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“Strict causality” is the assumption that no signal whatsoever can be transmitted over a space-like interval
in space-time, or that no signal can travel faster than the velocity of light in vacuo. In this paper a rigorous
proof is given of the logical equivalence of strict causality (“no output before the input”) and the validity
of a dispersion relation, e.g., the relation expressing the real part of a generalized scattering amplitude as
anintegral involving theimaginary part. This proof applies toa general linear system with a time-independent
connection between the output and a freely variable input and has the advantage over previous work that
no tacit assumptions are made about the analytic behavior or single-valuedness of the amplitude, but, on
the contrary, strict causality is shown to imply that the generalized scattering amplitude is analytic in
the upper half of the complex frequency plane. The dispersion relations are given first as a relation between
the real and imaginary parts of the generalized scattering amplitude and then in terms of the complex phase

shift.

1. INTRODUCTION

N this paper we shall discuss the logical equivalence
of the dispersion relation and a condition of “strict
causality.” By strict causality we mean the condition
“no output can occur before the input.” For particular
physical systems, the condition can be given more
specific form. Thus, in the case of a scattering system,
the causality condition becomes that ‘“no scattered
wave can appear until the primary wave has reached
some part of the scatterer;” for a homogeneous refrac-
tive medium the condition is that “no signal can be
transmitted faster than ¢” or “a source at the time
t=0 can produce no -electromagnetic disturbance
whatsoever at the plane x=x, in advance of the time
t=2x¢/c.” We shall give a rigorous proof of the logical
equivalence of strict causality and the validity of the
dispersion relations.

A dispersion relation is a simple integral formula
relating a dispersive process to an absorption process.
Such relations occur in many fields of physics. The
relation is perhaps best known in the theory of disper-
sion of light! in a dielectric, where the complex refractive
index 7(w) is expressed as an integral over all frequencies
involving the linear absorption coefficient

a(wy)dw,
1(e) = 1+ lim f - (:+ze)2 (1.1)

The dispersion relation can also be expressed as an
integral relation between the total interaction cross

* The first part of a dissertation of John S. Toll, which was
submitted to Princeton University in partial fulfillment of the
requirements for the Doctor of Philosophy degree (1952).

T Most of this work was carried out during 1949-1951 under
the auspices of Princeton University; the author gratefully
acknowledges a Proctor Fellowship and a grant from the Friends
of Elementary Particle Physics during this period. The author is
now at the University of Maryland where this work was prepared
for publication with support from a National Science Foundation
Grant.

1 For reviews of this development and further references, see
K. L. Wolf and K. F. Herzfeld, Handbuch der Physik (Verlag
Julius Springer, Berlin, 1928), Vol. 20, Chap. 10, p. 480; A. Korff
and G. Breit, Revs. Modern Phys 4, 171 (1932)

section and the forward coherent scattering amplitude
for a single scattering center. More generally, it is a
relation connecting real and imaginary parts of the
diagonal elements of the scattering matrix? or between
the absorption and the phase shift, and it occurs in the
scattering of nuclear particles® and numerous other
fields. Similar relations are well known in electrical
network theory* where the resistance as a function of
frequency can be obtained as an integral involving
the reactance function. Thus the dispersion relation is
of wide generality and usefulness. As we shall see, we
can expect such a general connection in any theory
where the “output” function of the time (e.g., a
scattered wave) is a linear functional of an “input”
function (e.g., the primary wave), where the interaction
law is time-independent, and where the output function
cannot begin before the input function is applied
(causality condition).

There has been considerable study of the logical
foundations of the dispersion relation. Sommerfeld® and
Brillouin® proved that in an idealized dielectric no signal
travels faster than ¢ even though there may be fre-
quencies for which both the phase velocity and the
group velocity exceed ¢. Kramers’” used the notion of
the complex refractive index defined by analytic
continuation in the complex frequency plane to show
that a signal cannot travel faster than ¢ in any medium
for which the dispersion relation is satisfied ; hence the
deeper reason why Sommerfeld and Brillouin had
found strict causality to be satisfied was that they had
chosen a complex refractive index function which

2 See, for example, Jost, Luttinger, and Slotnick, Phys. Rev.
80, 189 (1950), Appendix A.

3See for example, W. Schutzer and J. Tiomno, Phys. Rev.
83, 349’ (1951). For an excellent general discussion see E. P. Wigner,
Am. J. Phys. 23, 371 (1955) where further references are given.

4 See, for examp]e H. W. Bode, Network Analysis and Feedback
Am[zhﬁer Design (D. Van Nostrand Company, Inc., New York,
1940); Y. W. Lee, J. Math Phys. 11, 83 (1932).

5A. Sommerfeld Ann. Physik 44, 177 (1914).

§ L. Brillouin, Ann. Physik 44, 203 (1914).

7H. A. Kra.mers, Estratto daglz Atii del Congresso Internazionale
de Fisici Como (Nicolo Zonichelli, Bologna, 1927).
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satisfied the dispersion relation. Kronig?® then gave
the first proof of the equivalence of causality and
dispersion, showing that the dispersion relation is the
necessary, as well as sufficient, condition for strict
causality to be satisfied. The present paper is also
concerned with proving the logical equivalence of
causality and dispersion, and the essential ideas for
our proof were already contained in Kronig’s work.
However, Kronig made tacit assumptions about
analytic behavior of the dispersion function which are
avoided in the proof given here; and we find that the
dispersion relation must in fact be trivally extended
before it is logically equivalent to strict causality.
Schutzer and Tiomno® studied the equivalence of the
dispersion relation and causality for nonrelativistic
particles. Van Kampen has investigated the equivalence
of causality and the dispersion relation both for light?
and for nonrelativistic particles®; his work is a beautiful
and fully rigorous treatment of the special case of
spherical waves impinging on spherically symmetric
scattering centers.

2. PRELIMINARY DISCUSSION

This section will give a brief heuristic discussion of
dispersion relations and causality; a rigorous proof of
their connection is then given in Sec. 3.

It is easy to see how a general relation like the
dispersion relation arises in a scattering system. To
each absorption process there corresponds a higher
order contribution to the coherent scattering, which can
be visualized as occurring in two steps: first, the
absorption of the incident particle and then its re-emis-
sion with the whole system of absorber and incident
particle returning to its initial state. The absorption can
be “virtual” or “real,” where by the latter we mean
that the conservation laws are satisfied in the inter-
mediate state as well as in the initial and final states.
The virtual processes contribute to the real part, and
the real processes contribute to the imaginary part,
of the coherent scattering amplitude. Thus the imag-
inary part of the coherent scattering amplitude at a
particular energy can be found directly from the
knowledge of the total interaction cross section, for
incident particles of that energy, simply by an applica-
tion of the principle of microscopic reversibility to
get the re-emission probability from the absorption
probability. This connection of the imaginary part of
the coherent scattering amplitude with the total cross
section is an immediate result of the principle of
conservation of probability.! On the other hand, the

8 R. Kronig, Ned. Tijdschr. Natuurk 9, 402 (1942).

9 N. G. van Kampen, Phys. Rev. 89, 1072 (1953).

1 N. G. van Kampen, Phys. Rev. 91, 1267 (1953).

1 E. Feenberg, Phys. Rev. 40, 40 (1932); Bohr, Peierls, and
Placzek, Nature 144, 200 (1939); M. F. Mott and H. S. W.
Massey, Theory of Atomic Collisions (Oxford University Press,
New York, 1949), second edition, p. 133; M. Lax, Phys. Rev.
80, 299 (1950).
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real part of the coherent scattering amplitude gives
the contribution of virtual processes or of transitions
between states of the scattering system whose energy
difference is not equal to the energy %w of the incident
particle. These matrix elements thus occur in the
calculation of the absorption at frequencies other than
that of the incident particle. Thus the knowledge of
the interaction cross section at the frequency w does not
determine the real part of the coherent scattering
amplitude at w. However, we expect that the amplitude
might be determined by an integral over all frequencies
of the total interaction cross section. It is just this
integral relation which constitutes the dispersion
relation.

The logical connection of the dispersion relation and
the causality principle can be indicated as follows.
Let the input be given in terms of a real variable ¢
(which we shall regard as the time) by the function
F(f), and let the resulting output be G(#). In order to
relate causality and dispersion, we have to postulate
certain general properties for our connection between
input and output. A superposition principle is essential
in our discussion, so we must assume that the input
is a linear functional of the output. Let 7'(¢) be the
response to an instantaneous unit pulse input at the
time /=0 (i.e., Dirac delta function input). Next we
assume that the system is not explicitly time-dependent ;
that is, we assume that a displacement in time of the
whole input signal will cause a corresponding shift in
the output [i.e., the response to 8 (¢—fo) will be T'(¢—70) .
Then the superposition principle yields that an arbitrary
input F(¢) will produce an output G(¢) given by

+0
G(H)=(2m? T(t—t)F (¢t

—o0

(2.1)

This resultant or “faltung” relation takes its simplest
form? when expressed in terms of the Fourier trans-
forms f(w,), g(w:), and 4 (w,) of F(¥), G(¢),and T'(¢t—1'),
respectively, and becomes

8(wr) =4 (wr) fler).

Thus the connection between input and output is
characterized either by the time-delay distribution
function T'(r) or by its Fourier transform A4 (w,), which
we call the generalized scattering amplitude.

In general, the time delay distribution 7'(r) may not
be a well-defined function and a rigorous formulation
of the above discussion requires the theory of distribu-
tions. However, in the case that 7'(r) and F(¢) are
square-integrable functions, the integrals and Fourier
transforms are well defined’®** and we therefore limit

(2.2)

12 See, for example, N. Wiener, The Fourier Integral and Certain
of Its Applications (Cambridge University Press, New York,
1933), pp. 1-2, 46-71.

13 For convenience, we shall say that a function F(Z) is “square-
integrable” if and only if J_,**|F(f)|2d¢ is finite. Furthermore,
the only Fourier transforms that we will consider in this paper are
the transforms of square-integrable functions. In this case the
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our preliminary discussions to this case. The principle
of causality that no output can occur before the input
is clearly equivalent to the requirement that 7'(7) must
vanish for negative 7. To discuss the consequences of
this limitation on 7T'(7), we introduce the concept of a
casual transform which is defined as the boundary value
of an analytic function belonging to a certain class:

(i) Let ¢(w) be a function of the complex variable
w=w,+1w; which is defined in the upper half of the
complex plane and is analytic there. (The real axis is
not assumed to belong to the domain of analyticity.)

(ii) There exists a positive number K such that, for
all wi> 0,

o0
f | o(wrtiws) |2dw.<K. (2.3)

—®

Under these conditions the boundary value limw;—0+
X @(w,+iw;), which we will denote as ¢(w,), exists
almost everywhere on the real axis and is square-
integrable* Such a function ¢(¢,) will be called a
“causal transform.” We note here the fact, which we
will need later on, that for w;>0,

-+00 o0
[ letortioplito < [ o)l @4

In other words, a causal transform is a square-integrable
Sfunction of a real variable whick can be extended almost
everywhere in the above sense to give a function which is
analytic in the upper half of the complex plane and which
is of uniformly bounded square integral along any line
parallel to and above the real axis. Titchmarsh! gives a
beautiful criterion which can be stated in our terminol-
ogy as: “A function of integrable square is zero for all
negative values of its argument if and only if its
Fourier transform is a causal transform.” Thus the
causality condition that 7'(r) vanish for negative 7
is equivalent to the requirement that 4 (w,) be a causal
transform. However, Titchmarsh has also proved!
another useful necessary and sufficient condition for a
causal transform, namely that ¢(w,)= ¢,(w.)+10:(w,)
is a causal transform if and only if its real and imaginary
parts are Hilbert transforms of each other, that is

P oo (v)dv
Sar(wr):_f y (253.)
TV w V—wy
and P ot on(s)d
— o-(v)dv
oi(w,)=— _— (2.5b)
T J_o v—w,

Fourier transform is defined almost everywhere as a limit in the
mean (see, for example, reference 14, p. 69); we shall always
assume in this paper, without further remark, that the equalities
and Fourier transforms are to be understood in this sense. Further-
more, two functions wich differ only over a set of measure zero
will be identified without further remark since their Fourier
transforms are necessarily equal and are defined only within
arbitrary changes which can be made on any point set of measure
zero.

W E. C. Titchmarsh, Theory of Fourier Integrals (Clarendon
Press, Oxford, 1948), second edition, pp. 119-128.

JOHN S.

TOLL

where P implies that the principal part is to be taken
at the point »=w,. It can further be shown that each
of the relations (2.5) implies the other, so that a
necessary and sufficient condition that T'(r)=0 for
7<0 is that A= 4,414 ; satisfies!®

A, (w)=—

T

P > A4:(v)dv
f 462y (2.6)

V—wr

Thus in this case the causality condition is equivalent
to the dispersion relation (2.6) [or to the alternative
relation for 4;(w,) in terms of 4,(»)]. We see that the
imaginary part of generalized scattering amplitude
determines the real part (and vice versa). Either the
real or the imaginary part can be chosen as an arbiirary
square integrable function, but then the companion
function is determined by the causality condition, and
the analytic continuation into the upper half-plane then
also exists (and can be calculated by applying Cauchy’s
integral formula, where the contour enclosing the point
in the upper half-plane can be replaced by the real
axis).

This example of the special case for any square-
integrable 4 (w,) illustrates the power of the causality
condition and shows how causality implies both
dispersion relations and analyticity of 4 (w) in the upper
half of the complex frequency plane. However, in
most physical problems the generalized scattering
amplitude is not square-integrable and the more general
discussion given in the next section is then required.

3. PROOF OF LOGICAL EQUIVALENCE OF STRICT
CAUSALITY AND THE VALIDITY OF THE
THE DISPERSION RELATION

We shall now show how the logical equivalence of
strict causality and a dispersion relation can be expected
in any proplem in which an “output” function is
related to a freely variable “input” by a linear, bounded,
time-invariant connection. (See Fig. 1.) From the
invariance of the connection under time displacement,
it follows'? that each frequency component is mapped
onto itself with only a change in magnitude and phase
as given by Eq. (2.2) in terms of a generalized scatter-
ing amplitude 4 (w,). Hence we shall formulate our
general connection between input and output by
assuming that, if the input is

1

-+
= f S,

15 We shall use the subscripts » and ¢ to designate real and
imaginary parts, respectively, throughout this paper. In order
not to confuse the functions defined originally on the real axis
with their analytic extensions, we shall use w, as a real variable
throughout and w=w,+iw; for the point in the upper half of the
complex plane. » is real throughout this paper. For brevity, we
shall hereafter use the word “frequency’” to refer to circular
frequency w or to 27 multiplied by the usual frequency.

(3.1)
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then the output is given by

1 oo
G()=—— A (w,) f(wr)e“rtdw,.

o (3.2)

We shall restrict consideration to input functions such
that the integral over all time of |F(¢)|2 is finite. (In
most problems, |F|? represents an intensity, so that
we are limiting our consideration to input signals for
which the total energy is finite.) Then the Fourier
transform f(w,) is well defined and Eq. (3.1) and its
reciprocal formula are valid. We shall assume that the
connection is such that the integral over all time of
|G|? is a uniformly bounded multiple of the integral
of | F|2; this implies that |4 (w,)| is bounded and, if we
choose the units of G appropriately, this bound can be
set equal to unity. (In most examples this is equivalent
to the natural assumption that the total output energy
cannot exceed the total input energy.) It is remarkable
that these are all the assumptions needed to prove the
equivalence of causality and a dispersion relation.

An example of such a connection between input and
output is a scattering problem, in which case the input
is the “primary wave,” the output is the “scattered
wave” and the ccnnection is determined by the scatter-
ing matrix. If we apply these considerations to an
electric network, the input can be an impressed current
as a function of time and the output can be any resulting
voltage as a function of time, with the connection given
by a complex impedance function. In other fields of
physics, F and G can have other interpretations and
they can depend on other parameters in addition to ¢,
for example, on space coordinates or spin or vector
indices; 4 can be a general matrix giving the dependence
of an array of G’s on an array of F’s. However, only the
time-dependence of the signals is essential to the
present discussion.

Thus we shall leave the nature of our generalized
scattering system unspecified, assuming only that its
scattering amplitude A4 (w,) connects to any square
integrable input F(f) an output given by Egs. (3.1) and
(3.2), where 4 (w,) is an arbitrary function of the real
circular frequency w,, subject only to the restriction
|4 (wr)| <1.1617 We shall prove the following basic
equivalence theorem.

16 Jf we wish to limit consideration to real-valued inputs F,
then f(—w,)=f*(w,); however two real inputs can always be
combined as the real and imaginary parts of a complex input to
give a general f(w,), so we will hereafter consider F(#) or f(w:) to
be arbitrary square integrable functions. Similarly, if our connec-
tion relates a real output to a real input, 4 (w.) must satisfy the
symmetry condition: 4 (—w,) =A*(w,); by choice of a real input
and separate consideration of the real and imaginary parts of
G(t), a general 4 (w,) can be reduced to B+4:C, where B and C
are amplitudes satisfying the causality principle and each of
which fulfills the symmetry condition. In this sense the symmetry
condition can always be introduced. We note that the symmetry
condition becomes on analytic continuation to complex values:
A(—w)=A%*(w*), so that singularities of 4 occur in pairs at
points correlated by reflection in the imaginary w-axis.

17 In the case when A (w,) is a matrix connecting an array of
F’s to an array of G’s, the condition |4 (wr)| <1 need be required
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F1c. 1. This figure illustrates schematically the basic reason for
the logical connection of causality and dispersion. An input 4
which is zero for times ¢ less than zero is formed as a superposition
of many Fourier components such as B, each of which extends
from ¢=— 0 to t=co. These components produce the zero-input
signal by destructive interference for {<0. It is impossible to
design a system which absorbs just the component B without
affecting other components, for in this case the output would
contain the complement of B during times before the onset of
the input wave, in contradiction with causality. Thus causality
implies that absorption of one frequency must be accompanied by
a_compensating shift of phase of other frequencies; the required
phase shifts are prescribed by the dispersion relation.

Theorem.—Let A(w.) be any complex Lebesgue-
measurable function of bounded absolute value (<1)
for all values of the real variable w,. Then, if 4 (w,) is
the generalized scattering amplitude which connects
to any freely variable input F(¢) of integrable square
an output given by Eqgs. (3.2) and (3.1), the following
seven statements are logically equivalent!s:

(i) Strict causality: No output before the input,
or F(£)=0 for {<0 implies G(¢)=0 for ¢<0.

(ii) (Upper half-plane) bounded regularity condi-
tion, hereafter called for simplicity the regularity
condition: A(w,) is the boundary value function for
almost all real w, of a function which is analytic and of

only for each element of the matrix 4 (w,) separately. Then, if
each element of F is independently variable, the proof in this
section can be carried out for each element of 4 (w,) separately.

18 The proof in this section is similar in some respects to the
proof given independently by N. G. van Kampen, Phys. Rev.’
90, 1072~1079 (1953), in his discussion of the causality condition
for individual angular momenta in the case of the Maxwell field
scattered by a spherically symmetric scattering center. However,
van Kampen‘s proof assumes that his S(k) or our 4 (w,) is of
absolute value 1 for all real frequencies. Our proof is more general
in that we assume only |4 (w,)| <1. Indeed, since |4 (w,)|=1
implies that the imaginary part of the phase shift is zero (see
Sec. 4), this is equivalent in most problems to stating that the
total energy of the output is equal to the total energy of the input
or that the absorption is zero. In most physical problems the
variation of the absorption with frequency is significant, and the
more general proof given in this section is then required.
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absolute value less than unity throughout the upper
half of the complex w plane.

(iii) Generalized dispersion relation in terms of real
part: 4 (w,) is given almost everywhere by

1 oo
Alw) =A44(wn)+idi(w)=— lim
‘ g 00t
1+V(wr+7:°)i)
X AT(V) +i4 i, (33)
1+»? V—wr—10;

where A4 ;o is a real number.”® In case 4 (w,) is chosen to
satisfy the symmetry relation 4 (—w,)=A4%(w,), this
equation becomes

2 ©  A,(»)dv
A(w,)=— lim (w,—f—iwi)f ————(——)— (3.3a)

) 2= (wriw;)? ’

g @t
(iv) Generalized dispersion relation in terms of
imaginary part: 4 (w,) is given almost everywhere in
terms of its imaginary part by

1 0 14y (wprtiw;)
A(w,)=— lim —_——
ettt J_ 142
X Ai(r)——

4t (33D)
v— (w,tiws)

where A, is a real constant. If 4(—w.)=A4%,),
this equation becomes

2(1+w
Aoy =2t

T wi—0+

° vA;(v)dv
+4.. (3.3
Xfo (1) (7 (i) (439

(v) Integral criterion for all points in lower half-
plane: The function 4 (w,) is such that S~ t*dv[A4 (v)/
(v—&)?] vanishes for all complex numbers & of negative
imaginary part (;<0).

(vi) Integral criterion for any fixed point in the
lower half-plane: The function A4 (w,) is such that, for
one particular fixed complex number & of negative
imaginary part, J_.,**dv[4(v)/(v—&)™t'] vanishes
for all positive integers 7.

(vii) Strict causality for an exponentially decaying
input: For some complex number & of negative imagin-
ary part, A (v)/(v—&) is a causal transform.

Proof —First we will prove that (i) and (ii) are
equivalent. For this we note that (i) is equivalent to
the statement: 4 (w,) f(w,) 15 @ causal transform whenever
f(w,) is a causal transform. 1t is clear that (ii) implies

1 The integrand of Eq. (3.3) can be written in dimensional form
so as to contain the factor (k?4-»w)/ (k24-»%), where k is an arbitrary
reference frequency; for simplicity, we have assumed throughout
that the units are so chosen that the reference frequency becomes
unity.

JOHN S. TOLL

(i), for, if A (w.) extends into an analytic and bounded
function in the upper half complex plane, multiplication
of f(w+1w;) by this 4 (w+1w;) cannot change either its
analyticity or the uniform bound on its absolute
square integral, and thus 4 (w,)f(w,) remains a causal
transform if f(w,) is a causal transform. To show that
(i) implies (ii), we note that we can choose for f(w,)
the particular causal transform (w,—B-+4y)~! where 8
and v are both real and v is positive.? If strict causality
holds, g(w.)=A4(w,): (w,—B~+4y)™ must then be a
causal transform; hence it is the boundary value of a
function which is analytic in the upper half-plane.
We can then define the analytic function A4 (w,+4w;)
in the upper half-plane by the product of analytic
functions g(w,+iw;) and (w,+iw;—B+4y). Hence it
remains only to show |A(w.+iw;)|<1. For this
purpose, we use the fact that 4 (w,)f(w.) is a causal
transform; hence by the theorem of Titchmarsh,
its analytic extension in the upper half-plane is given by

1 pteA@) f(v)dv

A(w) flw)=—o —_— 3.4
@i@=f ST e
Hence,
L)
Alw)| K— AW)| - dv. (3.5)
4@ < [ 1O

This equation must hold for any causal transform f(»).
We use the fact that |4 (»)] is less than unity along the
axis and then choose the causal transform f(») to be
(ry—w*)'= (v—w,+1w;)%. [This can be shown to be
the choice of f(») which minimizes the right-hand side
when |4 |=1.] Then the inequaltity (3.5) becomes

[O24 +o dV
|A(w)] <— _ =1,
(r—wr)?Hod

TY_

(3.6)

Hence we have shown that strict causality implies the
regularity condition.

Next we must show that the regularity condition is
equivalent to the generalized dispersion relation. For
this purpose we use the fact that any function which is
analytic and of bounded absolute value in the upper
half of the complex plane is given (to within an imagin-
ary constant) by an “analytic Poisson formula”
involving only the value of its real part on the real
axis.?'® This formula is

Forw,->0,
1 prt* 14w v
A(w)=— A4,(v) +14 j0. 3.7
mi/_n 1402 v—w

20 This choice for f(ws) corresponds to an idealized input which
is zero for negative # and which equals the decreasing and oscillat-
ing signal exp (—v¢—120¢) for positive ¢.

2 For the case when the function is analytic and bounded in
the unit circle, the corresponding result follows essentially from
Fatou’s theorem and his work on the Poisson integral (see
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Here A is a real constant which can vary arbitrarily
within the range permitted by our original assumption
that |4(w,)| <1 (This range will depend on the
particular function 4,(w,).) By taking the limit of
Eq. (3.7) as w; approaches zero from above, we obtain
Eq. (3.3). [The similar relation (3.3b) for 4;(w,) can
be obtained by considering the function w(z) =14 (w).]
Thus we see that the regularity condition does imply
the generalized dispersion relations. By considering
real inputs and treating real and imaginary parts of the
output separately, we can always reduce our problem
to functions A4 (w,) which satisfy the symmetry condi-
tion, so that the real and imaginary parts are, respec-
tively, even and odd functions of the frequency.
Then A; vanishes and the generalized dispersion
relations take the form of Egs. (3.3a) and (3.3c).

Now we will show that the generalized dispersion
relation Eq. (3.3) implies the regularity condition.
We define 4 (w,+7w;) in terms of the given 4 (w,) by
Eq. (3.7); this function is analytic in the upper half
complex plane and Eq. (3.3) just states that it ap-
proaches almost everywhere on the boundary our
given A4 (w,). It can be shown from the properties of
the Poisson integral from which formula (3.7) was
obtained that |4 (w,+1w;)| is also uniformly bounded.?
Hence the generalized dispersion relation (3.3) implies
condition (ii). In an entirely similar way, it can be
shown that (ii) and (iv) are equivalent and our proof
of the logical equivalence of the strict causality, the
regularity condition, and each of the generalized
dispersion relations is then complete.

The generalized dispersion relations (3.3) [or (3.3a)
and (3.3b), or (3.3c)] are therefore each the necessary
and sufficient condition for strict causality. The
arbitrary constant 4, in the determination of A4,(w,)

reference 22). For the unit circle, the “analytic Poisson formula” is

w@) =L [ EEE 0 dptidse,

2rJo ed—g

The analytic kernel figuring in this formula has the ordinary
Poisson kernel for its real part. We have mapped this formula
from the unit circle in the complex 2z plane into the complex
w plane by the identification:

w=1(142)/(1—2)

A () =w(z) =u(2)+v ().

2 R. Nevanlinna, Eindeutige Analytische Funktionen (Verlag
Julius Springer, Berlin, 1936).

2 This is done by mapping the upper half of the w plane into
the unit circle in the 2 plane as in footnote 21. The boundedness
of |u(z)| follows immediately by taking the absolute value signs
inside the integral for #; this yields that |#(3)| cannot exceed
the least upper bound of |#[exp(i#8)]| on the perimeter, which in
turn is not greater than 1. For the imaginary part a more delicate
argument is required. The function # is square integrable both
on the perimeter and in the interior. By Parseval’s relation, the
conjugate function v is then also square integrable and is therefore
given by an ordinary Poisson formula in terms of its boundary
values. The boundedness of |v| on the perimeter then implies
that it is bounded in the interior. Then, since |#| and |v| are
both bounded, w(z) is analytic and of bounded absolute value in
the interior; it is therefore given by the ordinary Poisson formula
in terms of w on the perimeter, and it then follows that |w(3)|
in the interior cannot exceed itsleast upper bound on the perimeter.
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from Ai(w,) cannot be eliminated by arguments of
causality alone, for the simple physical meaning of
this constant is that the addition to a causal output
of a constant multiple of the input can never violate
the causality condition [i.e., for any constant Ao,
G'(t)=AF()+G() is just as acceptable an output as
G (1), as far as the causality principle alone is concerned].

Each of the generalized dispersion relations (iii) and
(iv) is a necessary and sufficient criterion which the
amplitude 4 (w,) must satisfy in order for strict causality
to be valid, and is of a form which is especially useful
in many physical problems. However, many other
equivalent mathematical criteria can be stated; as
examples of such alternative criteria, we give the
statements (v) and (vi), since these are both succinct
and help to illustrate the mathematical consequences of
strict causality.

We will sketch now the proof of the equivalence of
the regularity condition (ii) and the integral criterion
for the whole lower half-plane (v). For this we will use
the fact' that a square-integrable function g(») is a
causal transform if and only if the following equation
holds for all complex numbers & with negative imaginary
part:

+0
f We()) (v—a)]=0. (3.9)

[This result follows rigorously from the analytic proper-
ties of causal transforms; see, for example, reference
14, especially page 128. The result is easily remembered
by imagining the contour of integration closed at
+i0, and noting that Eq. (3.8) then resembles the
Cauchy integral, where & is outside the contour of
integration.] Suppose the regularity condition (ii) is
valid. Then g(»)=A(»)f(») is a causal transform
whenever f(v) is a causal transform. For each & in
the lower half-plane we choose for f(v) the particular
causal transform (»—&)~! and substitute in Eq. (3.8)
to obtain

o0
f BLA®G)/ (r—5)*]=0. (3.9)

This shows (ii) implies (v). Conversely, we will show
(v) implies condition (vii) which in turn implies (ii).
Assume that (v) or that Eq. (3.9) holds for all points
@ in the lower half-plane. Select any particular point &
in the lower half-plane; then we integrate Eq. (3.9)
over & from i to X along a smooth contour of finite
length that remains a finite distance from the real axis.
The interchange of the order of the integrations can be
proved to be allowable (since the integrand is uniformly
continuous) and we obtain, after replacing X by &,

f‘*“” A(v)dy
—=0.
w (v—0)(r—a)

(3.10)
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Equation (3.10) holds for all & in the lower half-plane;
comparing with Eq. (3.8), we see that Eq. (3.10)
implies that 4 (»)/(v—p) is a causal transform or that
statement (vii) holds for any point g. If we assume
(vii) to hold, then Eq. (3.10) holds for one particular
z and all @ in the lower half-plane. If we multiply
Eq. (3.10) by z—& and then differentiate with respect to
&, the interchange of integration and differentiation can
be shown to be valid and we obtain Eq. (3.9) as a result.
Hence we have shown that (vii) implies (v). By this
equivalence we have shown that, if 4(»)/(v—a) is a
casual transform for any particular value of & in the
lower half-plane, then it is a causal transform for every
& in the lower half-plane. However, in this case Eq.
(3.4) holds with f(v)= (v—&)7}, where w is an arbitrary
point in the upper half-plane. Since & can now be chosen
to be w*, Eq. (3.4) leads to Eq. (3.6), thus demonstrat-
ing that A (w) is analytic and of modulus less than
unity in the upper half-plane. Hence we have shown
that statements (v) and (vii) are equivalent to the
regularity condition (ii).

It remains only to show that statement (vi) is
equivalent to (v). This is easily done by noting that
the integral in Eq. (3.9) defines an analytic function in
the lower half-plane which is zero throughout this region
if and only if it is zero in a small neighborhood of a
particular point &. But the function is zero in this
neighborhood if and only if all coefficients of its Taylor
series expansion about & vanish, that is, if all its
derivatives at & vanish. The differentiation can be
performed under the integral sign and the (»—1)th
derivative is proportional to S~ **dv[4 (»)/ (v—&)"*].
Hence the vanishing of these integrals for a particular
@ for all positive integers # is a necessary and sufficient
condition that the Taylor series will give zero and thus
yield an analytic extension of zero. Therefore (v) and
(vi) are equivalent.

This concludes our proof of the basic equivalence
theorem. We have shown that the seven statements
given above are logically equivalent in the sense that,
if a bounded measurable function A4 (w,) satisfies one of
these conditions, then it satisfies all of them. We call
a function A (w, satisfying the conditions of this
theorem a causal factor ; this name is chosen to empha-
size that an essential feature of such a function is that
its product with any causal transform is another
causal transform.

The condition (vii) is a useful facet of the theorem
and has a simple physical interpretation. In order to
test whether a given 4 (») is a causal transform, we
must test whether for every causal transform f(») the
product A4 (») f(») is also a causal transform. However
(vii) tells us that any particular causal transform of
the form (v—@&)™! is sufficient to test 4 (v) and that, if
A@()(v—&) is a causal transform, then A(») is a
causal factor and 4 (»)f(v) is a causal transform for
every causal transform f(»). The transform (v—&)™!
corresponds to an input which vanishes for ¢<0 and
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which for £>0 is the exponentially decreasing signal
exp[ — | @;|t+iw.t]. The simplest input of this class is
given by @=1, or is the signal ¢~¢ for £>0. Condition
(vii) tells us that, if our system is causal for this
particular input, then it will be causal for every input.
In particular, if our system is designed to delay any
input of this class by a time T, then it will delay every
input by at least a time T'.

4. PHASE-SHIFT FORM OF THE DISPERSION
RELATION

In the last section we showed that under rather
general conditions strict causality implies that the
imaginary part of a generalized scattering amplitude
can be determined from its real part (or vice versa) by
a dispersion relation. However, in many physical
problems the real and imaginary parts of the scattering
amplitude may be of less direct interest than the
absolute value and the phase of the scattering ampli-
tude. We will now investigate the relationship between
these quantities that results from strict causality.

We define the complex phase shift 5(w)=7,—1; by:

A (w)=explin(w) ]=exp[ —n(w)]-explin,(w)], (4.1)
ni(w)=—In|4(@)]; #.(w)=argd (). (4.2)

Thus the imaginary part of the phase shift determines
the absolute values of the scattering amplitude (and
thus is normally related to the absorption), while the
real part of the phase shift determines the argument
of the scattering amplitude. |4 (w)| <1 implies 7;(w)> 0.
The symmetry condition A(—w,)=A%(w,) implies
that 7,(w,) is an even function and 7, (w,) an odd function
of the circular frequency w,.* Let us assume the condi-
tions of the theorem of the last section are satisfied and
that strict causality is valid; so that the regularity
condition and the dispersion relations hold. Then we
ask whether knowledge of #;(w,) completely determines
the total phase shift. We will find that it does not, for
there is in fact a large infinite family of real phase
shifts permitted with a given imaginary phase shift.
However, the real phase shifts are still far from arbi-
trary ; we will characterize this family of solutions and
show that there exists a canonical phase shift given by
a dispersion relation which has the minimum real
phase shift conjugate to the given imaginary phase
shift, and all other permissible real phase shifts must
increase with frequency at least as rapidly as the
canonical phase shift.

The fact that the absolute value of the scattering
amplitude still leaves considerable freedom in the
scattering phase can be seen simply as follows. From the
regularity condition we know that the scattering
amplitude 4 (w,) is consistent with strict causality if
and only if it is the boundary value function of a

2 Since the symmetry condition can be introduced at will in
problems of the type we are considering with a freely variable
input, we will assume it to hold throughout this section.
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function A (w) which is bounded and analytic in the
upper half of the complex v plane (w;>0). Supposé we
multiply 4 (w) by a factor Ba(w)= (0—pun)/(0—pa*),
where p, is an arbitrary point in the upper half complex
plane. Since | By(w,)|=1 for all real w, and | B.(w)| <1
throughout the upper half-plane, we see that 4 (w)B,(w)
also satisfies the regularity condition and yields the
same |4 (w)| on the boundary. Hence the absolute
value of 4 (w,) does not determine 4 (w,) or the phase
shift at all uniquely, for we are at liberty to introduce a
zero at any point in the upper half-plane.

Suppose that the non-negative function %;(w,) is
given and we wish to find the most general 4 (w)
satisfying the regularity condition which reduces
almost everywhere on the boundary to a function of
absolute value exp[7:(w.)]. Fortunately, essentially
this mathematical problem has been solved.?® First, in
order for the problem to have any solution at all, the
function must satisfy the inequality?®

* ni(wr)dw,
[,
0 w7'2+1

Then, if this integral is finite, the most general solution
A (w) is of the following form?5:

4(@)=A(@)C (), (4.4)

where 4 () is a bounded, analytic, nonzero function in
the upper half-plane and C(w) is any bounded, analytic
function in the upper half-plane whose boundary
value has the absolute value of unity almost everywhere
on the real axis. [Thus |4 (w,)|= |4 (w.)| for almost
all w,.| These factors can be written

4.3)

A () =exp[ii(w)], (4.5)
where
; *1 o 14wy dv _2w * n:(v)dv
77(60)—; o 1422 i@ v—w—:\l; P—e?’ (4.6)
C(w)=B(w)D(w), (4.7)
where

D() =exp[ +idow], (4.8)

V2—w?

2w f°° da(v)
T Yo

where dj is a non-negative number and a(») is a nonde-
creasing bounded function of » with a derivative that

exists and vanishes for almost all v. B(w) is a “Blaschke
product,” which is a product of a denumerable number

28 For a discussion of related work, see reference 22. I owe the
essential features of the present formulation of this theorem to
Professor Marcel Riesz. See also J. A. Shohat and J. D. Tamarkin,
Problem of Moments, Mathematical Surveys, No. 1 (American
Mathematical Society, New York, 1943), p. 23.

26Tt is clear that there must be some restriction on 7;(wr);
for example, if |4 (w,)]| =0 over an interval of real w,, then the
analytic continuation 4 (w) and then 4 (w,) would be zero every-
where. The necessary and sufficient condition that 4 (w,) is not
“too close to zero too often” is given by the finiteness of the
integral (4.3).
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of terms, each representing a zero of A(w) in the
upper half-plane:

B(“’)=H7»Bn(w)=Hn(w_ﬂn)/(ﬂn*_“’);

where each p,;>0. (4.9)

This term B(w) is of the form already studied by van
Kampen,?” who gives an excellent discussion of the
properties of these products including the fact that,
in order that this product converge, the zeros must be
distributed so that

Zn,u'ni/lﬂn!z<°°. (4:.10)

Thus, from these results the phase shift 7(w) can be
defined in the upper half-plane by

7(w) =7 () +8(w) =7 () +dow

2w % da(v)
+— fo @), (1)

where £(w) is the phase shift of the Blaschke product??:

(@)= =12 nIn[(0—pn)/ (0—pn*)]
=—32n In[ (0—pn) (0+ua")/
(@—pn®) (@+un)]  (412)

Nevanlinna shows that the boundary values of £(w) are
real?? We call the function #(w) the “canonical phase
shift”; it is given by the dispersion integral - (4.6)
which defines a function which is analytic throughout
the upper half-plane and of non-negative imaginary
part there. The terms involving do and «(v) in Eq.
(4.11) are just anomalous terms that can be given the
physical interpretation of infinitely narrow absorption
lines at various finite frequencies [«(r) term] and at
infinite frequency (do term). Thus, in this interpretation,
a complete specification of the absorption requires the
determination of #;(w,) and the sources of the anomalies,
a(v) and dy; if the absorption is given in this complete-
ness, the phase shift is then determined by Eq. (4.11)
up to £(w.), the contribution of an arbitrary Blaschke
product. If we insist that the boundary value function
n(w,) be continuous, the term involving a(v) will be
eliminated. As w approaches w, on the real axis, Eq.
(4.11) becomes the “phase shift form” of the generalized
dispersion relation, and the term #(w) approaches a
real limit #,(w,) almost everywhere while 7;(w) reduces
almost everywhere to the originally given 7:(w,). We
note that each of the three terms in #,(w) is a non-

27 N. G. van Kampen, Phys. Rev. 90, 1072 (1953), Egs. (14)
and (18). In case the symmetry condition is not fulfilled, an
additional factor ¢, must be combined with each term B, in
order to guarantee the convergence of the real part of the phase
of the infinite product B(w). This factor ¢, is of absolute value 1
and is given by gn=—|14u.?|/(14u.?). If we assume the
symmetry condition, we find that we can omit these terms, since
the convergence is guaranteed without them provided we combine
each pair of terms correlated by reflection in the imaginary axis.
Then the remaining terms are on the imaginary axis and only a
finite number of these can give g,=—1, and g,=1 for the
remainder.
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negative, nondecreasing function of frequency. Thus,
of all the possible real phase shifts 5.(w,) correlated
with #;(w,) by strict causality, the canonical phase shift
7+(w,) given by Eq. (4.6) is the one of minimum value
and of minimum rate of increase with frequency. The
usual dispersion integral (4.6) gives us in this sense a
minimal solution; this is the phase shift corresponding
to the amplitude 4 (w) which is the solution of maximum
possible absolute value throughout the upper half of
the complex w plane. As we have seen, other solutions
are obtained from this solution by introduction of the
absorption anomalies given by do and a(») and by the
introduction of a Blaschke product of zeros. The phase
shifts due to the zeros are far from arbitrary [e.g., in
addition to its nondecreasing character, £(w,) satisfies
the condition that its total variation over all real
frequencies= 27N, where N is the number of zeros in
the product, which integer can be either finite of
infinite ]. But causality does not locate these zeros;
other information (e.g., energy of bound states in
particle scattering problems) is needed to determine
them. However, even if this term §(w,) is not deter-
mined, the fact that #,(w,) is minimal gives powerful
inequalities restricting the phase shift once the absorp-
tion is given.

One convenient feature of the phase shift formulation
of the dispersion relations is that it is easily extended to
the case when a limited time advance, @, is permitted,
ie.,, when the causality condition is replaced by:
G(#)=0 for t<—a<0 when F(¢)=0 for {<0. (Such a
weakened causality condition is appropriate for
scattering by a target of finite range.) In this case
A(w) need not be a causal factor, for it can in fact
diverge exponentially in the upper half of the complex
frequency plane; but A4 (w)-exp(iwa) is a causal factor.
Thus (y+a) satisfies the same conditions as % did
before, or the dispersion relations (4.11) are unchanged
except for the addition of a constant term —a.

5. RELAXATION OF THE BOUNDEDNESS
CONDITION

The proof of Sec. 3 used repeatedly the condition
that the absolute value of the scattering amplitude is
bounded. While this condition is normally equivalent to
conservation of energy and is therefore to be expected
in any physically sensible problem, there are idealized
problems in physics in which the scattering amplitude
is unbounded. We shall show in this section how disper-
sion relations can still be derived in such cases, provided
the divergence isno worse than a power of the frequency;
these methods are adequate to cover most problems of
physical interest.

When the generalized scattering amplitude 1is
square-integrable (Sec. 2), causality implies that the
imaginary part determines the real part completely.
When this integrability condition was relaxed to
boundedness (Sec. 3), we found that causality implies
that the real and imaginary parts determine each other
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to within a constant. As the integrability condition is
further relaxed, we shall find that additional arbitrary
constants enter the dispersion relations.

It is easy to illustrate why causality does not give a
complete connection between real and imaginary parts
in the general case. Consider the output G(f) to be
the nth derivative of F(f); then clearly G(¢) is zero so
long as F(¢) remains zero, so causality is satisfied.
The generalized scattering amplitude in this case is
(—1w,)" Similarly, the n-fold integral of F(f) from
— o to ¢ yields a causal output, with 4 (w,)= (—iw,)~"
A more general scattering amplitude satisfying the
causality principle is thus given by a finite sum of
these functions:

A(w,)=

w

(5.1)

N
> Gaw™,
——M

where the a,’s are arbitrary complex numbers; hence
the real and imaginary parts of the sum are entirely
independent of one another, with no dispersion relation
between them. We shall see that the arbitrary constants
@, in this example are typical of the general case.

(a) Functions Diverging at Infinity

Of particular interest in physics are idealized
problems for which A (w,) may diverge at high fre-
quencies. For, example, in the limit of an infinitely
distant scattering center, the forward scattering
amplitude diverges at least as fast as the product of
the frequency and the total cross section o (and o often
approaches a constant or diverges logarithmically).?
To derive a dispersion relation for amplitudes which
diverge at high frequency, it is sufficient to assume that
A(w,) is integrable over any finite frequency interval,
that for some positive integer 7 the function 4 (w,)/w,!
is bounded in the limit of infinite frequency, and that
there is some real frequency A such that the jth deriva-
tive of 4 (w,) exists in some neighborhood about A.%

28 The idealization of infinite distance has produced this
divergence of the amplitude; for any actual observation of
scattering at a distance 7 from a scatterer of lateral dimension &,
the difference in path lengths to the observer from points at the
center of the scatterer and at the edge leads to destructive inter-
ference of these infinitesimal contributions which damps the
forward scattering amplitude for frequencies greater than ¢r/d?%

20 The proof in this section is less elegant mathematically than
that in Sec. 3 in that in Sec. 3 no mathematical assumptions were
made whose physical content was not clear and reasonable, while
here we introduce the assumption that there exists some neighbor-
hood in which the jth derivative of 4 exists. This condition is not
necessary for the existence of a dispersion relation, but it greatly
shortens the proof and leads to the simple form of the dispersion
relation given in Eq. (5.6). The existence of such a neighborhood
on the real axis is valid in all physically interesting cases that we
have encountered, and Eq. (5.6), or the equation that results from
it when the symmetry condition holds, is expected to be adequate
for any physical application. It should be noted that all assump-
tions have been made only on the real frequency axis where
A (wr) has direct physical meaning and no assumptions are
implied about the possibility of analytic continuation into the
complex frequency plane; instead the analytic continuation is a
result®of the proof of the dispersion relation from the causality
principle.
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Since the generalized scattering amplitude may now
be unbounded, a square-integrable input need not
always result in a square-integrable output, and the
Fourier transform of the output may not be well
defined in such cases. To avoid these difficulties, we
can limit consideration to those square-integrable
inputs such that the output is square-integrable. In
particular, we consider the input signal whose Fourier
transform f(w,) is (w,+u)~7, where p is any complex
number of positive imaginary part. Then the output’s
Fourier transform g(w,) =4 (w,)/(w,+u)? is square-
integrable; since (w,+u)~7 is a causal transform, the
input vanishes for £ <0 and hence the causality principle
requires that the output vanish for £ <0 or that 4 (w,)/
(wr+u)? be a causal transform. We now define a new
amplitude function B(w,) by

-1 fd?PA (=)
B(wr)zA(wr)— PZ=:0 (dw,.”)wr=)\T‘

Then B(w.)/(w,+u)? is a causal transform, since the
sum of a finite number of causal transforms is a causal
transform and A (w,)/(w-+u)? and (w,—N)?/ (wstw)?
for p<j—1 are causal transforms. Furthermore,
B(w,)/(w,—\)? is bounded near w,=X\ (here we use the
existence of the jth derivative of 4 or B) and is a
square-integrable function. We shall now show that
B(w,)/(ws—\)7 is a causal transform.

This proof is done in steps by introducing the
functions

Cm(wr) =

(5.2)

B (‘-"r)
(wr—k) m (wr'l‘l-‘) i=m

for m=1,2,---,4.

(5.3)

B(w,) was so constructed that C,,(A\)=0, and each
Cu(ws) and Cun(w,)/(w,—\) is square-integrable. We
shall prove that, if C(w.)/ (ws4u) is a causal transform,
then Cn(ws)/(Wr—AN)=Cmni1(ws)/(w,+u) is a causal
transform. For Cp(w,)/(w,+u) is a causal transform
if and only if it satisfies almost everywhere the Hilbert
transform relations (2.5), that is

Cm(wr)__lzj Cun(v)dv
wr+ﬂ ) —w (V—l—ﬂ)(ﬂ—wr).

R

(5.4)
Since
wrtp (wr—N) (u+))

R G—0) =N —ar) (tn)—ar)

we can obtain directly from Eq. (5.4):
Cu(v)dv
=N =)
Cn(v)dv

(i) (=2

Colar) = (=N f:o

™

NP =
) f (5.5)

e
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Comparison of the last term in Eq. (5.5) with Eq. (5.4)
shows that this term is just C,.(A). [Since Eq. (5.4)
can fail to hold on a set of points of measure zero,
it is possible @ priori that Eq. (5.4) fails at w,=A\.
However, in this case we can replace A by choosing a
new point from within the neighborhood in which the
jth derivative of 4 (w,) exists; since this neighborhood
has a positive measure, it is always possible to choose
X so that the Hilbert transforms that we need do exist
at w,=N\, and we shall henceforth assume that this has
been done.] Since C,(A\)=0, the second integral in
Eq. (5.5) vanishes and Eq. (5.5) is then recognized to
be the Hilbert transform formula for C(w.)/(w-—N\);
since it satisfies the Hilbert transform formula connect-
ing its real and imaginary parts, Cu(ws)/(@—X\)
=Cmi1(wr)/ (w,+u) is a causal transform.

We can now apply repeatedly the proof of the last
paragraph, beginning with the fact that Cy(w.)/ (w,~+u)
= B(w»)/ (w,+u)? is a causal transform, to obtain that
Cj(wr)/ (wr—N)=B(w,)/(wr—N)7 is a causal transform
and therefore satisfies

(w,—N)7  pt= B(vr)dv
P —_— 5.6
Y fm »—=N)i(r—uw,) (56)

 Ble)=

Therefore, the real and imaginary parts of A(w,)
determine each other through the dispersion relation
(5.6) except for the j-arbitrary complex numbers in
(5.2) which give the value of 4 and its first (j—1)
derivatives at w,=A\.

If we are given only 4;(w,), we can find Bi(w,) in
(5.2) and can then always find B,(w,) from (5.6), and
thus determine A,(w.) except for,the j-arbitrary
constants. Thus (5.6) is a useful dispersion relation in
the usual sense; usually A is conveniently chosen as
zero although it may happen that the necessary
derivatives diverge at the origin, in which case another
point must be selected for A.

(b) Functions Diverging at Finite Point

In some physical theories the generalized scattering
amplitude may diverge at a finite frequency. For
example, the impedance of an ideal capacitance diverges
at the origin as the inverse of the frequency.®* Suppose
A (wy) diverges at w,=a, but is such that (w,—a)?4 (w»)
remains finite. Then, if this is the only point of diver-
gence, a dispersion relation for (w,— )4 (w,) such as in
Eq. (5.6) can be derived. Similarly any finite number of
divergences, each no worse than a finite power, can be
treated. The factor (w,—@)? increases the power of
divergence near infinite frequency by ¢ and thus adds
g arbitrary constants to the dispersion relation; these
constants can in turn be regarded as determining the ¢

3 If the nonzero conductance that is inevitably in parallel with
any actual condenser is included, the pole in the impedance
functions lies in the lower half of the complex plane and the
impedance is a causal factor.
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arbitrary coefficients in the expansion of A4 (w,) about
w,=a.

In addition to the integrability or boundedness
condition, one might consider altering other assump-
tions of the proof of Sec. 3. The linearity and time-
invariance of the connection are essential conditions in
this discussion of the equivalence of causality and the
dispersion relations, and we are doubtful if these
restrictions can be relaxed. However, the above proof
also assumed that the input was freely variable and
could be chosen to be any function of integrable square.
In many interesting physical problems, the input is
constrained ; for example, a certain range of frequencies
may be excluded as in the Klein-Gordon or Dirac
equations. In such a case, the restrictions placed on
the generalized scattering amplitude by strict causality
are less stringent; we hope to return in a later paper to
a discussion of the consequences of strict causality for
such a constrained input system.

6. DISCUSSION

In this paper we have investigated analytic conditions
and dispersion relations which are necessary and
sufficient for a hypothesis of strict causality. It is an
interesting open question whether or not strict causality
is a valid physical hypothesis. As shown by Dirac®
and by Wheeler and Feynman,® strict causality is not
satisfied in the simpler forms of classical electrody-
namics. However, this classical result is irrelevant to
the question of whether such acausal effects actually
exist, for the precursor effects of the classical theory
are due to high-energy phenomena and to radiative
reaction which we know are not correctly described by
classical theory. Stueckelberg®® and Fierz* has shown

31 P, A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).

32 J. A. Wheeler and R. P. Feynman, Revs. Modern Phys. 17,
157 (1945).

B E. C. G. Stueckelberg, Helv. Phys. Acta 19, 241 (1946).
# M. Fierz, Helv. Phys. Acta 23, 731 (1950).
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shown that the present form of quantum electrody-
namics is strictly causal if and only if we follow the
rule for the time ordering of all factors in the .S matrix.
Gell-Mann, Goldberger, and Thirring®® and many
others have recently shown how to obtain dispersion
relations for quantum field theories as consequences of
strict causality. Whether in a future better theory
strict causality would be exactly valid, or could even
be accurately defined, is an unsettled problem. However,
we adopt the attitude that we should employ the disper-
sion relation, at least until it is shown to be faulty,
and we shall proceed to apply it to special problems in
following papers.

Even if strict causality should prove to be invalid or
undefineable in future theories, it is to be expected
that macroscopic acausality involving propagation of
appreciable energy over large space-like intervals would
still be forbidden. We have investigated a conceivable
alternative to strict causality, a weaker “principle of
limiting velocity”: “No energy can be transmitted to
infinite distance at a velocity greater than ¢.” This
requirement can be shown to be satisfied if and only if
the group velocity does not exceed ¢ for any frequency
at which the absorption coefficient is zero; it provides
no connection between the refractive index and
absorption at other frequencies and hence is an empty
restriction in cases of physical interest.
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