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Abstract—The problem of delay time estimation in biological uncertain whether methods developed for the analysis of
systems is addressed with the focus on practical applicability of inear systems are applicable. Delay times in biological

methods. Four delay time estimators are described: a cross
correlation method and three increasingly sophisticated inter- systems could also be frequency dependent. Thus the

pretations of the phase spectrum, ranging from a pointwise ChO_ice of a proqedure for delay_time estimation in bio-
interpretation of the phase spectrum in terms of a delay to a logical systems is a methodological challenge.
Hilbert transform method. The four methods are compared In this article, we compare four methods for delay

through simulation studies showing that, in general, the Hilbert ; (i : ;
transform method performs best. The methods are then used totlme estimation: (i) Interpreting the lag at which the

estimate delay times in three physiological systems: vestibular Cross corr_elatlo__n b_etween _|nput and output is maximal as
stimulation, cerebral autoregulation, and human orthostatic @ delay time,(ii) interpreting the phase spectrum be-
tremor. In all three cases, the Hilbert transform method yields tween input and output at the frequency with maximum

the best results, leading in some cases to physiologically more coherency in terms of a delay timéii) interpreting the
sensible interpretations of experiments than the other methods.phase spectrum in terms of a delay time by fitting a

© 2003 Biomedical Engineering Society. ) ) . .
[DOI: 10.1114/1.1617984 straight line whose slope gives an estimate of the delay,

and(iv) a Hilbert transform method that accounts for the
filter properties of the system by correcting the phase
Keywords—Cross-spectral analysis, Hilbert transform, Vesti- spectrum before fitting a straight line to it. Although the
bular stimulation, Cerebral autoregulation, Orthostatic tremor. ¢4, proposed methods require no explicit model of the
measured system, they are all based oa priori as-
sumptions about the structure of the measured system:
| (i)—(iii) assume a “delay only” model, whilgiv) only

The analysis of time series measured from biologica hat th b i d h
systems poses many methodological challenges. This ar-2SSUMes that the system between input and output has

ticle addresses the question of delay time estimation the .so-callgd minimum phase property. Thus from a the-
from multivariate biological data. Knowing the delay ©Oretical point of view it is relatively easy to assess the
time between two signals can often help to understand Merits of the four methods. However, our aim is to
the physiology of a given system, e.g., the delay time 2SS€SS their performance from the point of view of a data
can indicate whether a given neural impulse has traveled@1alyst who possesses no validated information about the
via a fast reflex loop or via the central nervous syst8m, Measured system. It is quite certain that some of the
The estimation of delay times is not straightforward. assumptions of_ QII the four models_ are violated to some
Often the measured system does not just transmit thed€gree by empirical systems. The important question for
signal between input and output with a pure time delay, US 1S how the methods perform under such circum-

but acts as a filter, while no validated parametric model Stances. We compare the methods using simulation stud-
of the system is available. Thus, one has to use a non-1€S with five different models: a damped stochastic linear

parametric method to estimate the delay time. The litera- oscillator, a stochastic linear oscillator with nonlinear
ture on delay time estimation is input, a nonlinear threshold system, a linear low-pass
Iarge.2'3'6‘8'10‘12'14‘21'26'31*32'36'47“?% proposed methods filter, and a linear high-pass filter. The four methods are
stem mostly from linear system analysis. Most biological then applied to three measured biological data sets taken

toregulation, and human tremor.

Address correspondence to J. Timmer, Center for Data Analysis and The_ article is orgamzed as_ follows: The Methods sec-
Modeling, University of Freiburg, Eckerstr. 1, 79104 Freiburg, Ger- tiOn gives some mathematical background on cross-
many. Electronic mail: jeti@fdm.uni-freiburg.de spectral analysis and describes the four proposed delay
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estimation methods. Simulations introduces the simula- |Suy(F)]
tion methods used to compare the estimators and reports cohyy(f )= L, (4)
the results of our simulations. Applications employs the VSx(f)Sy(f)

four proposed methods for the analysis of measured data

from three different biological systems for which delay where Sy(f) and Sy(f) denote the power spectra of
time estimation is important for understanding the physi- X(t) andY(t), respectively. The coherency is a measure
ology. Finally, in the Discussion section, the results of for linear predictability: if X and Y are linearly related,
our analyses of the measured biological data are dis-COhy is equal to its maximum value 1; if there is no

cussed in light of the results from the simulation studies. linear relationship betweex and, cohyy is equal to its
minimum value 0.

The gain describes the frequency-dependent ampli-

tude transmission from input to output:
METHODS

In this section, we give the mathematical background Gl )= |Sxv(F)]
for the delay time estimators that will be compared in XY S(f) -
this article. We first outline some methods of cross-

spectral analysis and then describe the four delay time The phase spectrum®y(f) is defined, up to a
estimators that we will use in the rest of the article. modulus of 2r, by the representation

©)

f)= f)lexgdidyy(f)]. 6
Cross-Spectral Analysis S 1) =18l Flexii Pyl F)] ©
It is the subject of spectral analysis to estimate these

Mathematical Backgroundihe power spectrum (or quantities from measured data.

power spectral densitysy(f ) of a stationary, zero mean,
time discrete procesX(t), te Z, is defined as the Fou-
rier transform (FT) of the autocorrelation function
ACy(7):

Cross-Spectral Analysis of Measured Datmpirical
data are usually measurgdampled at discrete times
ti=iAt, i=0,...N—1. The estimation of spectra from
given data is confronted with two main problems, vari-
ance and leakage. The problem of variance is that the
straightforward estimator of the power spectrum, the so-
” called periodogran{Eqg. (11)], is not consistent: with

Sx(f)= :2_00 ACx(T)exp(—2mif 7), ) increasing amount of data, the variance of this power
. spectrum estimator at a given frequency does not de-
crease. Leakage is an effect arising from the convolution
theorem: the Fourier transform of a finite stretch of data
is the convolution of the Fourier transform of the under-
lying process and the Fourier transform of a window
function that selects the finite stretch of data. As this
window has sharp edges, its Fourier transform shows
slowly decreasing sidebands, thus transferring power
from a peak to adjacent frequency bins. There are well-
established methods of spectral estimation available for
dealing with these two issués:®®

The procedure used here is as follows: Two given
time seriex(t;), y(t;), i=0,...N—1, sampled with sam-
pling interval At, are first tapered with a window func-
tion Wi(i) rising from zero to unity and falling back to

AC(7T)=(X(D)X(t— 1)), TeZ, (D)

where “()" denotes expectation an& is the set of
integers. For Eq(2) to be well-defined, one has to as-
sume that AG decays fast enough at large la@&opo-
sition 10.3.1 in Ref. b

Analogously to the univariate case, tb®ss spectrum
Sxy(f) of two stationary, zero mean, time discrete pro-
cessesX(t) andY(t) is defined as the Fourier transform
of the cross-correlation function GQ(7)=(X(t)Y(t
— 7)) (Definition 11.6.1. in Ref. B

1 - .
Sxy(f)= ETZOC CCyy(T)exp —2mif 7)

=(X(f)Y* (1)), (3 zero again:
where * denotes complex conjugation ar(f) and X 1) = X(1;) - Wigi), 1=0,..N—1. (7
Y(f) are the normalized discrete Fourier transforms of
X(t) and Y(t), respectively. This reduces the problem of leakage if one uses a win-

The coherency spectrunsohyy(f) is defined as the  dow with smooth edges. We use a triangular window, the
normalized modulus of the cross spectr@yy(f): so-called Bartlett window:
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[(N=1)/2—i] The estimatesS, and S,, are defined exactly analo-
- (N=1)/2 i=0,.N=1. (8 gously, and estimates for coherency, gain, and phase are
obtained by plugging these estimates into the respective
defining Egs.(4), (5), and(6) (Chap. 11 in Ref. b The
variance of the estimated phase spectrum is approxi-
mated by

Wigfi)=1

Then the discrete Fourier transform of the tapered data

1 N—-1
7((f)=\/—_z Xeapl 1)) €XQ( — 2 ft) (9) i 1/ 1
N j=0 Val{q)xy(fj)]%;(m—]-), (14
AN

is computed via the FFT algorith.In what follows,

we assumeN even for ease of notation. The discrete FT Where the effective number of degrees of freedom,
is evaluated at frequencies depends on the taper window and the smoothing window

used(Sec. 8.5 in Ref. %

J . 2/ h ~1 N-1
f.=——, j=0,..N/2, (10 2493 1
17 NAt v=-| 2 WEK) | dpmg 2 W),
Qs \ k== t=0
i.e., from fo=0 to the Nyquist frequencyfyy,=fn. N1
=2/At, which is the maximum frequency that can be _i
detected using a sampling interval &f. The frequency q“_N Z‘o Wﬁa"(t)' (19

resolution is 1/NAt), i.e., the longer the measurement,
the finer the frequency resolution.

From the discrete FT% andVy of the tapered data, the
periodogramsP, and P, are calculated:

In Eqg. (14), the variance of the phase spectrum is mono-
tonically related to the inverse of the squared coherency.
The approximation of Eq(14) only holds if, compared

to 7%, the variance is smallRef. 4.

P =IR(F)I%  Py(f)=[9(f)]% (11 At significance levela, the value
While the expectation valugP,(f;)) of the periodogram s=y1-a?""? (16)

is the power spectrung,(f;), the periodogram is not a

consistent estimator for the spectrum, since its variance gives the threshold below which the null hypothesis of
does not decrease with increasing amount of data, with zero coherency cannot be rejected. Under this null hy-
increasing N, only the frequency resolution becomes pothesis, the phase spectrum is uniformly distributed on
finer. One can however trade frequency resolution for the interval[—, 7] (Ref. 5.

variance, and there are a number of ways to do this. Our

procedure is to smooth the periodogram with a smooth- Stationarity and LinearityData from biological systems
ing window Wg(k), k=—h,....,h. The window width are hardly ever stationary. However, cross-spectral analy-
2h+1 must be chosen such as to yield a good compro- sis can be applied fruitfully to such systems as long as
mise between bias and variance: the ladgethe smaller  the underlying input—output relation is time invariant,
the variance of the estimate, but the larger the bias. We which is often the case even outside a system’s steady

use a triangular window normalized to sum to unity: state. Cross-spectral methods are based on the assump-
tion of a linear input—output relation. This assumption is
1 |K| also generally violated to some extent in real life sys-
Wg(k)= e k=-—h,...,h, (12 tems. We explore the limits of the linearity assumption

via simulation studies.

with h chosen such as to yield a sufficient frequency Influence of Observational Nois®bservational noise in-
resolution. (There are adaptive algorithms for choosing fluences the phase spectrum only indirectly. Neverthe-

the window width as welt?) Our estimatorS((fj) for less, noise is the main reason for some problems dis-
the spectrun5,(f;) at frequencyf; is therefore cussed in this article. If the outpy(t) is linearly related
to the inputx(t), the coherency should be unity. How-
h ever, if observational white noise is added to the output,
& _ the coherency is determined by the ratio of the variance
f)= Py (fiii) - Wg(k). 13
S(f) k;h 10 We(k) 3 o? of the noise and the spectrugj(f) of y(t). Within
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frequency bands where the power of the spect&y(f ) the system’s impulse response functiog(a) can be

is small compared to the variance of the observational written as the convolution of three subsystems with spe-
noise, the coherency approaches zero. Consequently, theific properties:

phase spectrum in these frequency bands corresponds to
a uniformly distributed random variable and cannot be
used for further analysis. This often leads to the situation
that the frequency band where the coherency estimate is ) ) )
significant is rather small, although the underlying pro- where th_e_flrst component is a pure ‘?'e'ay' mp IS a So-
cesses might be coherent over a broad band. These cont@lléd minimal phase system, and ap is an all-pass filter.
siderations can be generalized to coherency estimates for! '€ Phase spectrur,(f) is determined solely by the
two linearly related processes both covered by observa-Unction gy, since by Eq.(3) and Eq.(18),

tional noise™®

ay(7) = (delay;xmpxap)(7), 19

Siy(F) =35 (F)S(T), (20

Delay Time Estimation and asS,(f) is real,

Cross-spectral analysis is a key ingredient in most
procedures for time delay estimation. We present four D, (f)=argS(f )=arg~a*(y(f ). (21
relatively simple estimators: using the lag with maximum

cross correlation as a delay estimat_e, interpreting the ¢ the system consists of a delay only, &) is a delta
phase spectrum at a single frequency in terms of a delay, yisribution at lags. The Fourier transform of this trans-
fitting a straight line to the phase spectrum, and a Hilbert ¢, f,nction is

transform method. Apart from these estimators, paramet-
ric models should of course be considered whenever
appropriate. However, in this article we assume that a
delay time is to be estimated in a system for which no
validated parametric model is known. Note that the from which it follows that the phase spectrum is a
popular parametric ARMA modeléChap. 3 in Ref. b straight line through the origin with the slope given by
are largely covered by the Hilbert transform method. the delay times:

In the following, we assume that dat#t;) (“input” )
and y(t;) (“out_put”) are ;ampled from two stationary D, (f)=27f 5. 23)
processes at times=iAt, i=0,...N—1.

a.,(f)=exp(—2mifs), (22

In the more general case where the transfer function has

Using the Maximum of the Cross Correlatiohssuming =
the form of Eq.(19), the phase spectrum is given by

that y(t) is a time-shifted copy ok(t), i.e., y(t+ )
=Xx(t), the delayé can be estimated as the lag at which
the estimated cross correlation between input and output O, (f)=27mfo+ argmp (f)+argap (f). (24
is maximal:

In the pointwise interpretation method, one assumes a
3= maAEEXy( . (17) del_ay-only mode_l and uses E(t_23) at a single frequency
r to infer a delay time between input and output. From Eq.
(14) it is clear that the frequency at which the coherency
is maximal will yield the smallest error for the delay
time estimate. Consequently, we use that frequency in
d the estimate:

Under certain assumptions, E@.7) is an unbiased esti-
mate for the delay tim&'° [see Figs. &) and 1GF) for
an illustration of the cross correlation function estimate
from empirical data sefs

5=, (fo)/2mf., where f.=maxcoh(f)
Pointwise Interpretation of the Phase Spectrdrhis f
method, like the following two, is based on an analysis - B
of the phase spectrum between input and output. In gen- and Pyy(fc) & (=, 7]. 29

eral, for every linear system . ) ) )
Fitting a Straight Line to the Phase Spectrufmpoint-

wise interpretation of the phase spectrum is certainly

t ZJW d X(t—7)= (2. x)(1), 18 suboptimal even if the delay-only model holds, since it
y® —o 73X )= (B X)) (18 ignores the information present in the rest of the phase
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spectrum. That information can be used by fitting a

1427

of a minimum phase system to the logarithm of the

straight line to a part of the phase spectrum that showssystem’s gain. This relation allows for subtracting the

significant coherency.

contribution of the minimum phase component from Eg.

The fit can be achieved by a generic least-squares or(24). Note that this application of the Hilbert transform is
weighted least-squares procedure giving a maximum different from the usual application of this transform in

likelihood estimate” Applying such a procedure is ham-

system analysis, which is signal demodulatisee Chap.

pered by the fact that the phase estimate can show dis-7.3 in Ref. 33.

continuities as it is only defined up to a modulus of.2

The Hilbert transform relation for a minimum phase

One remedy for this problem is to use so-called phase system asserts that, see E.22 in Chap. 7.2 in
unwrapping algorithms that produce a continuous phaseRef. 33:

spectrunf®® However, such algorithms are generally not
robust in the case of a low signal-to-noise ratio. A better

N/2

approach is to use the cosine of the residuals. The cosine 1 2m(fi—fi)
function is locally quadratic and automatically takes care a9 mgy(f =N Nk %“m 109 Gyy(T1)| cot 2

of the periodicity problent? Weights are chosen to re-

flect the variance of the phase spectrum estinj&g. +C0t27"(fi+fk) _ (28)
(14)]. Thus, one defines the objective function 2

obj(8)= 2, Lcos{@pxy(f) 2mf; 4],
fiB 1—col?(f))

(26)

whereB is either the full range of available frequencies
with significant coherency or a subset thereof. This
makes it possible, e.g., to restrict the fitting to physi-
ologically important frequencies for a given application.
The delay time estimate is given by the delay at which
the objective function is maximal;

5= maxobj( ). (27
s

It can be shown that this estimate asymptotically ap-

proaches the weighed least-squares maximum likelihood

method!*!’ [see Figs. &) and 1QE) for an illustration
of the objective function estimated from empirical data

G,y(f) denotes the gain of the minimum phase system.
However, the presence of a delay or even of an all-pass
filter does not influence the gain, since both a pure delay
and an all-pass have constant gain unity. Thus the gain of
the minimal phase system is equal to the gain of the total
system, which can be estimated fgr_n\the dath Eq.

(5)]. This fact allows for an estimate arggpf;) of the
minimal phase using Eq28) directly. By the symmetry
properties of the cotangent function, the estimate is in-
dependent of any constant scaling factor ig,(&). This
feature is important, since in an application where input
and output are different physical quantities, the choice of
units introduces an arbitrary constant scaling in the gain.
Analogously to Egqs(26) and (27), an objective func-
tion is defined and maximized to find an estimatdor
the delay times:®!

Ccot?(f))
—)cos{@xy(f i) —argmp,(f))

>

obj(5) =

setd. fieB 1—col?(f

Hilbert Transform MethodLooking back at Eq(24), it —2mf;é], (29
is clear that one could improve on the method of the

previous section if one could somehow correct the phase A )

spectrum before fitting a straight line to it. If one could 6= m§X°bl( 9). (30

subtract the contributions of the minimum phase system
and the all-pass system, the delay-only model would
definitely hold, and the fitting procedure just described The frequency ban@ can again be chosen to reflest
could be applied to linear systems without any reserva- priori information about the system under consideration.
tions. As the Hilbert transform method relaxes the assumption
It is generally not possible to correct the phase spec- of a simple delay-only model, it is the most general
trum for both the minimum phase contribution and the method proposed here, but it still assumes that the sys-
all-pass contribution. However, many physical systems tem is linear and that no all-pass filter is active in the
can be modeled as minimum phase systems without ansystem[see Figs. @©) and 1@D) for an illustration of
all-pass component, e.g., as AR models. The Hilbert the objective function estimated from empirical data
transform relation links the phase of the transfer function setd.
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SIMULATIONS input: while we retain the ARR] model of Eq.(31), we

use as inpuk the x; (location component of a stochastic

In this section, the four delay estimators described pgnlinear van der Pol oscillatsr driven by Gaussian
above are compared via simulation studies. These simu-hite noisee(t) ~WN(0,02):

lation studies allow us to assess the influence of obser-

vational noise, of nonlinear influences, and of various

model types. Furthermore, as the data from our simulated X1 () =x,(t),

systems are similar to the measured data analyzed in the

next section, the simulations also give important hints as .

to how the four proposed delay estimators perform in the Xo(t) = u[1=X1(1)?xo() =xa(D) +€(t).  (33)
case of measured data.

We first describe five models used in our simulations Equation(33) is integrated using the lowest-order Euler

and then present the redsultfs of our §|mulz?1t|or:js. Al c_rﬁss integration scheme with step sitedue to the presence
spectra were estimated after tapering the data With ¢ o noise termeZ5* For our simulations, the para-

triangular window [Eq. (7)] by smoothing the peri-  \ o10rs for the van der Pol oscillator are=2, o2=1,
odograms with a window ofh=100 frequency bins andh=0.1 time stepsk{=1 ms), leading to a peak at 15

[Eq. (13)] Hz. Parameters for the AR] process are agaim;
) ) =1.96907 anda,=—0.97531, corresponding tar
Systems used for Simulation —0.8s andr=0.8s.

We investigate the performance of the four estimators ~ Figure 2 shows the result of cross-spectral analysis of
using simulated data from five systems: three stochasticiNPut[x=X; component of Eq(33)] and outpufy com-
oscillators, a linear low-pass filter, and a linear high-pass Ponent of the ARR] process, Eq(31)] for one realiza-
filter. Data are simulated with a virtual sampling fre- tion. Note the low coherency everywhere except around
quency of 100 Hz for ease of comparison with empirical the peak frequency of the input oscillator;15 Hz,
data. Since empirical data are usually affected by addi- Which accounts for the poor performance of cross-
tive observational noise, we added observational noise SPectral methods for this particular modef. Table 1.
with a signal-to-noise rati¢Eq. (37)] of 1 to all simu-

lated data sets. Stochastic Oscillator with Nonlinear Transfer Function.
o ] o In this section we study a system that violates the as-
Stochastic Linear OscillatoAs a damped stochastic lin-  symption of a linear transfer function between input and
ear oscillator we choose an autoregressive process Ofgytpyt. This assumption underlies all four proposed delay
order two(AR[2] procespy(t) driven by Gaussian white  egtimators. It is important to study the nonlinear case

noise with mean zero and unit variance(t) since biological systems typically exhibit some degree of
~WN(0,1). Explicitly, the model is nonlinearity.

As a nonlinear stochastic oscillator, we choose a

y(t)=x(tj— o) +ayy(tj_1) +axy(tj_»), (31 threshold autoregressive process of order two

(SETAR2]).** This process is derived from the AR
whereé is the delay time. The parameteag anda, are process studied so far by introducing a component that is

linked to the periodT and relaxation timer of the os- sensitive to a threshold
cillator as follows??
2 1 9 y(t) =x(t;— o) +ayy(tj_1)
a;=2co08 —|expg —|, a,=—expg — 32 .
: 5( T p( o) e p( ) 32 a3yt o) i Yt o)>s,

- : (34
a,y(ti_,) if y(tj_,)<s.
Parameters used werea;=1.96907 and a,= 2Y(lj-2 Y{tj—2
—0.97531, corresponding 6=0.8 s andr=0.8s.

Figure 1 shows the result of cross-spectral analysis of The driving input x(t) is Gaussian white noisex(t)

one realization of the AR] process. ~WN(0,1). Parameters used wesg=1.6, aj = —2.3,
a, =—0.72, ands=2.5.
Stochastic Oscillator with Nonlinear Input the previ- Figure 3 shows the result of cross-spectral analysis of

ous section, the inpux(t) of the stochastic oscillator input and output for one realization. The second peak in
[Eg. (3)] was Gaussian white noise. In this section we the power spectrurfiFig. 3(A)] at double the fundamen-
investigate the performance of the delay estimators in thetal frequency is a higher harmonic, which is typical for
case of a stochastic oscillator driven by a “nonlinear” nonlinear systems.
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FIGURE 1. Cross-spectral analysis of input and output for one realization of the linear stochastic oscillator with Gaussian white
noise as input. (A) Power spectrum of output; (B) coherency (significance threshold, a=0.05, indicated by dotted line ); (C)
phase spectrum; (D) gain. Noise level, SNR ;,=SNR,,=1. No delay. Parameters: a,;=1.969 07, a,=—0.975 31.

Linear Low-Pass FilterA simple linear low-pass filter is The result of cross-spectral analysis looks like for the
given by a moving average process of order fOMA[4] low-pass filter, but with high and low frequencies re-
process versed(not shown.

J=m_ o)+ mo Lq)+ 0+ i . :
Y(t) =m_X(t;_2) +m_X(tj 1) +mMeX(t;) +myx(tj, 1) Simulation Results

+MoX(t) ) (39

Influence of Observation Nois€he influence of obser-
vational noise was assessed using thd ZZRnodel [Eq.
(31)]. The datax;,(t) andy,,(t) used for delay estima-
tion were derived from the seriegt) andy(t) by add-
ing uncorrelated Gaussian white noise,, €qyt

with parametersm_,=m,=7/96, m_,;=m;=1/4, and
my=17/48. The inputx(t) is Gaussian white noise of
unit variance x(t)~WN(0,1).

Figure 4 shows the result of cross-spectral analysis of

input and output for one realization, exhibiting the low- ~WN(0.1):
pass characteristic in the gain function. The true phase
spectrum is zero due to the symmetric form of E8p). X (D) =X(D)+ Crnein(t), Yoult)=Y(1)+ Cop€oult)-

36)

Linear High-Pass FilterA simple linear high-pass filter

can also be implemented as an MAprocesqEq. (35)]

with parametersm_,=m,=—7/96, m_;=m;=—1/4, We present our results in terms of the signal-to-noise
and my=31/48. The inpuix(t) is again Gaussian white ratio (SNR), which is related to the constantg andc,,
noise of unit variancex(t)~WN(0,1). via
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FIGURE 2. Cross-spectral analysis of input and output for one realization of the stochastic oscillator driven by a nonlinear input.

(A) Power spectrum of input (dashed) and output (solid line ); (B) coherency (significance threshold, @=0.05, indicated by
dotted line ); (C) phase spectrum; (D) gain. Noise level, SNR ;,=SNR,,=1. No delay. Parameters: u=2, ¢?=1, h=0.1bins, a,
=1.969 07, and a,=—0.975 31.

variancginput signal  vafx(t)] section, we assume a virtual sampling frequency of 100
SNR,= = » (37 Hz, which means that the length of our simulated data
sets corresponds te’55 min. Figure 5 shows the results

analogously for SNR,. We use SNRs from 0.Bnoise of our simulations.

twice as strong as the sigiab infinity (no noise addex As can be seen, the performance of the estimators
which well covers the range of noise levels found in our depends on both SNRand SNR. The bias of the
applications. For each noise level, 100 realizations of the estimate is most strongly influenced by SNR while
AR[2] process, each of length'2samples, are simu- the variance of the estimate is more strongly influenced
lated. In order to facilitate comparison with the data by SNR,. The “single frequency” method performs

variancénoise ¢,

TABLE 1. Comparison of the four delay estimators using the five models. Numbers given are
estimated delays *standard deviation in seconds from 100 trials. Signal-to-noise ratio,
SNR;,=SNR,;=1. True delay, 0.2 s. Method names abbreviated in column headings.

Model Max. CC Single freq. Line fit Hilbert meth.
AR[2] 0.37+0.02 0.30+0.14 0.41+0.01 0.24+0.01
AR[2] nonlin. input 0.27+0.03 0.02+0.01 0.08+0.04 0.07+0.09
SETAR[2] 0.27+0.01 0.01+0.04 0.34+0.12 0.19+0.07
low-pass 0.20+0.01 0.05*0.12 0.20+0.01 0.19+0.01

high-pass 0.20+0.01 0.00x0.01 0.20x0.01 0.20x0.01
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FIGURE 3. Cross-spectral analysis of input and output for one realization of the nonlinear stochastic oscillator. (A) Power

spectrum of output; (B) coherency (significance threshold, «=0.05, indicated by dotted line ); (C) phase spectrum; (D) gain.
Noise level, SNR ;,=SNR,,=1. No delay. Parameters: a;=1.6, aj=—2.3, a,=—0.72, and s=2.5.

worst, as indicated both by the bias and by the large tion of the phase spectrum based on E2B) plays a
variance. That method ignores most of the information crucial role in removing the bias of the estimator.
available from the phase spectrum. Figure 6 shows the The phase spectrum between inpyt) and output
distribution of delay time estimates with the single fre- y(t) of an AR2] process can be calculated analytic4fty.
quency method for 1000 realizations, SNRSNR,; It exhibits a jump from zero tar at the resonance fre-
=1. The estimates are distributed over a large range andquency of the AR2] oscillator:

show many outliers. Thus, the single frequency method

is inappropriate for delay time estimation in the presence

of noise. a, sin(2nf)+a,sin(4xf)
In the presence of noise, all four estimators are bi- ~ ®(f)=arcta 1—a, cos2nf)—a,coddnf))
ased. However, the bias disappears in the noise-free case (38)

for the Hilbert transform method, while the three other

methods retain a bia#ig. 5). This bias is due to the fact

that the damped stochastic oscillator violates a central The theoretically calculated phase spectrum is shown
assumption underlying all methods except for the Hilbert superimposed on the estimated minimum phase in Fig.
transform method: the system does not consist of a pure7(D), showing good agreement.

delay only. The oscillator has a nontrivial transfer func-

tion whose contribution to the phase spectrum has to be Comparison of Various Model TypeRable 1 summarizes
taken into account. This is well achieved by the Hilbert the performance of the four delay estimation procedures
transform method. Figure 7 compares the methods of using all the five models. The noise level was fixed to
fitting a straight line to the phase spectrum and the Hil- SNR,,=SNR,,=1, and a delay of 0.2 s was used. For
bert transform method. As is to be expected, the correc- each model, 100 realizations were computed.
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The table shows that the Hilbert transform method is Vestibular Stimulation
the most versatile of the four delay estimation methods

proposed in this article. Its performance both in terms of i , ) k ) . .
bias and of variance is good in four out of five models to a vestibular stimulation experiment described in detall

An especially encouraging result is its performance in in Ref. 35. In this study, galvanic vestibular stimulation
the case of the SETAR] model: despite the fact that serves to modulate the continuous firing level of the
this model's transfer function is nonlinear, the Hilbert PeriPheral vestibular afferents. Our objective was to test
transform method gives an almost unbiased delay timethe, hypothesis that stochastic galva.nlc vestibular stimu-
estimate. The relatively poor performance in the case of lation can lead to coherent stochastic postural sway. Bi-
the stochastic oscillator driven by a nonlinear injett polar binaural stochastic galvanic vestibular stimulation
Fig. 2 is due to the fact that the coherency is significant Was applied to healthy young subjects. Three different
only in a small frequency band around the frequency of stochastic vestibular stimulation signals, each with a dif-
the driving force (~15 H2), so that in the frequency erent frequency contend-1, 1-2, and 0-2 Hzwere
region where the transfer function of the I} process used. Twenty 60 s trials were conducted on each subject,

has a large effect on the phags. Fig. 1), no data are 15 stimulation trials(five trials with each stimulation
available. ’ signa) and five control(no stimulation trials 3°

Postural sway was evaluated by using a force plat-

APPLICATION TO MEASURED DATA form to measure the displacements of the center of pres-
sure (COP under each subject’s feet. We found signifi-

In this section, we estimate delays in three different cant coherency between the stochastic vestibular
physiological systems using measured data from experi- stimulation signal and the resulting mediolateral COP
ments on vestibular stimulation, cerebral autoregulation, time series in the majority of trials in eight of the nine
and orthostatic tremor. subjects testetf. Furthermore, we investigated the delay

In this section we apply the Hilbert transform method
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FIGURE 7. Comparison of Hilbert transform method to
straight line fit to phase spectrum for a realization of the
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Gain; (B) coherency (significance threshold,
cated by dotted line ). (C) Estimated phase spectrum
with best-fit straight line
of 0.4 s. 95% confidence intervals indicated for every fifth
point. (D) Argument of the transfer function estimated via the
Hilbert transform method, Eq.

tion computed analytically, Eq.
phase spectrum (circles ) and best-fit straight line
corresponding to a delay of 0.23 s. Confidence intervals as
in (C). (F) Objective function
straight line fit

(T=08s, 7=0.8s, SNR;;=SNR,,=1).
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estimates for the single frequency method, 1000 trials,
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times between the stimulus signal and the coherent pos-
tural sway by the delay time estimation procedure that
fits a straight line to the phase spectrum, assuming a
“delay-only” model.

The estimates reported in Ref. 35 result in signifi-
cantly different delay times for each of the stimulus
signals. The group averages were 1.09 s for the 0—1 Hz
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TABLE 2. Delays (in ms) for the vestibular stimulation 0.35
experiment, estimated with the Hilbert transform method.
Each number is the average of estimates from at least two 03k
trials. (*) Insufficient data. The total average is 522 *127 ms.
0-1 Hz 0-2 Hz 1-2 Hz 0251
Subject Stimulus Stimulus Stimulus
1 369 422 359 3%
2 622 735 382 E
3 637 639 501 Cosp
4 416 699 387
5 679 * 429 01f
6 539 685 321
7 561 679 493 oosk
8 449 * 587
9 412 * 534
Average 520 643 444 % oz 04 06 o8 1 2 14 15 8 2
Std. dev. 113 113 89 frequency (Hz)

FIGURE 8. Average gain for subject 3 of the vestibular stimu-
lation experiment, 0—2 Hz stimulus.
stimulus, 0.57 s for the 0—2 Hz signal, and 0.27 s for the
1-2 Hz stimulus.

For physiological reasons it is expected that the delay
between stimulus and response be roughly the s@ne
few hundred mp for all stimuli. If there were really
different delay times for different stimulus frequencies,
one would have to conclude that different nerve fibers
are used to transmit signals of different frequencies,
which is physiologically absurd. The frequency depen-
dency observed could be due to filter properties of the
system that cause a nontrivial transfer function. The . ) : _
quality of the data is good: the SNR is largeound 10, introduce drpps in ABP via release of thigh cuffs and
and each trial is more than 100 times longer than the record the t|m9 course of ABP and CBFV. It has been
expected delay. Thus, the Hilbert transform method could observed that impaired CA leads to a slower recovery of

be used to correct the phase spectrum for the filter prop-CB]!:V following an Ln't'a:j dlrop, while cljnt'acthCA leads ¢
erties of the system. to fast recovery with a delay reported in the range o

40 o; . -
The results of the Hilbert transform delay time esti- 1-2 s.7 Since the thigh cuff technique cannot be used

mation are indeed encouraging. Table 2 reports the re for all patients and tends to be inconvenient, it would be

sults for the nine subjects studied. The average estimateoOf afdvantdage to us((ja gross-s?ectlral mgthod_s t? qua_ntlfy
delay is 522 ms, which is in the expected range. While a CA from data recorded completely noninvasively. Using

small frequency dependency of the delay time estimate ithiS paradigm, a positive phase shite., CBFV preced-

still present, it is much less pronounced than with the ing ABP) in the low frequency rang¢around 0.1 Hy

simple delay estimation method. Figure 8 shows the av- has bgen interpreted as intact CA according to a high-
erage gain for the 0—2 Hz stimulus, subject 3. The gain pass f||ter model of the CA feegiback con.trol systém.
shows a high-pass characteristic, resulting in a nontrivial Erequhe.:nues %f 01 '|_|Z, were either obtameﬂl by dee?
transfer function. Both the simulations and the results of ArBelgt Ingd or B)évan(? yzing spo'ntaneous oscillations c;
Table 2 suggest that the influence of the filter properties and C uring supine rest over severa

i 8,34,49
of the system on the phase spectrum can be correcte inutes
with the Hilbert transform method. We compare data from 18 healthy young volunteers

and ten older patients with seveKe-80%) unilateral
stenosis of the internal carotid artery. Time-courses of
ABP (input) and CBFV (outpud were recorded over a
Cerebral autoregulatiofCA) keeps the perfusion in  period of 3—4 min at a sampling frequency of 100 Hz
the brain relatively constant over a wide range of arterial with the person resting in a supine position and breathing
blood pressuréABP). Impairment of CA, often linked to  slowly at a rate of 6/min(0.1 Hz. These data were
carotid artery stenosis, might increase the risk of analyzed without any further preprocessing.
ischemic stroke. As CA is a concept rather than a physi-  Figure 9 illustrates the result of delay time estimation
cally measurable quantity, it is not easy to assé&sarly for one recording from a healthy subject. Table 3 shows

measurements of static autoregulation have been super-
seded by analysis of dynamic CA, following work by
Aaslid et al*

Through the advent of transcranial Doppler sonogra-
phy (TCD), it is possible to measure cerebral blood flow
velocity (CBFV) noninvasively with a high temporal
resolution. ABP can also be measured noninvasively with
the same resolution, using finger plethsymography. The
first paradigm for the assessment of dynamic CA was to

Analysis of Dynamic Cerebral Autoregulation
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FIGURE 9. Cross-spectral analysis of autoregulation data
from right Doppler of a 28-year-old healthy woman. (A)
Power spectrum of ABP. (B) Power spectrum of CBFV. (C)
Coherency (significance threshold, = a=0.05, indicated by
dotted line ). (D) Objective function for the Hilbert transform
method. (E) Objective function for the method of fitting a
straight line to the phase spectrum. (F) Cross-correlation
function.

standard deviation is higher in the case of the single
frequency method. The Hilbert transform method yields
positive delay times around 1 s.

Times in the range of-60 ms, as obtained by the
cross correlation method, have been interpreted as delay
times in the CA system,but physiological consider-
ations vyield a different interpretation: Each pulse wave
originates from the heart, and the pulse wave takes
longer to reach the finger, where ABP is recorded, than it
takes to reach the brain, where CBFV is recorded. In-
deed, the observed delay computed with the cross corre-
lation method (- 0.056+0.019 s for all personsnatches
well with the propagation speed of 5 m/s for pressure
waves in arteries given in the physiological literattite.
Thus, the cross correlation method does not yield the
sought-for delay time of the CA system.

As changes in ABP cause changes in CBFV, a physi-
ological delay time in the CA system between ABP as
input and CBFV as output should be positive. It is to be
expected that the phase spectrum obtained through spec-
tral analysis, which is used both in the single frequency
method and in the method of fitting a straight line to the
phase spectrum, contains information from a delay time
and from the transfer function of the CA system, since
the CA system acts as a high-pass filteiThus, the
negative delay times obtained by the two methods men-
tioned can be interpreted as physiological delay times, as
observed using a protocol of stepwise ABP changes, cov-
ered by the effect of the high-pass filter transfer function.
The higher variance in the case of the single frequency
method is due to the fact that the method of fitting a
straight line to the phase spectrum uses more information
from the phase spectrum. The method of fitting a straight
line to the phase spectrum differentiated clearly between
between young normal subjects and patients’ affected
sides (—0.56 s vs. —1.38 s, respectively; t testp

the results of delay time estimation using the four meth- <0.01) and between patients’ affected and contralateral
ods proposed. The cross correlation method yields asides(paired Wilcoxon-testp=0.014).

small negative delay time around60 ms. Both the

The Hilbert transform method yields positive delays

“single frequency” method which uses the frequency of in the range of 1 s, which are both physiologically mean-
maximum coherency for each data set to estimate a de-ingful in view of the causal relationship between ABP
lay, and the method of fitting a straight line to the phase and CBFV and are similar to times observed via step

spectrum yield negative delay times around s. The

TABLE 3. Results of delay time estimation
Insufficiently coherent recordings

changes in ABP. Thus, it seems that the Hilbert transform

(in s) for the cerebral autoregulation data.
(less than four significantly coherent frequencies in the

range of 0.05-0.14 Hz ) were excluded.

Healthy volunteers

Patients, affected

Patients, contralateral

n=25 n=10 n=10
Max. CC —0.06+0.01 —0.03+0.02 —0.07+0.02
Single freq. —1.36+0.47 —0.63+0.43 —-1.23+0.51
Line fit —1.38+0.46 —0.56+0.37 —1.20+0.48
Hilbert meth. 0.76+0.54 1.25+0.54 0.79+0.68
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TABLE 4. Results of delay time estimation  (absolute values in ms ) for left /right muscle pairs from the orthostatic tremor data. TA,
tibalis anterior (calf); TS, triceps surae (calf); L5, trunk muscle at lumbal level  (back).

Patient No. 1: TA No. 1: TS No. 1: L5 No. 2: TA No. 2: TS No. 2: L5
n=4 n=4 n=4 n=4 n=4 n=4
Max. CC 30 4+1 0=0 1+0 3+1 0+0
Single freq. 2+1 5+1 0*0 2+1 3+2 61
Line fit 3+0 5+1 1+1 2+1 4+2 5+1
Hilbert meth. 4+1 4+1 0*x1 4+2 3+2 6+2

method can correct for the high-pass filter properties of taneously. Seven sessions were recorded for patient No.
the CA system, yielding delay times as observed with the 1, eight sessions for No. 2. We focus on three muscle
invasive thigh cuff technique by analyzing oscillations pairs: left/right tibalis anterioTA; calf), left/right tri-
recorded noninvasively. The Hilbert transform method is ceps suradTS; calf)y, and left/right trunk muscles at the
also able to distinguish patients from normal subjects: for lumbal level (L5; back. Physiological considerations
the young normal subjects, the estimated delay time is predict the following?* (1) The delay between left and
0.76 s, while the patients’ values on the affected side right muscles of the same sort should be zd®).The
(1.25 9 are significantly different(t test, p=0.02). muscles TA and TS are an agonist—antagonist pair,
Within the group of patients, the delay on the affected meaning that only one of them is activated at any time.
side differed significantly from the delay on the con- Thus, an oscillation in the calf should consist of one half
tralateral side(paired Wilcoxon-testp=0.049). period of activation of TA, followed by one half period
Thus, the Hilbert transform method appears to of activation of TS. Accordingly, the delay between TA
be a promising tool for the assessment of cerebral and TS should be equal to one half tremor peried
autoregulation. radiang. By (1), this should hold no matter whether TA
and TS are recorded on the same side of the body or on
Orthostatic Tremor different sides. An acceptable delay time estimation
method for the explanation of OT data should at least
Orthostatic tremor(OT) is a relatively rare form of fulfill conditions (1) and (2).
human tremor that is mainly observed in orthostasis in  Table 4 presents the results for all four delay time
affected patients. The main characteristics of OT are its estimators with respect to conditidt). Table 5 presents
high frequency of oscillations of over 15 Hz as com- the results for condition(2). Figure 10 shows as an
pared to roughly 5-12 Hz for other tremor forms and, example the results of cross-spectral analysis of an EMG
most prominently, the fact that affected muscles all over recording of right TA vs. TS from patient No. 1. Patient
the body exhibit highly correlated electromyogram No. 1 has a tremor frequency of roughly 18 Hz. The
(EMG) recordings’"?® power spectra for TA and TS are quite similar, showing
There has been some debate on the question of thethe fundamental frequency and one higher harmonic at
location of a generator for Of. The site of the oscilla-  which the signals are significantly coherent. The second
tion source can presumably be identified through com- higher harmonic is also present to a lesser exteitFig.

parison of delay times between EMG signals from a 10(C)]. Patient No. 2 has a tremor frequency of roughly
number of muscles. If the hypothesis is correct that the

OT generator is located supraspinally, e.g., in the cortex,

it should be possible to explain estimated delay times

between two mUSde_S as the difference of the delays TABLE 5. Results of delay time estimation  (absolute values in
between cortex and first muscle and between cortex andms) for agonist—antagonist calf muscle pair tibalis anterior
second muscle. If the generator is not located in the (TA) and triceps surae (TS) in the orthostatic tremor data.
cortex, or if there is no single oscillator responsible for Abbreviation of methods as in Table 1. The last line gives the
the observed highly coherent oscillations, the proposed iMé of half a tremor period, which is the physiologically

. . . expected delay time.
explanation of estimated delays should not be possible.

We investigate which of the four proposed delay time Patient No. 1: TAvs. TS~ No. 2: TAvs. TS
estimators can be employed to answer the question of the n=22 n=22
location of an OT generator. Max. CC 23+4 24+9
EMGs of various muscles were recorded from two Single freq. 21+2 4+5
patients affected by OT. Each recording session was 20 s Line fit 24+6 23+11
Hilbert meth. 27+3 25+8

long (sampling rate, 3 kHz; standard preprocessing ac-

cording to Ref. 2R Six EMGs could be recorded simul- Half period 28 %
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FIGURE 10. Cross-spectral analysis of orthostatic tremor
data from patient No. 1, right calf muscle tibalis anterior

vs. right calf muscle triceps surae
of the TA electromyogram;

(significance threshold

(D) objective function for the Hilbert transform method.

Objective function for the method of fitting a straight line to

the phase spectrum.

15 Hz. The signals show high coherency up to the fourth

(F) Cross correlation function.

higher harmonignot shown.

Figure 10 also shows the objective functions for the
Hilbert transform methodEqg. (29); Fig. 10D)] and for
the method of fitting a straight line to the phase spectrum
[Eqg. (26); Fig. 10E)] as well as the cross correlation
function [Fig. 10F)]. These objective functions are
nearly periodic with a period of one tremor oscillation

(56 ms.

(TA)

(TS). (A) Power spectrum
(B) same for TS; (C) coherency
a=0.05, indicated by dotted line );

B

Table 4 shows that all four methods performed quite
well as regards conditiofil). There is hardly any differ-
ence in estimated delay times. The consistent small posi-
tive delay time between left/right muscle pairs might
suggest that the tremor source is located off the body
middle axis, but no physiological conclusions can be
drawn at this stage. With respect to conditi@®), Table
5 shows that all four methods performed quite well for
patient No. 1, with the Hilbert transform method yielding
the estimate closest to the expected delay time and a
small variance. The data from patient No. 2 posed prob-
lems for all methods. The single frequency method per-
formed badly. Again, the Hilbert transform method came
closest to the expected value and had a smaller variance
than its competitors. Since signal transmission in nerves
is affected by the filter properties of the neural pathways,
the results of Table 5 suggest that the Hilbert transform
method is able to correct for the neural filter properties,
even though the effect is not tremendous. In further ap-
plications to orthostatic tremor data, delay times should
thus be estimated by the Hilbert transform method.

DISCUSSION

Four delay estimators were compared with the focus
on practical applicability of methods. The cross-
correlation method takes the lag at which the cross cor-
relation between input and output is maximal as a delay
time. The other three methods are cross-spectral methods
based on an interpretation of the phase spectrum between
input and output. The simplest procedure interprets the
phase at the single frequency of maximum coherency
directly in terms of a delay. More generally, one can fit
a straight line to the phase spectrum in order to estimate
a delay time. The Hilbert transform method subtracts the
effect of a nontrivial transfer function from the phase
spectrum before fitting a straight line.

Through simulation studies the following image
emerged: In the presence of noise, all four estimators
showed a bias. The bias tended to be smallest for the
Hilbert transform method for most model types. In the
presence of a nonlinear transfer function, the Hilbert
transform method gave good results. Thus, even though
cross-spectral analysis is a concept designed for linear
transfer functions, it yields helpful information in the
nonlinear case, too, provided that input and output are
significantly coherenti.e., can be explained to a certain
extent by a linear modglat some frequencies.

The Hilbert transform method contains as a limiting
case the method of fitting a straight line to the phase
spectrum. That method is always superior to the point-
wise interpretation of the phase spectrum—the variance
is lower, and often the bias is smaller as well. Thus, a
pointwise interpretation of the phase spectrum should
never be used to estimate a delay time. The method of
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fitting a straight line to the phase spectrum yields good case for the Hilbert transform method is not as strong as
results if a “delay only” model holds, but it is suscep- in the other two applications, but the method still per-
tible to a large bias if that assumption is violated. There formed better than its competitors.

are certainly applications for which the cross-correlation In summary, we have shown that the Hilbert trans-
method performs best. However, apart from the fact that form method is a valuable general-purpose nonparamet-
the Hilbert transform method can correct for a nontrivial ric tool for delay time estimation that can be applied
transfer function in the system, one can also select thefruitfully to empirical data.

band of frequencies to be used for the fit, while the

cross-correlation method, operating in the time domain, ACKNOWLEDGMENTS

offers no such possibility easily.

A notable exception to the good performance of the  T.M. and M.R. acknowledge support from the German
Hilbert transfer method was the case of the oscillator Federal Ministry of Education and Research (bnf
driven by a nonlinear input. The poor performance of the The authors thank B. Guschlbauer, B. Hellwig, and B.
method in this case could be explained by the fact that Schelter for help with the orthostatic tremor data and J.
input and output were only significantly coherent at the J. Collins and J. T. Inglis for help with the vestibular
frequency of the driving force, whereas the nontrivial stimulation data. We would also like to thank three
transfer function that the Hilbert transform method anonymous reviewers for their detailed comments on
should correct for, operated at frequencies at which input @ previous version of this article and for helpful
and output were not cohereritf. Fig. 2. Thus, the suggestions.
prospects of the Hilbert transform method are best when
signals are coherent over a large frequency region.

The application of the four delay estimators to mea- REFERENCES
sured data confirmed the results of the simulations. For
the vestibular stimulation data, the method of fitting a Iaaslid, R., K. F. Lindegaard, W. Sorteberg, and H. Nornes.
straight line to the phase spectrum had led to frequency- Cerebral autoregulation dynamics in humaBtioke 20:45—
dependent delay times that were not easy to reconcile 52, 1989. o S _
with the physiology of the experiment. The Hilbert trans- Avitzour, D. Time delay estimation at high signal-to-noise

f thod led t | tant delav i f I ratio. IEEE Trans. Aerosp. Electron. Sy&{7:234-237, 1991.
orm method led 1o nearly consiant delay umes for a 3Azenkot, Y., and I. Gertner. The least squares estimation of

stimulus frequencies, thus confirming the influence of a  time delay between two signals with unknown relative phase

nontrivial transfer functior(cf. Fig. 8 on the delay time shift. IEEE Trans. Acoust., Speech, Signal Proc&3308—

estimate. For the cerebral autoregulation data, the cross- 309, 1985. . _ , .

correlation method yielded results that could be inter- ~Bloomfield, P. Fourier Analysis of Time Series: An Introduc-
. . tion. New York: Wiley, 1976, p. 225.

preted phyS|oIog!caIIy, but were not . related to the SBrockwell, P. J., and R. A. Davis. Time Series: Theory and

sought-for delay time of the autoregulation system. Both  Methods. New York: Springer, 1991, p. 434.

the pointwise interpretation of the phase spectrum and ®Cabot, R. C. A note on the application of the Hilbert trans-

the method of fitting a straight line to the phase spectrum form to time delay estimatiolEEE Trans. Acoust., Speech,

yielded negative delay times, while the Hilbert transform ,Signal Process29:607-609, 1981.

method. again correcting for a nontrivial transfer func- “Chan, Y. T., R. V. Hattin, and J. B. Plant. The least squares
» agal Ing i u estimation of time delay and its use in signal detecti&EtE

tion, led to results that could be interpreted as a physi- Trans. Acoust., Speech, Signal Proce2&217—222, 1978.
ologically meaningful delay time. Furthermore, these de- SChan,_ Y. T, and R. K. Miskowicz. Estimation of coherence
lay times were significantly different in patients on the and time delay with ARMA modelslEEE Trans. Acoust.,
side of carotid artery stenosis as compared to the con- ,SPeech. Signal Process2:295-303, 1984.
tralateral side or to controls, suggesting that the delay i €:-C- and S-¥. Yeh. Assessment of cerebral autoregu-
: ) . : ! a9 g Y lation using time-domain cross-correlation analySismput.
time estimated via the Hilbert transform method could be  Bjol. Med. 31:471—480, 2001.
used to assess the functional state of the cerebral auto!°Cleveland, W. S., and E. Parzen. The estimation of coher-
regulatory system. Finally, for the orthostatic tremor data ig?fé;fef;lzen%;gsponse, and envelope d@eghnometrics
all” four pr(iﬁo(ied. :’ge;[jhods gl))icept fcl)tr tgetstlr?gleH.lge_t LClifford, C. G. Coherence and time delay estimatighoc.
quency method yielded sensible results, but the Hilbert |zpe 75936 255 1087.
transform method was somewnhat better able to explain 2peaton, M. L., and R. V. Foutz. Group delay and the time—
the agonist—antagonist relationship of the calf muscles lag relationship between stochastic processesTime Ser.
tibalis anterior and triceps surae than the other methods.lsg.nak!-I 11F3€lll|_\:1187 15?83- o, Fuk 4 P Berlit Ph

; ; ot iehl, R. R., D. Linden, D. Loke, and P. Berlit. Phase
;I.—hls rest”'t s;pggt;,‘sts trt]ﬁt I? :‘.urtrer appcleCfltlo?hS OL.clibela,E/ relationship between cerebral blood flow velocity and blood
Ime estimation for orthostatic {remor data, the _' er pressure. A clinical test of autoregulatioStroke 26:1801—
transform method should be the method of choice. It 1804, 1995.

must be conceded that in the orthostatic tremor data, thel*Hamon, B. V., and E. J. Hannan. Spectral estimation of time



Estimation of Delay Times in Biological Systems

delay for dispersive and nondispersive systeiugpl. Stat.
23:134-142, 1974.

5Hannan, E. J., and P. J. Thomson. The estimation of coher-
ence and group delapiometrika’58:469—-481, 1971.

Hannan, E. J., and P. J. Thomson. Estimating group delay.
Biometrika60:241-253, 1973.

Hannan, E. J., and P. J. Thomson. Delay estimation and the
estimation of coherence and phadEEE Trans. Acoust.,
Speech, Signal Proces29:485-490, 1981.

¥Hannan, E. J., and P. J. Thomson. Time delay estimafion.
Time Ser. Anal9:21-33, 1988.

Hertz, D., and M. Azaria. Time delay estimation between two
phase shifted signals via generalized cross-correlation meth-
ods. Signal Process8:237-255, 1985.

2OHinich, M. J., and G. R. Wilson. Time delay estimation using
the cross bispectrumEEE Trans. Signal Proces#0:106—
113, 1992.

2'Holm, S., and G. Ottesen. Bias in the cross spectrum and
time delay estimates due to misalignmehEEE Trans.
Acoust., Speech, Signal Proce84.1662—-1665, 1986.

22Honerkamp, J. Stochastic Dynamical Systems. New York:
VCH, 1994.

23Journee, H. L. Demodulation of amplitude modulated noise:
a mathematical evaluation of a demodulator for pathological
tremor EMG's. IEEE Trans. Biomed. Eng30:304-308,
1983.

%4Kloeden, P. E., E. Platen, and S. H. The numerical solution of
nonlinear stochastic dynamical systems: A brief introduction.
Int. J. Bif. Chaosl:277-286, 1991.

ZKnapp, C. H., and G. C. Carter. The generalized correlation
method for estimation of time delayEEE Trans. Acoust.,
Speech, Signal Procesg4:320-327, 1976.

26K oster, B., M. Lauk, J. Timmer, M. Poersch, B. Guschlbauer,
G. Deuschl, and C. H. Tlaking. Involvement of cranial
muscles and high intermuscular coherence in orthostatic
tremor. Ann. Neurol.45:384—-388, 1999.

2K oster, B., M. Lauk, J. Timmer, M. Poersch, B. Guschlbauer,
G. Deuschl, and C. H. laking. Involvement of cranial
muscles and high intermuscular coherence in orthostatic
tremor. Ann. Neurol.45:384—-388, 1999.

28Kuo, T. B., C. M. Chern, W. Y. Sheng, W. J. Wong, and H.
H. Hu. Frequency domain analysis of cerebral blood flow
velocity and its correlation with arterial blood pressude.
Cereb. Blood Flow Metab18:311-318, 1998.

29 auk, M., B. Koster, J. Timmer, B. Guschlbauer, G. Deuschl,
and C. H. Lieking. Side-to-side correlation of muscle activity
in physiological and pathological human trem@iin. Neu-
rophysiol 110:1774-1783, 1999.

%0Lindemann, M., J. Raethjen, J. Timmer, G. Deuschl, and G.
Pfister. Delay estimation for cortico-peripheral relatiods.
Neurosci. Method411:127-139, 2001.

3INakano, J., and S. Tagami. Delay estimation by a Hilbert

1439

transform methodAustrl. J. Statist 30:217-227, 1988.
32Nikias, C. L., and R. Pan. Time delay estimation in unknown
Gaussian spatially correlated noiskEEE Trans. Acoust.,

Speech, Signal Proces36:1706—-1714, 1988.

330ppenheim, A. V., and R. W. Schafer. Digital Signal Process-
ing. London: Prentice-Hall, 1975.

34panerai, R. B., R. P. White, H. S. Markus, and D. H. Evans.
Grading of cerebral dynamic autoregulation from spontane-
ous fluctuations in arterial blood pressufroke 29:2341—
2346, 1998.

Spavlik, A. E., J. T. Inglis, M. Lauk, L. Oddsson, and J. J.
Collins. The effects of stochastic galvanic vestibular stimula-
tion on human postural swafxp. Brain Res124:273-280,
1999.

36piersol, A. G. Time delay estimation using phase dH&EE
Trans. Acoust., Speech, Signal Proced$471-477, 1981.

37press, W., B. Flannery, S. Saul, and W. Vetterling. Numerical
Recipes, 2nd ed. London: Cambridge University Press, 1992.

38priestley, M. Spectral Analysis and Time Series. New York:
Academic, 1989.

39Schmidt, R. F., and G. Thews. Human Physiology, 2nd ed.
Berlin: Springer, 1989.

40Tiecks, F. P., A. M. Lam, R. Aaslid, and D. W. Newell.
Comparison of static and dynamic cerebral autoregulation
measurementsStroke26:1014-1019, 1995.

“Timmer, J. Parameter estimation in nonlinear stochastic dif-
ferential equationsChaos, Solitons Fractald1:2571-2578,
2000.

“Timmer, J., M. Lauk, and G. Deuschl. Quantitative analysis
of tremor time series.Electroencephalogr. Clin. Neuro-
physiol. 101:461-468, 1996.

“Timmer, J., M. Lauk, W. Pfleger, and G. Deuschl. Cross-
spectral analysis of physiological tremor and muscle activity.
I. Theory and application to unsychronized EMBiol. Cy-
bern. 78:349-357, 1998.

4Tong, H. Threshold Models in Nonlinear Time Series Analy-
sis, Vol. 21 of Lecture Notes in Statistics. New York:
Springer, 1983.

4Tribolet, J. M. A new phase unwrapping algorithiEEE
Trans. Acoust., Speech, Signal Proce¥s.170-177, 1977.

46van der Pol, B. On oscillation-hysteresis in a simple triode
generatorPhilos. Mag.43:177, 1922.

47Youn, D. H., and N. Ahmed. Time delay estimation via co-
herence: An adaptive approach.Acoust. Soc. An¥5:505—
514, 1984.

“8youn, D. H., N. Ahmed, and G. C. Carter. An adaptive
approach for time delay estimation of band-limited signals.
IEEE Trans. Acoust., Speech, Signal Procexk.780—-784,
1983.

49Zhang, R., J. H. Zuckerman, C. A. Giller, and B. D. Levine.
Transfer function analysis of dynamic cerebral autoregulation
in humans.Am. J. Physiol274:H233-H241, 1998.



