from a delay ti
and from the transfer function of the CA system, sin
the CA system acts as a high-pass filter.13 Thus, the
negative delay times obtained by the two methods m
tioned can be interpreted as physiological delay times
observed using a protocol of stepwise ABP changes, c
ered by the effect of the high-pass filter transfer functio
The higher variance in the case of the single freque
method is due to the fact that the method of fitting
straight line to the phase spectrum uses more informa
from the phase spectrum. The method of fitting a strai
line to the phase spectrum differentiated clearly betwe
between young normal subjects and patients’ affec
sides ~20.56 s vs. 21.38 s, respectively; t test,p
,0.01) and between patients’ affected and contralate
sides~paired Wilcoxon-test,p50.014).

The Hilbert transform method yields positive dela
in the range of 1 s, which are both physiologically mea
ingful in view of the causal relationship between AB
and CBFV and are similar to times observed via s
changes in ABP. Thus, it seems that the Hilbert transfo
TABLE 3. Results of delay time estimation „in s … for the cerebral autoregulation data.
Insufficiently coherent recordings „less than four significantly coherent frequencies in the

range of 0.05–0.14 Hz … were excluded.

Healthy volunteers
n525

Patients, affected
n510

Patients, contralateral
n510

Max. CC 20.0660.01 20.0360.02 20.0760.02
Single freq. 21.3660.47 20.6360.43 21.2360.51

Line fit 21.3860.46 20.5660.37 21.2060.48
Hilbert meth. 0.7660.54 1.2560.54 0.7960.68
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TABLE 4. Results of delay time estimation „absolute values in ms … for left Õright muscle pairs from the orthostatic tremor data. TA,
tibalis anterior „calf …; TS, triceps surae „calf …; L5, trunk muscle at lumbal level „back ….

Patient No. 1: TA
n54

No. 1: TS
n54

No. 1: L5
n54

No. 2: TA
n54

No. 2: TS
n54

No. 2: L5
n54

Max. CC 360 461 060 160 361 060
Single freq. 261 561 060 261 362 661

Line fit 360 561 161 261 462 561
Hilbert meth. 461 461 061 462 362 662
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method can correct for the high-pass filter properties
the CA system, yielding delay times as observed with
invasive thigh cuff technique by analyzing oscillatio
recorded noninvasively. The Hilbert transform method
also able to distinguish patients from normal subjects:
the young normal subjects, the estimated delay time
0.76 s, while the patients’ values on the affected s
~1.25 s! are significantly different~t test, p50.02).
Within the group of patients, the delay on the affect
side differed significantly from the delay on the co
tralateral side~paired Wilcoxon-test,p50.049).

Thus, the Hilbert transform method appears
be a promising tool for the assessment of cereb
autoregulation.

Orthostatic Tremor

Orthostatic tremor~OT! is a relatively rare form of
human tremor that is mainly observed in orthostasis
affected patients. The main characteristics of OT are
high frequency of oscillations of over 15 Hz as com
pared to roughly 5–12 Hz for other tremor forms an
most prominently, the fact that affected muscles all o
the body exhibit highly correlated electromyogra
~EMG! recordings.27,29

There has been some debate on the question of
location of a generator for OT.27 The site of the oscilla-
tion source can presumably be identified through co
parison of delay times between EMG signals from
number of muscles. If the hypothesis is correct that
OT generator is located supraspinally, e.g., in the cor
it should be possible to explain estimated delay tim
between two muscles as the difference of the del
between cortex and first muscle and between cortex
second muscle. If the generator is not located in
cortex, or if there is no single oscillator responsible f
the observed highly coherent oscillations, the propo
explanation of estimated delays should not be possi
We investigate which of the four proposed delay tim
estimators can be employed to answer the question of
location of an OT generator.

EMGs of various muscles were recorded from tw
patients affected by OT. Each recording session was
long ~sampling rate, 3 kHz; standard preprocessing
cording to Ref. 23!. Six EMGs could be recorded simu
e

.

e

s

taneously. Seven sessions were recorded for patient
1, eight sessions for No. 2. We focus on three mus
pairs: left/right tibalis anterior~TA; calf!, left/right tri-
ceps surae~TS; calf!, and left/right trunk muscles at th
lumbal level ~L5; back!. Physiological consideration
predict the following:24 ~1! The delay between left and
right muscles of the same sort should be zero.~2! The
muscles TA and TS are an agonist–antagonist p
meaning that only one of them is activated at any tim
Thus, an oscillation in the calf should consist of one h
period of activation of TA, followed by one half perio
of activation of TS. Accordingly, the delay between T
and TS should be equal to one half tremor period~p
radians!. By ~1!, this should hold no matter whether T
and TS are recorded on the same side of the body o
different sides. An acceptable delay time estimati
method for the explanation of OT data should at le
fulfill conditions ~1! and ~2!.

Table 4 presents the results for all four delay tim
estimators with respect to condition~1!. Table 5 presents
the results for condition~2!. Figure 10 shows as an
example the results of cross-spectral analysis of an E
recording of right TA vs. TS from patient No. 1. Patie
No. 1 has a tremor frequency of roughly 18 Hz. T
power spectra for TA and TS are quite similar, showi
the fundamental frequency and one higher harmonic
which the signals are significantly coherent. The seco
higher harmonic is also present to a lesser extent@cf. Fig.
10~C!#. Patient No. 2 has a tremor frequency of rough

TABLE 5. Results of delay time estimation „absolute values in
ms … for agonist–antagonist calf muscle pair tibalis anterior
„TA… and triceps surae „TS… in the orthostatic tremor data.
Abbreviation of methods as in Table 1. The last line gives the
time of half a tremor period, which is the physiologically

expected delay time.

Patient No. 1: TA vs. TS
n522

No. 2: TA vs. TS
n522

Max. CC 2364 2469
Single freq. 2162 465

Line fit 2466 23611
Hilbert meth. 2763 2568

Half period 28 33
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1437Estimation of Delay Times in Biological Systems
15 Hz. The signals show high coherency up to the fou
higher harmonic~not shown!.

Figure 10 also shows the objective functions for t
Hilbert transform method@Eq. ~29!; Fig. 10~D!# and for
the method of fitting a straight line to the phase spectr
@Eq. ~26!; Fig. 10~E!# as well as the cross correlatio
function @Fig. 10~F!#. These objective functions ar
nearly periodic with a period of one tremor oscillatio
~56 ms!.

FIGURE 10. Cross-spectral analysis of orthostatic tremor
data from patient No. 1, right calf muscle tibalis anterior „TA…

vs. right calf muscle triceps surae „TS…. „A… Power spectrum
of the TA electromyogram; „B… same for TS; „C… coherency
„significance threshold, aÄ0.05, indicated by dotted line …;
„D… objective function for the Hilbert transform method. „E…
Objective function for the method of fitting a straight line to
the phase spectrum. „F… Cross correlation function.
Table 4 shows that all four methods performed qu
well as regards condition~1!. There is hardly any differ-
ence in estimated delay times. The consistent small p
tive delay time between left/right muscle pairs mig
suggest that the tremor source is located off the bo
middle axis, but no physiological conclusions can
drawn at this stage. With respect to condition~2!, Table
5 shows that all four methods performed quite well f
patient No. 1, with the Hilbert transform method yieldin
the estimate closest to the expected delay time an
small variance. The data from patient No. 2 posed pr
lems for all methods. The single frequency method p
formed badly. Again, the Hilbert transform method cam
closest to the expected value and had a smaller varia
than its competitors. Since signal transmission in ner
is affected by the filter properties of the neural pathwa
the results of Table 5 suggest that the Hilbert transfo
method is able to correct for the neural filter propertie
even though the effect is not tremendous. In further
plications to orthostatic tremor data, delay times sho
thus be estimated by the Hilbert transform method.

DISCUSSION

Four delay estimators were compared with the foc
on practical applicability of methods. The cros
correlation method takes the lag at which the cross c
relation between input and output is maximal as a de
time. The other three methods are cross-spectral meth
based on an interpretation of the phase spectrum betw
input and output. The simplest procedure interprets
phase at the single frequency of maximum cohere
directly in terms of a delay. More generally, one can
a straight line to the phase spectrum in order to estim
a delay time. The Hilbert transform method subtracts
effect of a nontrivial transfer function from the phas
spectrum before fitting a straight line.

Through simulation studies the following imag
emerged: In the presence of noise, all four estimat
showed a bias. The bias tended to be smallest for
Hilbert transform method for most model types. In th
presence of a nonlinear transfer function, the Hilb
transform method gave good results. Thus, even tho
cross-spectral analysis is a concept designed for lin
transfer functions, it yields helpful information in th
nonlinear case, too, provided that input and output
significantly coherent~i.e., can be explained to a certa
extent by a linear model! at some frequencies.

The Hilbert transform method contains as a limitin
case the method of fitting a straight line to the pha
spectrum. That method is always superior to the po
wise interpretation of the phase spectrum—the varia
is lower, and often the bias is smaller as well. Thus
pointwise interpretation of the phase spectrum sho
never be used to estimate a delay time. The method
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fitting a straight line to the phase spectrum yields go
results if a ‘‘delay only’’ model holds, but it is suscep
tible to a large bias if that assumption is violated. The
are certainly applications for which the cross-correlat
method performs best. However, apart from the fact t
the Hilbert transform method can correct for a nontriv
transfer function in the system, one can also select
band of frequencies to be used for the fit, while t
cross-correlation method, operating in the time doma
offers no such possibility easily.

A notable exception to the good performance of t
Hilbert transfer method was the case of the oscilla
driven by a nonlinear input. The poor performance of t
method in this case could be explained by the fact t
input and output were only significantly coherent at t
frequency of the driving force, whereas the nontriv
transfer function that the Hilbert transform metho
should correct for, operated at frequencies at which in
and output were not coherent~cf. Fig. 2!. Thus, the
prospects of the Hilbert transform method are best w
signals are coherent over a large frequency region.

The application of the four delay estimators to me
sured data confirmed the results of the simulations.
the vestibular stimulation data, the method of fitting
straight line to the phase spectrum had led to frequen
dependent delay times that were not easy to recon
with the physiology of the experiment. The Hilbert tran
form method led to nearly constant delay times for
stimulus frequencies, thus confirming the influence o
nontrivial transfer function~cf. Fig. 8! on the delay time
estimate. For the cerebral autoregulation data, the cr
correlation method yielded results that could be int
preted physiologically, but were not related to t
sought-for delay time of the autoregulation system. B
the pointwise interpretation of the phase spectrum
the method of fitting a straight line to the phase spectr
yielded negative delay times, while the Hilbert transfo
method, again correcting for a nontrivial transfer fun
tion, led to results that could be interpreted as a phy
ologically meaningful delay time. Furthermore, these d
lay times were significantly different in patients on th
side of carotid artery stenosis as compared to the c
tralateral side or to controls, suggesting that the de
time estimated via the Hilbert transform method could
used to assess the functional state of the cerebral a
regulatory system. Finally, for the orthostatic tremor d
all four proposed methods except for the single f
quency method yielded sensible results, but the Hilb
transform method was somewhat better able to exp
the agonist–antagonist relationship of the calf musc
tibalis anterior and triceps surae than the other metho
This result suggests that in further applications of de
time estimation for orthostatic tremor data, the Hilbe
transform method should be the method of choice.
must be conceded that in the orthostatic tremor data,
-

-

-

-

.

case for the Hilbert transform method is not as strong
in the other two applications, but the method still pe
formed better than its competitors.

In summary, we have shown that the Hilbert tran
form method is a valuable general-purpose nonparam
ric tool for delay time estimation that can be applie
fruitfully to empirical data.
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