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S

The orthogonal multitaper framework for cross-spectral estimators provides a simple
unifying structure for determining the corresponding statistical properties. Here cross-
spectral estimators are represented by a weighted average of orthogonally-tapered cross-
periodograms, with the weights corresponding to a set of rescaled eigenvalues. Such a
structure not only encompasses the Thomson estimators, using Slepian and sine tapers,
but also Welch’s weighted overlapped segment averaging estimator and lag window esti-
mators including frequency-averaged cross-periodograms. The means, smoothing and
leakage biases, variances and asymptotic distributions of such estimators can all be formu-
lated in a common way; comparisons are made for a fixed number of degrees of freedom.
The common structure of the estimators also provides a necessary condition for the
invertibility of an estimated cross-spectral matrix, namely that the weight matrix of the
estimator written in bilinear form must have rank greater than or equal to the dimension
of the cross-spectral matrix. An example is given showing the importance of small leakage
and thus illustrating that the various estimators need not be equivalent in practice.

Some key words: Cross-spectrum; Lag-window; Multiple coherence; Multitapering; Segment averaging; Wishart
distribution.

1. I

Estimation of the elements of the cross-spectral matrix for a set of stationary time
series is a widely used statistical procedure throughout the sciences, providing not only
spectral but, after matrix inversion, important frequency domain quantities such as partial
and multiple coherence. Thomson (1982) introduced a form of spectral and cross-
spectral estimation built around averages of multiply-tapered periodograms or cross-
periodograms. These estimators are intuitively very appealing (Percival & Walden, 1993),
but have sometimes been considered to be nothing but a reformulation of Welch’s weighted
overlapped segment averaging estimator or indeed roughly equivalent to traditional lag
window estimators (McCloud, Scharf & Mullis, 1999).

This paper demonstrates that the orthogonal multitaper framework for cross-spectral
estimators provides a simple unifying structure for examining the statistical properties of
commonly encountered estimators. Section 2 develops the representation of cross-spectral
estimators in terms of a weighted average of orthogonally-tapered cross-periodograms,
with the weights corresponding to a set of rescaled eigenvalues. The means, smoothing
and leakage biases, variances and asymptotic distributions of such estimators are formu-
lated in a common way in § 3.
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As shown in § 4, such a representation not only encompasses the Thomson estimators,
using Slepian and sine tapers, but also Welch’s weighted overlapped segment averaging
estimator and lag window estimators including frequency-averaged cross-periodograms.
Smoothing and leakage bias and spectral window comparisons are made within this
framework by fixing the number of degrees of freedom of the estimator. In § 5 it is shown
that the common structure of the estimators also provides a necessary condition for the
invertibility of estimated cross-spectral matrices for uses such as coherence estimation.
Finally in § 6 an example is given showing the importance of small leakage, thus illustrating
that differences between the estimators can be critical and hence that the various estimators
are not all equivalent in practice.

2. O  - 

2·1. Background

Let {X
l
(t)} (l=1, . . . , L ) denote a set of L real-valued zero-mean second-order station-

ary processes which are also jointly stationary; that is s
lm

(t), the covariance between
X
l
(t+t) and X

m
(t), depends only on t. Provided W

t
|s
lm

(t) |<2 (l, m=1, . . . , L ) as
assumed throughout, then the cross-spectrum between any two series {X

l
(t)} and {X

m
(t)}

exists and is defined as

S
lm

( f )=D ∑
2

t=−2
s
lm

(t)e−i2pftD, | f |∏ f
N
,

where D is the sample interval and f
N
=1/(2D ) is the Nyquist frequency. This is the (l, m)th

element of the cross-spectral matrix S( f ). For a fixed frequency f such that 0∏ f∏ f
N
, let

us define the complex demodulate of the original process by Z
l
(t)¬X

l
( t) exp(i2pftD ),

which corresponds to shifting all the frequency components of {X
l
(t)} by f. The process

{Z
l
(t)} is also a zero-mean stationary process. We consider cross-spectrum estimators

which are bilinear forms of any two series {X
l
(t)}, {X

m
(t)} (Bloomfield, 1976, p. 241). In

particular we consider the class of bilinear estimators which can be written

SC
lm

( f )=D ∑
N

s=1
∑
N

t=1
X
l
(s)Q(s, t)ei2pf(t−s)DX

m
(t)=DZH

l
QZ

m
, (1)

where superscript H denotes complex-conjugate transpose, Z
l

is the column vector of
Z
l
(1), . . . , Z

l
(N) values, and the elements Q(s, t) of the weight matrix are real-valued, are

not functions of frequency and do not depend on {Z
l
(t)} or {Z

m
( t)}. Additionally, the

estimator must satisfy the same property as the true cross-spectrum, namely SC
lm

( f )=
SCH
ml

( f ). However, SCH
ml

( f )=DZH
l
QHZ

m
and a comparison with (1) shows that Q=QH and,

since Q is real, Q must be symmetric.
In order that the estimator is nonnegative real when l=m, Q must also be positive

semidefinite, that is SC
ll
( f )=DZH

l
QZ

l
�0 (l=1, . . . , N); in this case Grenander &

Rosenblatt (1984, p. 129) show that for any linear process there exists an estimator with
a Toeplitz form for Q having mean squared error that is asymptotically not larger than
that of an asymptotically unbiased estimator with non-Toeplitz form for Q.

The spectral decomposition of a real symmetric positive semidefinite matrix gives

Q= ∑
N−1

k=0
l
k
u
k
uH
k
,

where the real-valued column vectors u
k
(k=0, . . . , N−1) are the eigenvectors of Q, and



769Multitaper multivariate spectral estimation

l
k
�0 (k=0, . . . , N−1) are the corresponding real eigenvalues. Here u

k
is the column

vector of u
k
(1), . . . , u

k
(N) values. From (1),

SC
lm

( f )=D ∑
N−1

k=0
l
k q ∑N

s=1
u
k
(s)X

l
(s)e−i2pfsDr q ∑N

t=1
u
k
(t)X

m
(t)ei2pftDr . (2)

The system is normalised so that du
k
d2=1 (k=0, . . . , N−1). We note that each compo-

nent of the sum is weighted by the kth eigenvalue of Q. Since we are assuming Q to be
positive semidefinite, its rank K can be taken to satisfy 1∏K∏N; we assume K>0.
Then, for K<N, l

K
= . . .=l

N−1
=0, and, if we define l

k
¬c

k
/K, h

k
(t)¬u

k
( t)c1/2

k
(k=0, . . . , K−1), then the cross-spectrum estimator can be written more simply as

SC
lm

( f )=
D

K
∑
K−1

k=0
c
k q ∑N

s=1
u
k
(s)X

l
(s)e−i2pfsDr q ∑N

t=1
u
k
(t)X

m
(t)ei2pftDr (3)

=
D

K
∑
K−1

k=0
q ∑N
s=1

h
k
(s)X

l
(s)e−i2pfsDr q ∑N

t=1
h
k
(t)X

m
(t)ei2pftDr . (4)

Hence all bilinear estimators of the form (1) with a real-valued, symmetric, positive semi-
definite matrix Q of weights can be written as an average of K direct cross-spectrum
estimators; K is the rank of Q. The data taper of the kth estimator is defined by
{h
k
(t)¬u

k
( t)c1/2

k
}.

2·2. Multitaper multivariate spectrum estimator

Let X(t) denote the real-valued column vector with components X1 (t), . . . , XL
(t). For

k=0, . . . , K−1 we define the column vector J
k
( f ) to be the vector Fourier transform

with the same eigenvector values u
k
(t) multiplying all components of X(t). Then

J
k
( f )¬DD ∑

N

t=1
u
k
(t)X(t)e−i2pftD.

By the spectral representation theorem (Brockwell & Davis, 1991, p. 405) the real-valued
column vector X(t) can be written

X(t)= P fN
−f
N

ei2pf∞tD dZ( f ∞),

where the components dZ1( f ), . . . , dZ
L
( f ) of dZ( f ) are individually orthogonal and

jointly cross-orthogonal:

E{dZ
l
( f ∞ ) dZH

m
( f )}=qSlm ( f ) df if f= f ∞,

0 otherwise.

Each X
l
(t) (l=1, . . . , L ) is real, so that X

l
( t)=XH

l
(t) and thus dZ

l
( f )=dZH

l
(−f ). Now

J
k
( f )=D−D P fN

−f
N

U
k
( f− f ∞) dZ( f ∞), (5)

where

U
k
( f )¬D ∑

N

t=1
u
k
(t)e−i2pftD.
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From (3) the estimator of the L×L cross-spectral matrix S( f ) is given by

SC ( f )=
1

K
∑
K−1

k=0
c
k
J
k
( f )JH

k
( f ). (6)

Equation (6) defines a multitaper multivariate spectral estimator. For j, k=0, . . . , K−1,
the orthogonality properties of the dZ( f ) components give

cov{J
j
( f ), J

k
( f )}=E{J

j
( f )JH

k
( f )}=

1

D P fN
−f

N

U
j
( f− f ∞ )UH

k
( f− f ∞ )S( f ∞ ) df ∞. (7)

Setting j=k we have

E{J
k
( f )JH

k
( f )}=

1

D P fN
−f

N

|U
k
( f− f ∞ ) |2S( f ∞) df ∞,

and hence, from (6),

E{SC ( f )}= P fN
−f

N

U( f− f ∞)S( f ∞ ) df ∞,

with

U( f )¬
1

KD
∑
K−1

k=0
c
k
|U

k
( f ) |2. (8)

The function U( f ) is the overall spectral window of the multitaper estimator.
The eigenvectors u

k
and nonnegative eigenvalues c

k
are the key ingredients which differ-

entiate between different cross-spectrum estimators. Their joint form governs the overall
spectral window U( f ) and the smoothing and leakage biases discussed in § 3·1, while the
disposition of the c

k
alone determine the equivalent degrees of freedom of the estimator.

Moreover, as shown in § 5, the number of nonzero eigenvalues must be greater than or
equal to the number of processes, L , if the estimated cross-spectrum matrix is to be
invertible.

2·3. Properties of the tapers and their Fourier transforms

Here we list properties of the tapers u
k
and their Fourier transforms U

k
( . ) of which use

will be made throughout the paper. The first three properties follow automatically from
the definitions. Property (iv) follows from a suitable scaling of Q and is justified in § 3·1.
Property (v) is sufficient to guarantee asymptotic unbiasedness and in § 4 is justified for
all the cross-spectrum estimators of interest to us. Condition (vi) is required only for the
asymptotic distribution results of § 3·3 and in § 4 is proved for some of the cross-spectrum
estimators of interest to us. Finally, property (vii ) is a practical, rather than theoretical,
design requirement involving the choice of the resolution bandwidth. The following items
will be referred to in the paper as ‘taper property (i )’ and so on.

(i) We require that {u
k
, k=0, . . . , K−1} are orthonormal.

(ii ) We require that {U
k
( . ), k=0, . . . , K−1} are periodic with period 1/D.

(iii ) Since Q is symmetric, the real tapers, when centred, are either symmetric or skew-
symmetric. The corresponding Fourier transforms are thus symmetric or skew-symmetric
respectively. When ordered by corresponding distinct eigenvalues, the eigenvectors are
automatically alternately symmetric or skew-symmetric; if the eigenvalues are not distinct,
the eigenvectors are forcibly ordered to be alternately symmetric or skew-symmetric.



771Multitaper multivariate spectral estimation

(iv) The overall spectral window U( f ) is periodic with period 1/D and integrates to
unity over −f

N
to f

N
.

(v) For k=0, . . . , K−1, each |U
k
( f ) |2 behaves like Dd( f ), where d( .) is the Dirac delta,

as N2. Hence, for each taper the designed resolution bandwidth 2W, say, decreases
with increasing sample size; that is W0 as N2.

(vi) The discrete tapers {u
k
, k=0, . . . , K−1} correspond to sampling K rescaled

bounded taper functions, each with support on the same finite-length interval of the real
line, with the taper functions enjoying orthonormality properties on this finite interval.

(vii) The designed resolution band, namely | f |∏W, within which each individual |U
k
( . ) |

and the overall spectral window U(.) are concentrated, is assumed to have been chosen
narrow enough to ensure the components of S( f ) are essentially constant across it; Jenkins
& Watts (1968, p. 280) call this empirical design procedure ‘window closing’ and the issue
is explored in detail in Percival & Walden (1993).

3. S 

3·1. Biases

If X(t) is a multivariate white noise process its multivariate spectrum is given by S( f )=
DC, where C is the covariance matrix of X(t). For the multitaper multivariate spectrum
estimator to be unbiased for multivariate white noise we require E{SC ( f )}=DC, but in this
case

E{SC ( f )}= P fN
−f

N

U( f− f ∞ )S( f ∞ ) df ∞=DC P fN
−f

N

U( f− f ∞) df ∞,

and since, by taper property (ii), U( f ) is periodic, the requirement is that

P fN
−f

N

U( f ) df=
1

KD
∑
K−1

k=0
c
k P fN
−f

N

|U
k
( f ) |2 df=

1

KD
∑
K−1

k=0
c
k
D ∑

N

t=1
u2
k
(t)=

1

K
∑
K−1

k=0
c
k
=1.

Thus for unbiasedness in the multivariate white noise case we must have W c
k
=K. We

shall require this, and since l
k
=c

k
/K we hence require W l

k
=1. However, W l

k
=tr (Q),

where tr (Q) is the trace of Q, and hence our Q matrix must be scaled so that tr (Q)=1.
All our examples in § 4 satisfy this requirement.

However, by taper property (i), u
j
( . ) and u

k
( . ) are orthonormal, and, by property (ii),

U
j
( . ) and U

k
( . ) are periodic with period 1/D, so the integral becomes

P fN
−f

N

U
j
( f )UH

k
( f ) df=D2 ∑

N

t=1
∑
N

s=1
u
j
(t)u

k
(s) P fN
−f

N

e−i2pf(t−s)D df=D ∑
N

t=1
u
j
(t)u

k
(t)=Dd

j,k
.

(9)

Setting j=k we see that the integral of |U
k
( f ) |2 is thus D, which combined with the

requirement that W c
k
=K means that U( f ) in (8) integrates to unity, justifying the stated

taper property (iv), since U( f ) is clearly periodic with the same period as the |U
k
( f ) |.

For a fixed number K of tapers and for continuous spectra, SC ( f ) will be asymptotically
unbiased if taper property (v) holds, that is each |U

k
( f ) |2 behaves like Dd( f ), where d( . )

is the Dirac delta, as N2. In § 4 asymptotic unbiasedness is shown to hold for all the
multitaper estimators discussed.

The smoothing bias for a general element SC
lm

( f ) of the spectral matrix is defined as
b1 ( f )=E{SC

lm
( f )}−S

lm
( f ). Given taper property (iv) and the fact that S

lm
( f ) is clearly
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periodic with period 1/D, we can follow the standard approach (Percival & Walden, 1993,
p. 245) which assumes that S

lm
( f ) can be expanded in a Taylor series about f, to find that

a good approximation to the bias is given by

b1( f )j
S◊
lm

( f )

2 P fN
−f

N

w2U(w) dw=
S◊
lm

( f )

2
b
1
,

say, where S◊
lm

( f ) is the second derivative of the cross-spectrum. The integral in this
expression can be written

b1=
1

KD
∑
K−1

k=0
c
k P fN
−f

N

w2 |U
k
(w) |2 dw=

D

K
∑
K−1

k=0
c
k
∑
N

l=1
∑
N

m=1
u
k
(l)u

k
(m) P fN

−f
N

w2e−i2pw(l−m)D dw

=
1

K
∑
K−1

k=0
c
k
uH
k
Ru

k
, (10)

where the matrix R has ( l, m)th element

R
lm
=q1/(12D2) if l=m,

(−1)l−m/{2(pD )2( l−m)2} if lNm.
(11)

The form of R follows from Riedel & Sidorenko (1995, Lemma 3.2). Hence the smoothing
biases b1( f ) of different multitaper cross-spectrum estimators with different smoothing
windows can be compared by computing the real, positive quantity b1 in (10).

Now write the cross-spectrum as S
lm

( f )=|S
lm

( f ) | exp{ih
lm

( f )}, where |S
lm

( f ) | is the
cross-amplitude spectrum and h

lm
( f ) is the phase spectrum. Similarly write SC

lm
( f )=

|SC
lm

( f ) | exp{ih@
lm

( f )}, with h@
lm

( f )=h
lm

( f )+rh
lm

( f ), where rh
lm

( f ) is a small increment
such that cos{rh

lm
( f )}j1 and sin{rh

lm
( f )}j rh

lm
( f ). Then

E{ |SC
lm

( f ) |}−|S
lm

( f ) |j
b1
2 C d2df 2

|S
lm

( f ) |−|S
lm

( f ) | q ddf
h
lm

( f )r2D ,
E{h@

lm
( f )}−h

lm
( f )j

b1
2 Cq ddf

h
lm

( f )r q ddf
log |S

lm
( f ) |2r+ d2

df 2
h
lm

( f )D .
The second expression can also be found in Jenkins & Watts (1968, p. 400). For the bias
in the estimator of the cross-amplitude spectrum, the second term on the right is the
misalignment bias. The phase spectrum will be steeper the larger the time delay between
X
l
(t) and X

m
(t), and hence the bias can be minimised by aligning the series. Now the first

derivative of the phase spectrum is likely to dominate the second derivative; for example,
a pure delay relationship gives a straight line for the phase spectrum. Hence the bias in
the estimator of the phase spectrum is likely to be large only when the derivative of
log |S

lm
( f ) |2 is large.

The smoothing bias compares the mean of the estimator with the exact value at a point
frequency f, but, for spectra which vary rapidly and/or have a large dynamic range, a
serious concern is leakage out of the main resolution bandwidth of U( f ) to other parts
of the cross-spectrum. We define a ‘leakage’ or ‘broad-band’ bias as

b2 ( f ; W )= P f−W
−f

N

U( f− f ∞)S
lm

( f ∞) df ∞+ P fN
f+W

U( f− f ∞)S
lm

( f ∞ ) df ∞,

where f−W to f+W is the resolution band for U( f− f ∞ ). If we assume that



773Multitaper multivariate spectral estimation

|S
lm

( f ) |∏|S
lm
|max<2 over−f

N
∏ f∏ f

N
, the complex quantity b2 ( f ; W ) can be bounded:

|b2 ( f ; W ) |∏ KP f−W
−f

N

U( f− f ∞)S
lm

( f ∞ ) df ∞ K+ KP fN
f+W

U( f− f ∞ )S
lm

( f ∞) df ∞ K
∏ P f−W
−f

N

U( f− f ∞) |S
lm

( f ∞ ) | df ∞+ P fN
f+W

U( f− f ∞) |S
lm

( f ∞) | df ∞

∏|S
lm
|max C1− PW

−W
U( f ) dfD=|Slm |maxb2(W ).

However,

b2 (W )=1−
1

KD
∑
K−1

k=0
c
k PW
−W
|U

k
( f ) |2 df

=1−
D

K
∑
K−1

k=0
c
k
∑
N

l=1
∑
N

m=1
u
k
(l)u

k
(m) PW

−W
e−i2pf(l−m)D df

=1−
1

K
∑
K−1

k=0
c
k
uH
k
P(W )u

k
, (12)

where the (l, m)th element of the matrix P(W ) is

P
lm

(W )=q2WD if l=m,

sin{2pW (m− l)D}/{p(m− l)} if lNm.
(13)

Thus the leakage biases |b2 ( f ; W ) | of different multitaper cross-spectrum estimators with
different smoothing windows can be compared by computing the real, positive bounding
constant b2(W ) in (12). For multivariate white noise we have b2( f ; W )=DC

lm
b2 (W ), that

is, the leakage bias may be computed exactly.

3·2. Variance of estimator

Suppose we let J
k;l

( f ) denote the lth component of J
k
( f ). Then the (l, m)th element of

SC ( f ) is given by

SC
lm

( f )=
1

K
∑
K−1

k=0
c
k
J
k;l

( f )JH
k;m

( f ),

and

var{SC
lm

( f )}=
1

K2
∑
K−1

j=0
∑
K−1

k=0
c
j
c
k
cov{J

j;l
( f )JH

j;m
( f ), J

k;l
( f )JH

k;m
( f )}. (14)

Suppose the J ’s have a multivariate complex Gaussian distribution. For finite sample
sizes this will be the case if X(t) is multivariate Gaussian. The complex version of the
Isserlis theorem (Koopmans, 1974, p. 27) then gives

cov{J
j;l

( f )JH
j;m

( f ), J
k;l

( f )JH
k;m

( f )}=E{J
j;l

( f )JH
k;l

( f )}E{JH
j;m

( f )J
k;m

( f )}

+E{J
j;l

( f )J
k;m

( f )}E{JH
j;m

( f )JH
k;l

( f )}. (15)
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From (7) we obtain

E{J
j;l

( f )JH
k;l

( f )}=
1

D P fN
−f

N

U
j
( f− f ∞ )UH

k
( f− f ∞ )S

ll
( f ∞ ) df ∞.

The other expectation terms in (15) follow readily from (5). By taper property (vii), S( f )
is essentially constant across the designed resolution bandwidth of all the U

k
( . ), so that

E{J
j;l

( f )JH
k;l

( f )}E{JH
j;m

( f )J
k;m

( f )}j
S
ll
( f )S

mm
( f )

D2 KP fN
−f

N

U
j
( f− f ∞ )UH

k
( f− f ∞ ) df ∞ K2.

Using (9) we thus obtain

E{J
j;l

( f )JH
k;l

( f )}E{JH
j;m

( f )J
k;m

( f )}jS
ll
( f )S

mm
( f )d

j;k
. (16)

Making use of taper property (iii), we find that

E{J
j;l

( f )J
k;m

( f )}E{JH
j;m

( f )JH
k;l

( f )}j (−1)j+k
|S
lm

( f ) |2
D2 KP fN

−f
N

U
j
( f+ f ∞)U

k
( f− f ∞) df ∞ K2.

(17)

Since, by taper property (ii), U
j
( . ) and U

k
( .) are periodic functions with period 1/D, we

have

P fN
−f

N

U
j
( f+ f ∞)U

k
( f− f ∞) df ∞= P fN

−f
N

U
j
( f ∞ )U

k
(2f− f ∞) df ∞=D ∑

N

t=1
u
j
(t)u

k
(t)e−i4pftD.

If we let V
j,k

(2f )=|W u
j
(t)u

k
(t) exp(−i4pftD ) |2 then (14), (16) and (17) give

var{SC
lm

( f )}j
1

K2
∑
K−1

j=0
∑
K−1

k=0
c
j
c
k
{S
ll
( f )S

mm
( f )d

j,k
+ (−1)j+k |S

lm
( f ) |2V

j,k
(2f )}

=
S
ll
( f )S

mm
( f )

K2
∑
K−1

k=0
c2
k
+
|S
lm

( f ) |2
K2

∑
K−1

j=0
∑
K−1

k=0
(−1)j+kc

j
c
k
V
j,k

(2f )

=
S
ll
( f )S

mm
( f )

K2
∑
K−1

k=0
c2
k

+
|S
lm

( f ) |2
K2 q ∑K−1

k=0
c2
k
V
k,k

(2f )+ ∑
K−1

j=0
∑
kNj

(−1)j+kc
j
c
k
V
j,k

(2f )r .
When f=0,±f

N
, V

k,k
(2f )=1 and V

j,k
(2f )=0 ( jNk), since the tapers are orthonormal,

and |S
lm

( f ) |2=S2
lm

( f ), as S
lm

( f ) is real. Hence,

var{SC
lm

( f )}j{S
ll
( f )S

mm
( f )+S2

lm
( f )} ∑

K−1

k=0
c2
k
/K2 ( f=0,±f

N
).

The expression for V
j,k

(2f ) was examined in Walden, McCoy & Percival (1994, p. 481).
When W<| f |< f

N
−W, the term W u

j
(t)u

k
(t) exp(−i4pftD) does not overlap its conjugate,

and hence V
j,k

(2f ) terms contribute negligibly. Thus,

var{SC
lm

( f )}jS
ll
( f )S

mm
( f ) ∑

K−1

k=0
c2
k
/K2 (W<| f |< f

N
−W ).

For unbiasedness for multivariate white noise, however, we require W c
k
=K, and hence,
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if we define

n=A ∑K−1
k=0

c
kB2N ∑K−1

k=0
c2
k
, (18)

we can write

var{SC
lm

( f )}jqSll ( f )S
mm

( f )/n (W<| f |< f
N
−W ),

{S
ll
( f )S

mm
( f )+S2

lm
( f )}/n ( f=0,±f

N
).

(19)

This result illustrates the pivotal role played by the eigenvalues of Q: different
‘distributions’ of eigenvalues give rise to different values of n. Note that when l=m we
get

var{SC
ll
( f )}jqS2ll( f )/n (W<| f |< f

N
−W ),

2S2
ll
( f )/n ( f=0,±f

N
).

3·3. Asymptotic distribution of spectrum estimator

In § 3·2 we derived second moment results by assuming X(t) to have an N-dimensional
multivariate Gaussian distribution. Suppose now we assume that the number of tapers K
is fixed, but let N2. From taper property (v), the resolution width decreases with
increasing sample size; that is W0 as N2. We now define a mixing assumption
(Brillinger, 1981, pp. 9, 26) on our multivariate process.

Mixing Assumption. We assume that X(t) is strictly stationary with components
X1 (t), . . . , XL

(t), all of whose moments exist and such that

∑
2

t
1
,...,t

j−1
=−2

|c
a
1
,...,a

j

(t1 , . . . , tj−1 , 0) |<2

for a1 , . . . , aj=1, . . . , L and j=2, 3, . . . , with c
a
1
,...,a

j

( t1 , . . . , tj) denoting the joint cumu-
lant function of order j.

We note that in the multivariate Gaussian case the mixing assumption corresponds to
our existing assumption that W

t
|s
lm

(t) |<2 (l, m=1, . . . , L ).
Under the Mixing Assumption and the assumption that taper property (vi) holds, it

follows from Brillinger (1981, p. 235) that J
k
( f ) is distributed asymptotically as

J
k
( f )~qNC

L
{0, S( f )} ( fN0,±f

N
),

N
L
{0, S( f )} ( f=0,±f

N
),

where NC
L

{0, S( f )} denotes the dimension-L complex Gaussian distribution with mean
zero and covariance matrix S( f ), and N

L
{0, S( f )} denotes the real equivalent. Moreover,

J
k
( f )JH

k
( f ) is distributed asymptotically as

J
k
( f )JH

k
( f )~qWC

L
{1, S( f )} ( f N0,±f

N
),

W
L
{1, S( f )} ( f=0,±f

N
),

whereWC
L

{1, S( f )} denotes the dimension-L complex Wishart distribution with one degree
of freedom, and W

L
{1, S( f )} denotes the real equivalent (Brillinger, 1981, pp. 89–90).

Now let the L×L matrix-valued complex random variable C(n) ( f ) have the complex
Wishart distribution with n degrees of freedom, that is C(n)( f )~WC

L
{n, S( f )}, and let the
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L×L matrix-valued real random variable R(n)( f ) have the real Wishart distribution with
n degrees of freedom, that is R(n)( f )~W

L
{n, S( f )}. Then (Brillinger, 1981, p. 90)

E{(1/n)C(n)( f )}=S( f ), var{(1/n)C(n)
lm

}=S
ll
( f )S

mm
( f )/n,

where C(n)
lm

denotes the (l, m)th element of C(n), and (Kendall, 1975, pp. 77–8)

E{(1/n)R(n)( f )}=S( f ), var{(1/n)R(n)
lm

}={S
ll
( f )S

mm
( f )+S2

lm
( f )}/n.

Hence SC ( f ) can be written as

SC ( f )¬q(1/K ) WK−1
k=0

c
k
C(1)( f ) ( f N0,±f

N
),

(1/K )WK−1
k=0

c
k
R(1)( f ) ( f=0,±f

N
).

The fact that E{C(1)( f )}=E{R(1)( f )}=S( f ), combined with W c
k
=K, means that

E{SC ( f )}=S( f ), so that asymptotic unbiasedness is assured.
Further, from Brillinger (1981, p. 519) we know that since the tapers are orthonormal

then for f N0,±f
N

the J
k
( f ) (k=0, . . . , K−1) are asymptotically independent multivari-

ate complex Gaussian, and hence the J
k
( f )JH

k
( f ) (k=0, . . . , K−1) are independently

distributed, each with the complex Wishart distribution with one degree of freedom. For
f=0,±f

N
the J

k
( f ) (k=0, . . . , K−1) are asymptotically independent multivariate

Gaussian, and hence the J
k
( f )JH

k
( f ) (k=0, . . . , K−1) are independently distributed, each

with the real Wishart distribution with one degree of freedom. Hence, asymptotically,

var{SC
lm

( f )}=qSll ( f )S
mm

( f )/n ( f N0,±f
N
),

{S
ll
( f )S

mm
( f )+S2

lm
( f )}/n ( f=0,±f

N
).

(20)

Since W0 as N2 we see that (19) and (20) agree asymptotically.
For independent C(1)

k
~WC

L
{1, S( f )} (k=0, . . . , K−1) we know that

1

K
∑
K−1

k=0
C(1)
k
~

1

K
WC
L

{K, S( f )},

Brillinger (1981, pp. 89–90). An analogous result holds for the real Wishart distribution
(Seber, 1984, p. 21). Hence, if c

k
=1 for k=0, . . . , K−1, giving n=K, we have that

asymptotically

SC ( f )~q(1/n)WC
L

{n, S( f )} ( fN0,±f
N
),

(1/n)W
L
{n, S( f )} ( f=0,±f

N
).

(21)

If c
k
N1 for k=0, . . . , K−1, we can approximate the asymptotic distribution of SC ( f ) by

(21), with n given by (18), which yields the correct mean and variance for SC ( f ); as a result
we call n in (18) the equivalent degrees of freedom of the estimator.

4. C    

Here we show that a number of well-known cross-spectrum estimators can be readily
written in the form (3). We justify taper property (v), and where appropriate (vi), and
examine the asymptotic statistical properties of the estimators. We also compare their
smoothing and leakage bias for fixed degrees of freedom n. Some additional illustrative
figures can be found at http://stats.ma.ic.ac.uk/Aatw.
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4·2. Minimising leakage: Slepian tapers

Thomson (1982) and Walden (1991) used ‘Slepian’ multitapers in cross-spectrum
estimation. The taper design concentrates on sidelobe suppression. The first of the
sequences, {u(S)

0
( t), t=1, . . . , N}, is chosen such that its corresponding spectral window

|U0( f ) |2 maximises the concentration ratio over the chosen interval [−W (S), W (S)] with
design bandwidth 2W (S):

PW(S)
−W(S)

|U0( f ) |2 dfNP fN
−f

N

|U0 ( f ) |2 df.

The second taper sequence, {u(S)
1

(t), t=1, . . . , N}, is also chosen to maximise this concen-
tration ratio, but subject to being orthogonal to the first. The third taper sequence similarly
maximises the concentration ratio, but subject to being orthogonal to the first two, and
so on. In fact the K taper sequences are merely the first K eigenvectors of P(W (S) ) in (13);
see for example Percival & Walden (1993, p. 104).

Maximisation of the concentration ratio ensures that the sidelobes are minimised in
this sense. The ratio must be close to unity for {u(S)

k
( t)} to be a decent taper, but this

holds only for the tapers of order k=0, . . . , 2NW (S)D−2, and hence this number
K=2NW (S)D−1 of tapers can be used.

The simple cross-spectrum estimator based on K Slepian tapers is of the form (3)
with c(S)

k
¬1 for k=0, . . . , K−1, so that h(S)

k
¬u(S)

k
(k=0, . . . , K−1). The matrix

Q=(1/K )W u(S)
k

(u(S)
k

)H is symmetric and KQ is idempotent. Since the first K=2NW (S)D−1
eigenvalues of P(W (S) ) are almost unity and the other N−K are almost zero, except
typically one or two near the transition zone, KQjP(W (S) ), and hence Q is close to
Toeplitz.

By way of example, if we take N=100, D=1 and ‘bandwidth-duration product’
2NW (S)=6, where the resolution band is [−W (S), W (S)]=[−0·03, 0·03] then we can use
tapers of order k=0, . . . , 4, that is K=5 tapers in total. Note that the associated number
of complex degrees of freedom of the estimator at each frequency is K=5=n; see (18).

If we turn to asymptotic properties, it was pointed out in § 3·1 that for a fixed number
K of tapers, and continuous spectra, SC ( f ) will be asymptotically unbiased if taper property
(v) holds; that is each |U

k
( f ) |2 behaves like Dd( f ) as N2. For the Slepian tapers with

K=2NW (S)D−1 fixed, we know (Slepian, 1978, p. 1389) that, as N2 and consequently
W (S)0,

∆W(S)
−W(S)

|U(S)
k

( f ) |2 df

∆fN
−f

N

|U(S)
k

( f ) |2 df
=

1

D PW(S)
−W(S)

|U(S)
k

( f ) |2 dfL
k
(c),

with L
k
(c) a constant depending on k and c, the latter depending only on the fixed product

NW (S)D. Hence |U(S)
k

( f ) |2, for | f |∏W (S), must grow as N2 and W (S)0, and, since
its integral over | f |∏ f

N
is the constant D, |U(S)

k
( f ) |2 indeed behaves like Dd( f ) asymptoti-

cally (Jenkins & Watts, 1968, p. 31), and asymptotic unbiasedness follows. With regard
to taper property (vi), the K discrete Slepian tapers correspond to sampling K rescaled,
bounded taper functions, namely the prolate spheroidal wave functions, which are
orthogonal over [−1, 1] for k=0, . . . , K−1 (Slepian, 1978, p. 1389; Percival & Walden,
1993, p. 384). Hence under the mixing assumption on X(t) the asymptotic distributional
and variance results of § 3·3 apply, including again asymptotic unbiasedness.
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4·3. Minimising smoothing bias: Sine tapers

Just as the eigenvectors of P in (13), sorted by increasing order of the corresponding
eigenvalues, give the Slepian tapers with increasing leakage, that is decreasing concen-
tration, so the eigenvectors of R in (11), sorted by increasing order of the corresponding
eigenvalues, give tapers with increasing smoothing bias. This class of tapers can be approxi-
mated by the simple sine tapers (Riedel & Sidorenko, 1995). The kth sine taper is given
by

u(R)
k

(t)=A 2

N+1BD sin q(k+1)pt

N+1 r (t=1, . . . , N).

The first term is a standardisation factor to ensure that these tapers are orthonormal.
These tapers achieve a smaller local bias, that is the bias due to the smoothing by the
main lobe of U( f ), than the Slepian tapers, at the expense of sidelobe suppression. Riedel
& Sidorenko (1995) were able to show that the kth sinusoidal taper has its spectral energy
concentrated in the frequency bands

k

2(N+1)D
∏| f |∏

k+2

2(N+1)D
(k=0, . . . , N−1).

If K tapers are used we see that the resolution interval is given by [−W (R), W (R)], where
W (R)=(K+1)/{2(N+1)D}.

The simple cross-spectrum estimator of the form (3) based on K sine tapers has
c(R)
k
¬1 for k=0, . . . , K−1, so that h(R)

k
¬u(R)

k
(k=0, . . . , K−1). The matrix Q=

(1/K ) W u(R)
k

(u(R)
k

)T is symmetric, and KQ is idempotent. The eigenvalues of R are slowly
varying, so that Q formed as above will not be closely proportional to the Toeplitz matrix
R, and Q is indeed non-Toeplitz.

If we take N=100 and D=1 then the use of K=5 sine tapers yields a multitaper
estimator with W (R)¬6/{2(N+1)}j0·03, so that the resolution band is [−W (R), W (R)]=
[−0·03, 0·03], just as for the Slepian tapers example. The associated number of complex
degrees of freedom of the estimator at each frequency is again K=5=n.

With regard to taper property (v), the quantity |U(R)
k

( f ) |2 grows as √N for | f |=
k/{2(N+1)} (Riedel & Sidorenko, 1995, p. 190), and since the latter tends to zero for any
fixed k as N2 and the integral of |U(R)

k
( f ) |2 over | f |∏ f

N
is again D, because of the

normalisation of the tapers, |U(R)
k

( f ) |2 also behaves in the limit like Dd( f ). Asymptotic
unbiasedness follows and W (R)0 as N2 for fixed K. With respect to taper property
(vi), the K discrete sine tapers correspond to sampling K rescaled, bounded taper functions,
namely the sine functions, which are of course orthogonal over [0, p] for k=0, . . . , K−1.
Hence under the mixing assumption on X(t) the asymptotic distributional and variance
results of § 3·3 again apply, including asymptotic unbiasedness.

4·4. Weighted overlapped segment averaged estimators

Welch (1967) introduced the idea of spectrum estimation via tapering overlapping blocks
of data, calculating the direct spectrum estimator of each block, and then averaging. This
method is known as Welch’s ‘weighted overlapped segment averaging,’ see for example
Carter (1987), and extends readily to cross-spectrum estimation. The time series is divided
into N

B
blocks each of size N

S
. An integer-valued shift of size q is applied between successive

blocks, so that 0<q∏N
S
and q(N

B
−1)=N−N

S
. Let g(1), . . . , g(N

S
) be a standard data
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taper, with W g2(t)=1. Welch’s cross-spectrum estimator is defined by

SC (W)
lm

( f )¬
1

N
B
∑

N
B
−1

b=0
SC (W)
lm;b

( f ),

where the estimator for block b is

SC (W)
lm;b

( f )¬D q ∑NS
s=1

g(s)X
l
(s+bq)e−i2pfsDr q ∑NS

t=1
g(t)X

m
( t+bq)ei2pftDr .

The number of overlapping points in each block is N
S
−q, so that q=N

S
corresponds to

no overlap. With these restrictions on q, the b=0 block for the lth process utilises the data
values X

l
(1), . . . , X

l
(N
S
), while the final b=N

B
−1 block uses X

l
(N−N

S
+1), . . . , X

l
(N).

As done by Bronez (1992) for Welch’s spectra, we can rewrite the estimator for block b
as

SC (W)
lm;b

( f )=D q ∑N
s=1

g
b
(s)X

l
(s)e−i2pfsDr q ∑N

t=1
g
b
(t)X

m
(t)ei2pftDr ,

where

g
b
(t)=qg(t−bq) if t=bq+1, . . . , bq+N

S
,

0 otherwise.
(22)

Hence

SC (W)
lm

( f )=
D

N
B
∑

N
B
−1

b=0
q ∑N
s=1

g
b
(s)X

l
(s)e−i2pfsDr q ∑N

t=1
g
b
(t)X

m
( t)ei2pftDr , (23)

so that the estimator appears to be of the form (4) with K=N
B
. However, in (4) the

tapers are orthogonal, while the tapers in (22) are certainly not orthogonal when there is
overlap, that is q<N

S
. In what follows we show that (23) can be rewritten in terms

of orthogonal tapers. Write (23) as SC (W)
lm

( f )=DZH
l
BBHZ

m
, where B is an N×N

B
real

matrix with bth column given by g
b
( t)/N1/2

B
(t=1, . . . , N). The N×N outer-product

matrix BBH is symmetric but non-Toeplitz, and is also positive definite since
SC (W)
ll

( f )=DZH
l
BBHZ

l
�0, because SC (W)

ll
( f ) is made up of the sum of squared moduli. Hence,

BBH can be decomposed in the same way as Q. Thus, SC (W)
lm

( f ) can be written as in (2),
with {l(W)

0
, . . . , l(W)

N−1
} being the eigenvalues of BBH and {u(W)

0
, . . . , u(W)

N−1
} the eigenvectors,

normalised so that du(W)
k

d2=1 (k=0, . . . , N−1). The matrix B has as left-most column
the scaled taper {g(t)/N1/2

B
} followed by zeros, and as right-most or N

B
th column the same

scaled taper preceded by zeros. If we assume that all the elements of {g(t)} are nonzero,
the columns of B are linearly independent since the jth column consists of ( j−1)q zeros
followed by g(t) followed by zeros, and hence no column can be constructed as a linear
sum of other columns. Hence rank(B)=N

B
. With {g(t)} real-valued we know from Seber

(1984, p. 518) that rank (B)=rank (BHB)=rank (BBH) and hence rank (BBH)=N
B
.

The (i, j )th element of BBH (1∏i, j∏N) is given by

(BBH)
ij
=

1

N
B
∑
N
B

l=1
g{i− (l−1)q}g{ j− (l−1)q}1{(l−1)q+1∏i, j∏(l−1)q+N

S
},

(24)

where 1{.} is the indicator function. As a result,
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∑
N−1

k=0
l(W)
k
=tr (BBH)= ∑

N

i=1
(BBH)

ii

= ∑
N
B

l=1
∑
N

i=1
[g2{i− (l−1)q}/N

B
]1{(l−1)q+1∏i∏(l−1)q+N

S
}

= ∑
N
S

t=1
g2(t)=1,

as required.
Now rank (BBH)=N

B
so that l(W)

N
B

= . . .=l(W)
N−1
=0, and if we define

l(W)
k
¬c(W)

k
/N

B
(k=0, . . . , N

B
−1)

then Welch’s cross-spectrum estimator SC (W)
lm

( f ) can be written in the form of (3) with
K=N

B
and eigenvalues c(W)

k
and eigenvectors u(W)

k
, for k=0, . . . , N

B
−1. Similarly, Welch’s

cross-spectrum estimator can be written as an average of N
B

direct cross-spectrum
estimators, as in (4), using orthogonal data tapers

h(W)
k

(t)=u(W)
k

(t) (c(W)
k

)D (k=0, . . . , N
B
−1).

A common recommendation in the engineering literature is to use a Hanning data taper
defined by

g(t)=[2/{3(N
S
+1)}]D[1−cos{2pt/(N

S
+1)}] (t=1, . . . , N

S
)

on each block, with an overlap of approximately 50%. For N=100, the choice of
N
S
=32 and q=17 gives N

B
=5 blocks. The overlap is 15

32
=47%. From BBH we obtain

{c(W)
0

, . . . , c(W)
4

}={1·255, 1·147, 1·0, 0·853, 0·745};

note that W c(W)
k
=5=N

B
, or equivalently W l(W)

k
=1. The matrix BBH has rank K=N

B
=5.

For this set of c(W)
k

, equation (18) gives the value 4·83, while from Percival & Walden
(1993, eqn (294)), the number of complex degrees of freedom for Welch’s spectrum esti-
mator with overlap approximately 50% is n=18N2

B
/(19N

B
−1)=4·79, giving good agree-

ment; note that nj5, the same n as for the earlier illustrative Slepian and sine tapers.
With regard to asymptotic properties for N

B
fixed as N2, we note that N

S
2, so

that the spectral window corresponding to the standard data taper {g(t), t=1, . . . , N
S
}

behaves like a delta function and SC (W)
lm;b

( f ) will be asymptotically unbiased, and hence so
will SC (W)

lm
( f ) (Percival & Walden, 1993, p. 291). Given taper properties (i)–(iii) and (vii), if

we assume X(t) is multivariate Gaussian, the variance approximation (19) applies. The
asymptotic analytical form of these tapers, the eigenvectors of (24), is not known, so we
cannot verify taper property (vi) and hence cannot formally claim that the results of § 3·3
are applicable to Welch’s estimator. However computations indicate the eigenvectors con-
verge to smooth bounded functions as N increases, at least when using the Hanning taper
for {g(t)}.

4·5. L ag window cross-spectrum estimators

The lag window cross-spectrum estimator incorporating a data taper, {d(t)}, takes the
form

SC (L)
lm

( f )=D ∑
N−1

t=−(N−1)
w
p
(t)s@

lm
(t)e−i2pftD,
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where

s@
lm

(t)= ∑
N−t

t=1
d(t+t)X

l
(t+t)d(t)X

m
(t) (t�0), s@

lm
(−t)¬ s@

ml
(t) (t>0).

Here {w
p
(t)} is the lag window, p is the window parameter, the maximum lag, and w

p
(t)=

w
p
(−t). Hence we can write

SC (L)
lm

( f )=D ∑
N

s=1
∑
N

t=1
d(s)X

l
(s)d(t)X

m
(t)w

p
(s−t)e−i2pf(s−t)D=DZH

l
QZ

m
,

where Q(s, t)=d(s)w
p
(s−t)d(t). A lag window spectrum estimator can sometimes be nega-

tive, and so Q need not be positive semidefinite in general. Percival & Walden (1993,
p. 269) give an example where a Parzen lag window combined with a particular choice
of nonrectangular taper can lead to a negative spectrum estimate. However, there are
some popular practical cases where the estimator is nonnegative and Q will be positive
semidefinite; the Parzen and ‘minimum-bias’ Papoulis lag windows combined with the
default rectangular taper d(t)=1/√N (t=1, . . . , N) are two such suitable choices, and
both are defined in Percival & Walden (1993, pp. 265–6).

For these lag windows the number of complex degrees of freedom associated with the
spectrum estimator is n=1·85N/p for the Parzen and n=1·7N/p for the Papoulis lag
windows. Both have a similar shape. For the reduced-rank multitaper cross-spectrum
estimators of §§ 4·2–4·4 the number of complex degrees of freedom is n=K, which is also
the rank of Q. Hence, we might expect that, for the lag window case, n should be approxi-
mately equal to the rank of Q. The singular values of

Q(s, t)=d(s)w
p
(s−t)d(t)= (1/N)w

p
(s−t),

a Toeplitz matrix formed from the Parzen or Papoulis lag windows and default rectangular
taper, guaranteed positive semidefinite, were calculated for N=100 and p chosen so that
n=5 and 10, that is p=37 and 19, respectively. Note that

∑ l
k
=tr (Q)=N{(1/N)w

p
(0)}=w

p
(0)=1,

as required. The results for Parzen and Papoulis lag windows were very similar; henceforth
we only discuss the Parzen case. When n=5, the first five singular values contribute over
90% of the total of unity, while when n=10 the first ten singular values explain over 92%
of the total. Hence, the value of n is reasonably good at predicting the ‘effective’ rank of
Q, but is an underestimate. The problem is of course that these lag window estimators
actually correspond to full-rank Q matrices.

A positive semidefinite lag window cross-spectrum estimator can be written as in (2),
with eigenvalues of Q, {l(L)

0
, . . . , l(L)

N−1
}, W

k
l(L)
k
=1, and eigenvectors {u(L)

0
, . . . , u(L)

N−1
}, nor-

malised so that du(L)
k
d2=1 (k=0, . . . , N−1). Define n

B
as an integer satisfying n<n

B
%N

such that l(L)
n
B

j . . .jl(L
N−1

j0. Then the lag-window cross-spectrum estimator can be
written approximately as an average of n

B
direct cross-spectrum estimators, using the

orthogonal data tapers h(L)
k

( t)=u(L)
k

(t) (c(L)
k

)D (k=0, . . . , n
B
−1):

SC (L)
lm

( f )j
D

n
B
∑
n
B
−1

k=0
c(L)
k q ∑N

s=1
u(L)
k

(s)X
l
(s)e−i2pfsDr q ∑N

t=1
u(L)
k

(t)X
m
(t)ei2pftDr

=
D

n
B
∑
n
B
−1

k=0
q ∑N
s=1

h(L)
k

(s)X
l
(s)e−2pfsDr q ∑N

t=1
h(L)
k

( t)X
m
(t)ei2pftDr , (25)
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where l(L)
k
¬c

k
/n
B

(k=0, . . . , n
B
−1). For example, for the Parzen lag window, with

N=100 and p=37 for which n=5, the choice of n
B
=8 is such that

l(L)
0
+ . . .+l(L)

n
B
−1
>0·99

and

{c(L)
0

, . . . , c(L)
7

}={2·123, 1·854, 1·476, 1·067, 0·696, 0·406, 0·209, 0·094},

so that c(L)
0
+ . . .+c(L)

7
=7·925j8=n

B
. If we choose n

B
=16, then

l(L)
0
+ . . .+l(L)

15
>0·999, c(L)

0
+ . . .+c(L)

15
=15·986j16=n

B
.

In our example we chose the maximum lag p=37 by using the standard effective
complex degrees of freedom formula n=1·85N/p for the Parzen lag window (Percival &
Walden, 1993, p. 269) and choosing n=5. However, as we now have the values c

k
we can

also calculate n via (18); this gives n=5·3 for n
B
=8 or 16, so that reasonable agreement

is achieved.
One form of lag window cross-spectrum estimator for which Q has reduced rank is the

frequency-averaged cross-periodogram. Here the raw cross-periodograms are smoothed
over K=2M+1 adjacent Fourier frequencies, that is

S9 lm ( f
i
)=

1

K
∑
M

j=−M
SC (P)
lm

( f
i−j

),

where f
i
= i/(ND) and the raw cross-periodogram is

SC (P)
lm

( f )=D q ∑N
s=1

1

√N
X
l
(s)e−i2pfsDr q ∑N

t=1

1

√N
X
m
(t)ei2pftDr .

For the estimator S9 lm ( f
i
) we obtain the symmetric Toeplitz matrix

Q(s, t)=(1/N)w(s−t)=sin{Kp(s−t)/N}/[NK sin{p(s−t)/N}].

Since Q(s, t) can be written as a sum of K complex exponentials, that is

Q(s, t)=
1

NK
∑
M

j=−M
ei2p(s−t)j/N,

the symmetric degenerate matrix Q has rank K and its eigenvalues satisfy

∑ l(P)
k
=tr (Q)=N{(1/N)w(0)}=w(0)=1.

For example, if we take N=100 and K=5 we find that this matrix has rank 5 with
l(P)
0
= . . .=l(P)

4
=0·2. Note that c(P)

k
¬Kl(P)

k
=1 for k=0, . . . , K−1. Hence S9 lm ( f

i
) may

be written as in (4), with K=n
B
=5 and using the orthogonal data tapers h(L)

k
for

k=0, . . . , K−1. For this estimator the effective half-bandwidth is W (L)=K/(2N).
The asymptotic properties of the frequency averaged cross-periodogram are well known.

For fixed K=2M+1, the estimator S9 lm ( f ) at a fixed frequency f is asymptotically
unbiased (Brillinger, 1981, Corollary 7.3.1). Furthermore, under the mixing assumption,
S9 ( f ) has, as would be expected, the asymptotic distribution specified by (21) (Brillinger,
1981, Theorem 7.3.3) with n=K.

4·6. Comparison of spectral windows

The overall spectral windows given by (8) for our example cases with D=1 are shown
in Fig. 1 on a decibel scale. While the frequency-averaged cross-periodogram has a
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‘blocky’-type main lobe similar in shape to that of the Slepian or sine taper estimators,
its poorer sidelobe behaviour is quite evident. The Welch and Parzen lag window esti-
mators have less blocky spectral windows; the Welch estimator has a wide main lobe but
low sidelobes, whereas the spectral window of lag window estimators has a characteristic
very slow decay because the spectral window for the lag window estimator is the convol-
ution of the smoothing window, that is the Fourier transform of w

p
(t), and Fejér’s kernel,

and the slow decay of the latter predominates (Percival & Walden, 1993, § 6.11).
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Fig. 1. Overall spectral windows on decibel (dB) scale. (a) Frequency-averaged cross-periodogram (solid line),
sine tapers (dotted) and Slepian tapers (dashed). (b) Welch (solid line), lag window, n

B
=8 (dotted) and n

B
=

16 (dashed). Each of the estimators has approximately 5 complex degrees of freedom.

4·7. Comparison of leakage biases

The positive bounding constant b2(W ) in the leakage bias formula (12) can be
written as unity minus a ‘concentration factor,’ where the concentration factor is
(1/K ) W c

k
uH
k
P(W )u

k
. The concentration factor is plotted as a function of W for the five

estimation classes in Fig. 2. As expected, the Slepian tapers method rapidly approaches
unity around W=0·03, the nominal value of the half-bandwidth which was used; recall
that 2W (S) was chosen to be 0·06. The sine tapers do nearly as well, while Welch’s method
gives a slower approach to unity. The frequency-averaged cross-periodogram and Parzen
lag window method with n

B
=8 and n

B
=16 approach unity most slowly and have very

poor leakage properties; this is not surprising in view of the weighting given to the ends
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Fig. 2. Spectral concentration factor as a function of W. (a) Slepian tapers (solid line), sine tapers (dotted)
and Welch (dashed). (b) Lag window, n

B
=8 (solid line), n
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=16 (dashed) and frequency-average cross-

periodogram (dotted).
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of the data by the equivalent orthogonal tapers for these methods as shown at
http://stats.ma.ic.ac.uk/Aatw. The practical importance of poor lag window leakage is
illustrated in § 5.

4·8. Comparison of smoothing biases

The classes of orthogonal multitaper estimators discussed in §§ 4·2–4·5 are compared
in terms of exact smoothing bias factors b1 , equation (10), in Table 1 for D=1. The results
in Table 1 are for N=100 with the parameters chosen as explained previously to give
estimators with n=5 complex degrees of freedom. Given the true cross-spectral matrix a
fixed n effectively fixes the variance; see (19) and (20). The sine tapers, approximations to
tapers which minimise smoothing bias, unsurprisingly have the lowest smoothing bias.
The Slepian tapers, designed to minimise leakage bias, do less well, but still give much
better results than the lag window classes.

Table 1. Smoothing bias factors b1 , equation (10), for diVerent
estimators with 5 complex degrees of freedom

Estimation class Exact b1×104 Approximate b1×104

Sine tapers 2·71 2·94
Welch 3·06 —

Slepian tapers 3·51 3·00
Frequency-averaged cross-periodogram 9·01 3·00
Parzen lag window 9·02 —

For the estimators with an almost rectangular main lobe to the spectral window, that
is Slepian tapers, sine tapers and the frequency averaged cross-periodogram, it is possible
to derive approximate analytic expressions for b1 , also shown in Table 1. For D=1 we
know that b1=∆

1/2
−1/2

w2U(w) dw, and if U(.) is rectangular and integrates approximately to
unity over the resolution band | f |∏W, then

U(w)jq1/(2W ) if |w |∏W,

0 otherwise.
(26)

As a result we get b1jW 2/3, as in Thomson (1982, p. 1062). Hence, for our Slepian
tapers example, W (S)=0·03 and b1j3·0×10−4. For the sine tapers example W (R)=
(K+1)/{2(N+1)}=0·0297, so that b1j2·94×10−4, while for our frequency averaged
cross-periodogram example W (L)=(K+1)/(2N)=0·03 and hence b1j3·0×10−4. While
the approximations for Slepian and sine tapers are useful, because of the small leakage,
that for the frequency averaged cross-periodogram is very poor; this is a result of the
severe leakage for this estimator which means that the approximation in (26) is too
inaccurate. Asymptotically, for Slepian and sine tapers, WjK/(2N) so that for f N0,±f

N
it follows from (20) with n=K that the mean squared error is given by

E{ |SC
lm

( f )−S
lm

( f ) |2}=|bias{SC
lm

( f )}|2+var{SC
lm

( f )}

=|S◊
lm

( f ) |2
b2
1

4
+

1

K
S
ll
( f )S

mm
( f )

=|S◊
lm

( f ) |2 C K2

24N2D2+ 1

K
S
ll
( f )S

mm
( f ),
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so that the mean squared error is minimised for K={144S
ll
( f )S

mm
( f )N4/|S◊

lm
( f ) |2}1/5;

when the spectrum is rapidly varying the denominator will be large, reducing the nominal
choice, and causing practitioners to use many fewer than K3N4/5 tapers.

4·9. Consistency in mean square

The estimator SC ( f ) is consistent in mean square if lim
N�2

E{ |SC ( f )−S( f ) |2}=0. For
both Slepian and sine tapers, if we let K2 such that K/N0 as N2 then W (S) and
W (R)0 as N2, since

W (S)= (K+1)/(2ND ), W (R)=(K+1)/{2(N+1)D}.

Hence asymptotic unbiasedness is preserved, and since n=K for both estimators it follows
from (19) and (20) that var{SC ( f )}0 as N2, ensuring mean square consistency. For
Welch’s estimator, we let N

B
2 such that N

B
/N0 and N

S
2 such that N

S
/N1,

as N2. Asymptotic unbiasedness is thus retained. For Welch’s method we showed in
§ 4·4 that the variance formula (19) applied when X(t) is multivariate Gaussian, and since
n3N

B
for an overlap of approximately 50% for large N

S
(Percival & Walden, 1993,

eqn (294)), mean square consistency follows in at least this case. Mean square consistency
of lag window estimators is discussed in Priestley (1981, p. 464) who shows that we require
p2 while p/N0 as N2, or equivalently n3N/p2 while n/N0 as N2.
The frequency-averaged periodogram was analysed in Brillinger (1981) from which K2
such that K/N0 as N2. The unifying requirement is that the number of complex
degrees of freedom, n, or equivalently the bandwidth-duration product 2WN, tends to
infinity such that W0 as N2.

5. I  - 

In carrying out a spectrum analysis of a set of L real-valued stationary processes it is often
the case that it is not the cross-spectrum matrix itself which is of primary interest, but rather
quantities derived from it. Perhaps the most useful is the fraction of power in the jth time
series {X

j
(t)}, at a frequency f, which can be linearly predicted from the other L−1 series,

the so-called magnitude squared multiple coherence, denoted here by C2
j
( f ). It is a widely

used scientific quantity (Foster & Guinzy, 1967; Carter, 1987; Kuo, Lindberg & Thomson,
1990; White, 1984; Percival, 1994; Walden & White, 1998) because of the insights it provides
into the relationships between the series in different frequency ranges.

The multiple coherence of series j is given by C2
j
( f )=1−{S

jj
( f )Sjj( f )}−1 (Jenkins &

Watts, 1968, p. 487), where Sjj( f ) is the jth diagonal element of the inverse of the full L×L
true cross-spectral matrix, S( f ). Note that to compute the multiple coherence it is necessary
to construct the full cross-spectral matrix, invert it and then pick off the appropriate diagonal
element. This must be done for all the frequencies of interest.

Hence, we need both to be able to estimate the elements of the cross-spectral matrix and
also to invert it. Using the representation (6) for the estimated cross-spectral matrix we note
that if K<L then L−K orthogonal vectors can be found that span the complement of the
space spanned by the J

k
( f ) (k=0, . . . , K−1). Since these vectors annihilate SC ( f ), this matrix

is of rank K or less. Thus a necessary condition for invertibility of the estimated cross-spectral
matrix is that K�L . For Slepian or sine tapers K is the number of tapers, for Welch’s
parameterisation K=N

B
, for the frequency-averaged cross-periodogram K is the number of

frequencies averaged over, and for the Parzen or similar lag windows, if we choose n>L ,
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then since n
B
>n we have n

B
>n>L , and the condition is satisfied. In all practical cases

examined, the requirement K�L has resulted in an invertible matrix.

6. A  

Since the various methods examined here are all cast into the multitaper formulation,
it might be felt that the difference displayed in for example Figs 1 and 2 are not important
in practice. With a slowly-varying featureless spectrum this might well be true, but for a
rapidly-varying spectrum with high dynamic range, as is commonly met in the physical
sciences, different estimators perform very differently. To illustrate this, we consider a set
of 60 contiguous seismic time series, with D=0·004 seconds so that the Nyquist frequency
is 125 Hz. All the series were subject to the same source and recording characteristics
which decay rapidly around 4 Hz such that we would expect virtually zero coherent signal
below 4 Hz (Walden, 1991) across all 60 series. Each series is of length N=401 points.
Slepian multitaper and Papoulis lag window estimators were designed to have the same
bandwidth and almost equal complex degrees of freedom, 11 and 12 respectively. The
series were grouped into adjacent sets of L=4 series, a choice such that K>L , and which
ensures alignment of the series in the groups of size L . Estimates CC 2

j
( f ) ( j=1, . . . , 4) of

multiple coherence at frequencies f=1·95 Hz and 3·9 Hz were computed from the first
four series, the next four series, and so on, until all sixty series had been used, and these
were binned into coherence ranges of width 0·1. With ideal estimation all the coherences
estimated at 1·95 Hz should be zero, while all the coherences estimated at 3·9 Hz, near
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Fig. 3. Histograms of coherence results from 60 series at frequency 1·95 Hz using
(a) Slepian tapers and (b) lag windowing, and at frequency 3·9 Hz using (c) Slepian

tapers and (d) lag windowing.
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the transition zone, should be nearly zero. The results are shown in Fig. 3. The top plots
compare the histogram, in terms of the percentage of the 60 outcomes in each bin, of
estimated coherence at f=1·95 Hz using (a) Slepian multitapers and (b) lag windowing,
and the bottom plots (c) and (d) show the same for 3·9 Hz. We see that at f=1·95 Hz the
Slepian multitapers method gives rise to very low estimated coherences, with nothing in
excess of 0·2, while the lag window method has coherences spread out up to 0·6. For f=
3·9 Hz the Slepian multitapers give estimated coherences between 0 and 0·4, with a peak
centred on 0·25, while the lag window method has coherences spread out between 0·2 and
0·7. Since the physics tells us that we should expect zero coherence at 1·95 Hz and a very
low coherence at 3·9 Hz, we see that the Slepian multitaper method has performed much
better than the lag window approach; the greater leakage bias of the latter has proved its
undoing here because of the large change in spectral power between frequencies less than
4 Hz and those above. In fact at other frequencies where there is no locally rapid change
in spectral power the two approaches produce nearly identical results.

A
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