
Scalable Techniques from Nonparametric
Statistics for Real Time Robot Learning

Stefan Schaal ‡⊕⊕ ⊕⊕

sschaal@usc.edu

www-slab.usc.edu/sschaal

Christopher G. Atkeson *#

cga@cc.gatech.edu

www.cc.gatech.edu/fac/Chris.Atkeson

Sethu Vijayakumar ‡ ⊕⊕ ⊕⊕

sethu@usc.edu

www-slab.usc.edu/sethu

‡Computer Science and Neuroscience, HNB-103, University of Southern California, Los Angeles, CA 90089-2520

*College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332-0280
⊕ Kawato Dynamic Brain Project (ERATO/JST), 2-2 Hikaridai, Seika-cho, Soraku-gun, 619-02 Kyoto, Japan

#ATR Human Information Processing Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, 619-02 Kyoto, Japan

Abstract: Locally weighted learning (LWL) is a class of techniques from nonparametric statis-
tics that provides useful representations and training algorithms for learning about complex
phenomena during autonomous adaptive control of robotic systems. This paper introduces sev-
eral LWL algorithms that have been tested successfully in real-time learning of complex robot
tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL
that does not need to remember any data explicitly. In contrast to the traditional belief that LWL
methods cannot work well in high-dimensional spaces, we provide new algorithms that have been
tested on up to 90 dimensional learning problems. The applicability of our LWL algorithms is
demonstrated in various robot learning examples, including the learning of devil-sticking, pole-
balancing by a humanoid robot arm, and inverse-dynamics learning for a seven and a 30 degree-
of-freedom robot. In all these examples, the application of our statistical neural networks tech-
niques allowed either faster or more accurate acquisition of motor control than classical control
engineering.

Keywords: Nonparametric Regression • Locally Weighted Learning • Motor Control • Internal
Models • Incremental Learning

1 Introduction

The necessity for self-improvement in control systems is becoming more apparent as
fields such as robotics, factory automation, and autonomous vehicles become impeded
by the complexity of inventing and programming satisfactory control laws. Learned
models of complex tasks can aid the design of appropriate control laws for these tasks,
which often involve decisions based on streams of information from sensors and actua-
tors, and where data is relatively plentiful. Learning also seems to be the only viable re-
search approach toward the generation of flexible autonomous robots that can perform
multiple tasks (Schaal, 1999), with the hope of creating an autonomous humanoid robot
at some point and to approach human abilities in sensorimotor control.
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When approaching a learning problem, many alternative learning methods are avail-
able from the neural network, statistical, and machine learning literature. The current
focus in learning research lies on increasingly more sophisticated algorithms for the off-
line analysis of finite data sets, without severe constraints on the computational com-
plexity of the algorithms. Examples of such algorithms include the revival of Bayesian
inference (Bishop, 1995, Williams and Rasmussen, 1996) and the new algorithms devel-
oped in the framework of structural risk minimization (Vapnik, 1982, Cortes and Vap-
nik, 1995). Mostly, these methods target problems in classification and diagnostics, al-
though several extensions to regression problems exist (e.g., Vapnik, Golowich, and
Smola, 1996).

In motor learning, however, special constraints need to be taken into account when
approaching a learning task. Most learning problems in motor learning require regres-
sion networks, for instance, as in the learning of internal models, coordinate transforma-
tions, control policies, or evaluation functions in reinforcement learning. Data in motor
learning is usually not limited to a finite data set—whenever the robot moves new data
are generated and should be included in the learning network. Thus, computationally
inexpensive training methods are important in this domain, and on-line learning would
be preferred. Among the most significant additional problems of motor learning is that
the distributions of the learning data may change continuously. Input distributions
change due to the fact that a flexible movement system may work on different tasks at
different times, thus creating different kinds of training data. Moreover, the input-
output relationship of the data—the conditional distribution—may change when the
learning system changes its physical properties or when learning involves nonstation-
ary training data as in reinforcement learning. Such changing distributions easily lead
to catastrophic interference in many neural network paradigms, i.e., the unlearning of
useful information when training on new data (Schaal and Atkeson, 1998). As a last
element, motor learning tasks of complex motor systems can be rather high dimensional
in the number of input dimensions, thus increasing the need for efficient learning algo-
rithms. The current trend in learning research is largely orthogonal to the problems of
motor learning.

In this paper, we advocate locally weighted learning methods (LWL) for motor
learning, a learning technique derived from nonparametric statistics (Atkeson and
Schaal, 1995, Cleveland and Loader, 1995, Hastie and Tibshirani, 1994). LWL provides a
principled approach to learning models of complex phenomena, dealing with large
amounts of data, training quickly, and avoiding interference between multiple tasks
during control of complex systems (Atkeson, Moore, and Schaal, 1997a, Atkeson,
Moore, and Schaal, 1997b). LWL methods can even deal successfully with high dimen-
sional input data that have redundant and irrelevant inputs while keeping the computa-
tional complexity of the algorithms linear in the number of inputs. LWL methods come
in two different strategies. Memory-based LWL is a “lazy learning” method (Aha, 1997)
that simply stores all training data in memory and uses efficient lookup and interpola-
tion techniques when a prediction for a new input has to be generated. This kind of
LWL is useful when data need to be interpreted in flexible ways, for instance, as for-
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ward or inverse transformations. Memory-based LWL is therefore a “least commit-
ment” approach and very data efficient. Non-memory-based LWL has essentially the
same statistical properties as memory-based LWL, but it avoids storing data in memory
by using recursive system identification techniques (Ljung and Söderström, 1986). In
this way, non-memory-based LWL caches the information about training data in com-
pact representations, at the cost that a flexible re-evaluation of data becomes impossible,
but lookup times for new data become significantly faster.

In the following, we will describe four LWL algorithms that are the most suitable to
robot learning problems. The goal of the next section is to provide clear pseudo-code
explanations of these algorithms. Afterwards, we will illustrate the successful applica-
tion of some of the methods to real-time robot learning, involving dexterous manipula-
tion tasks such as devil sticking and pole balancing with an anthropomorphic robot
arm, and classical problems like the learning of high-dimensional inverse dynamics
models.

2 Locally Weighted Learning

In all our algorithms we assume that the data generating model for our regression
problems has the standard form y f= ( ) +x ε , where x ∈ℜ n  is a n-dimensional input vec-
tor, the noise term has mean zero, E{ }ε = 0, and, for simplicity, the output is one-
dimensional.

The key concept of our LWL methods is to approximate nonlinear functions by
means of piecewise linear models (Cleveland, 1979), similar to a first-order Taylor series
expansion. Locally linear models have been demonstrated to be an excellent statistical
compromise among the possible local polynomials that can be fit to data (Hastie and
Loader, 1993). The key problem in LWL is to determine the region of validity in which a
local model can be trusted, and how to fit the local model in this region.

In all following algorithms, we compute the region of validity, called a receptive field,
of each linear model from a Gaussian kernel:

wk k

T

k k= − −( ) −( )



exp

1
2

x c D x c (1)

where ck is the center of the kth linear model, and Dk corresponds to a positive semi-
definite distance metric that determines the size and shape of region of validity of the
linear model. Other kernel functions are possible (Atkeson et al., 1997a) but add only
minor differences to the quality of function fitting.

2.1 Locally Weighted Regression

The most straightforward LWL algorithm with locally linear models is memory-based
Locally Weighted Regression (LWR) (Atkeson, 1989, Atkeson, 1992, Atkeson and
Schaal, 1995). Training of LWR is very fast: it just requires adding new training data to
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the memory. Only when a prediction is needed for a query point xq , the following
weighted regression analysis is performed:

  

The LWR Algorithm:
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(2)

βn+1 denotes the (n+1)th element of the regression vector β . The computational com-
plexity of LWR is proportional to O pn( )2 . Since normally most of the p training data
points receive an approximately zero weight as they are too far away from the query
point, the computational complexity of LWR can be reduced significantly, particularly
when exploiting efficient data structures like kd-trees for keeping the data in memory
(Moore, 1990). Thus, LWR can be applied efficiently in real-time for problems that are
not too high dimensional in the number of inputs n and that do not accumulate too
much data in one particular area of the input space.

The only open parameter in (2) is the distance metric D, introduced in Equation (1).
After there is a significant amount of data, D can be optimized by leave-one-out cross
validation. To avoid too many open parameters, D is usually assumed to be a global di-
agonal matrix D = ⋅ …h diag n n nn([ , , , ])1 2 , where h is a scale parameter, and the ni  nor-
malize the range of the input dimensions, e.g., by the variance of each input dimension
ni i=1 2/ σ . Leave-one-out crossvalidation is thus performed only as a one-dimensional
search over the parameter h:
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Leave One Out Cross Validation:
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Of course, at an increased computational cost, leave-one-out cross validation can also be
performed treating all coefficients of the distance metric as open parameters, usually by
using gradient descent methods (Atkeson, 1992; Atkeson and Schaal, 1995; Lowe, 1995).

2.2 Locally Weighted Partial Least Squares

Under two circumstances it is necessary to enhance the LWR algorithm above: if the
number of input dimensions grows large, or if there are redundant input dimensions
such that the matrix inversion in (2) becomes numerically unstable. There is a computa-
tional efficient technique from the statistics literature, Partial Least Squares Regression
(PLS) (Wold, 1975, Frank and Friedman, 1993, Schaal, Vijayakumar, and Atkeson, 1998,
Vijayakumar and Schaal, 2000), that is ideally suited to reduce the computational com-
plexity of LWR and to avoid numerical problems. The essence of PLS is to fit linear
models using a hierarchy of univariate regressions along selected projections in input
space. The projections are chosen according to the correlation of input and output data,
and the algorithm assures that subsequent projections are orthogonal in input space. It
is straightforward to derive a locally weighted PLS algorithm (LWPLS), as shown in
Equation (4). The only steps in LWPLS that may look unusual at a first glance are the
ones indicated by (*) and (**) in Equation (4). At these steps, the input data is regressed
against the current projection s (*), and subsequently, the input space is reduced (**),
This procedure ensures that the next projection direction ui+1  is guaranteed to be or-
thogonal with respect to all previous projection directions.



6

  

The LWPLS Algorithm:
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There is a remarkable property of LWPLS: if the input data is locally statistically in-
dependent (i.e., has a diagonal covariance matrix) and is approximately locally linear,
LWPLS will find an optimal linear approximation for the data with a single projection
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(Vijayakumar and Schaal, 2000). This statement is true since LWPLS will immediately
find the optimal projection direction, i.e., the gradient of the data. An important ques-
tion is thus how many projections r should be chosen if the input data are not statisti-
cally independent. Typically, the squared error resi

2  at iteration i should be significantly
lower than that of the previous step. Thus, a simple heuristic to stop adding projections
is to require that for every new projection, the squared error be reduced at least by a
certain ratio:

  

res

res
i

i

2

1
2 0 1
−

< ∈ [ ]φ φ, ,where (5)

We usually use φ= 0 5.  for all our learning tasks. Thus, as in LWR, the only open pa-
rameter in LWPLS becomes the distance metric D, which can be optimized according to
the strategy in (3).

The computational complexity of LWPLS is O rnp( ) . If one assumes that most of the
data has a zero weight and that only a fixed number of projections are needed to
achieve a good fit, the computational complexity tends towards linear in the number of
input dimensions. This property constitutes a significant saving over the more than
quadratic cost of LWR, particularly in high dimensional input spaces. Additionally, the
correlation step to select the projection direction eliminates irrelevant and redundant
input dimensions and results in excellent numerical robustness of LWPLS.

2.3 Receptive Field Weighted Regression

Two points of concern remain with LWR and LWPLS. If the learning system receives a
large, possibly never ending stream of input data, as is typical in online robot learning,
both memory requirements to store all data as well as the computational cost to evalu-
ate algorithms (2) or (4) become too large. Under these circumstances, a non-memory-
based version of LWL is desirable such that each new data point is incrementally incor-
porated in the learning system and lookup speed becomes accelerated.

A first approach to an incremental LWL algorithm was suggested in previous work
(Schaal and Atkeson, 1998), using LWR as the starting point. The idea of the algorithm
is straightforward: instead of postponing the computation of a local linear model until a
prediction needs to be made, local models are built continuously in the entire support
area of the input data at selected points in input space (see details below). The predic-
tion for a query point is then formed as the weighted average of the predictions of all
local models:

ˆ
ˆ ,

y
w y

w
q

k q kk

K

kk

K= =

=

∑
∑

1

1

(6)

The weights in (6) are computed according to the weighting kernel of each local model
in Equation (7). Incremental updates of the parameters of the linear models can be ac-
complished with recursive least squares techniques (Ljung and Söderström, 1986). Thus,
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the LWR algorithm from (2) becomes the Receptive Field Weighted Regression (RFWR)
algorithm (Schaal and Atkeson, 1998) as given in the following equations (7).

  

The RFWR Algorithm:
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In the above equations, λ ∈ [ , ]0 1  is a forgetting factor that determines how much old
data in the regression parameters will be forgotten, similar as in recursive system iden-
tification techniques (Ljung and Söderström, 1986). The variables Pk  cache the inverse of
the covariance matrix of the input variables and needs to be initialized as P Ik r= , where
I is the identity matrix and r is usually a large number, e.g., 1010 .

Thus, as in all the previous LWL algorithms, the only remaining open parameter is
the distance metric D. In contrast to the algorithm in (3) that only determined D as a
global parameter to be used everywhere in input space, it is now possible to optimize
the Dk  for every local model individually. In (Schaal and Atkeson, 1998) we developed
an incremental optimization of D by means of gradient descent in a stochastic leave-
one-out crossvalidation criterion. The following equations summarize the update for-
mulae. Since the gradient descent update is the same for all local models, the index k is
omitted.
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where the operator ⊗  denotes an element-wise multiplication of two homomorphic ma-
trices or vectors with a subsequent summation of all coefficients, Q V⊗ = Σ Q Vij ij . All re-
cursive variables are initialized with zeros, except for the initial distance metric that is
set to a manually chosen default value D=Ddef.

The above learning rules can be embedded in an incremental learning system that
automatically allocates new locally linear models as needed (Schaal and Atkeson, 1998):

Initialize RFWR with no receptive field (RF);
For every new training sample (x,y):
     For k=1 to K:
          calculate the activation from (1)
          update according to (7) and (8)
     end;
     If no linear model was activated by more than wgen;
          create a new RF with c=x, D=Ddef

     end;
end;
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In this pseudo-code algorithm, wgen is a threshold that determines when to create a new
receptive field, e.g., wgen=0.1, and Ddef is the initial (usually diagonal) distance metric in
Equation (1). The decomposition of D into M MT  can be achieved with a Cholesky de-
composition (Press, Flannery, Teukolsky, and Vetterling, 1989).

2.4 Locally Weighted Projection Regression

While RFWR is a powerful algorithm for incremental function approximation, it be-
comes computationally too expensive in high dimensional spaces. For such cases,
LWPLS can be reformulated as an incremental algorithm, too, called Locally Weighted
Projection Regression (LWPR). The update equations for one local model become:
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In the above equations, the variables SS, SR, and SZ are memory terms that enable us to
achieve the univariate regression in step f) in a recursive least squares fashion, i.e., a fast
Newton-like method as in RFWR (cf. Equation (7)). The other steps are incremental
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counterparts of the LWPLS algorithm above. Step j) computes the sum of squared errors
that is used to determine when to stop adding projections according to (5). Predictions
for a query point are formed exactly as in Eqn (4)-d.

In analogy with RFWR, an incremental update of the distance metric D can be de-
rived based on stochastic one-leave-out cross validation. Due to the hierarchical fitting
procedure of PLS, the one-leave-out crossvalidation cost function can only be formu-
lated in approximation by treating all projections as independent:
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Thus, the ensuing learning algorithm is the same as for RFWR by using the update
equations (9) and (10) instead of (7) and (8), and by initializing a new receptive field
with r=2, i.e., two initial projections in order to allow deciding whether to add new
projections according to Equation (5). For a diagonal distance metric Dk and under the
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assumption that r remains small, the computational complexity of the update of all pa-
rameters of LWPR is linear in the number of input dimensions. Thus, LWPR constitutes
the computationally most efficient algorithm in the series of Locally Weighted Learning
algorithms, and, as will be demonstrated below, even works successfully in very high-
dimensional input spaces.

3 Empirical Evaluations

The following examples illustrate how our LWL techniques have been applied to vari-
ous robot learning problems. In common to all these application is that the learning al-
gorithm acquired an internal model of a dynamic system, and that this model was used
subsequently in designing a controller for a robot task. Such model-based control and
learning has also become increasingly more an accepted hypothesis of how biological
movements acquire and perform skilled movement (Kawato, 1999; Wolpert, Miall, and
Kawato, 1998).

3.1 Learning Devil-Sticking

Devil sticking is a juggling task where a center stick is batted back and forth between
two handsticks (Figure 1a). Figure 1b shows a sketch of our devil-sticking robot. The
robot uses its top two joints to perform planar devil-sticking; more details can be found
in (Schaal and Atkeson, 1994). The task of the robot is to learn a continuous left-right-
left-etc. juggling pattern. For learning, the task is modeled as a discrete function that
maps impact states on one hand to impact states on the other hand. A state is given as a
five dimensional vector x = ( , , ˙, ˙, ˙)p x y Tθ θ , comprising impact position, angle, and veloci-
ties of the center of the devil stick and angular velocity (Figure 1b), respectively. The
task command u = ( , , ˙ , , )x y v vh h t x y

Tθ  is given by a catch position ( , )x yh h , an angular trig-
ger velocity ( ˙ )θt when to start the throw, and the two dimensional throw direction
( , )v vx y . In order to compute appropriate Linear Quadratic Regulator (LQR) controllers
for this task (Dyer and McReynolds, 1970), the robot learns the nonlinear mapping be-
tween the current state and command, and the next state, i.e., a 10 dimensional input to
five dimensional output function. This task is ideally suited for LWR as it is not too high
dimensional and new training data are only generated at about 1-2Hz, i.e., whenever
the center stick hits one of the handsticks. Moreover, memory-based learning also sup-
ports efficient search of the state-action space for statistically good new commands
(Schaal and Atkeson, 1994). As a result, successful (i.e., more than 1000 consecutive hits)
devil sticking could be achieved in about 40-80 trials, corresponding to about 300-800
training points in memory (Figure 2). This is a remarkable learning rate given that hu-
mans need about one week of 1 hour practicing a day before they learn to juggle the
devilstick. The final performance of the robot was also quite superior to our early at-
tempts to implement the task based on classical system identification and controller de-
sign, which only accomplished up to 100 consecutive hits.
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Figure 1: (a) an illustration of devil sticking, (b) sketch of our devil sticking robot: the flow of force from
each motor into the robot is indicated by different shadings of the robot links, and a position  change due

to an application of motor 1 or motor 2, respectively, is indicated in the small sketches
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Figure 2: Learning curves of devil sticking for three learning runs.

3.2 Learning Pole Balancing

We implemented learning of the task of balancing a pole on a fingertip with a 7-degree-
of-freedom anthropomorphic robot arm (Figure 3a). The low-level robot controller ran
in a compute-torque mode (Craig, 1986) at 480Hz out of 8 parallel processors located in
a VME bus, running the real-time operating system vxWorks. The inverse dynamics
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model of the robot had been estimated using established parameter estimation tech-
niques from control theory (An, Atkeson, and Hollerbach, 1988). The goal of learning
was to generate appropriate task level commands, i.e., Cartesian accelerations of the
fingertip, to keep the pole upright. Task level commands were converted to actuator
space by means of the extended Jacobian method (Baillieul and Martin, 1990). As input,
the robot received data from its color-tracking-based stereo vision system with more
than 60ms processing delays. Learning was implemented on-line using RFWR. The task
of RFWR was to acquire a discrete time forward dynamics model of the pole that was
both used to compute an LQR controller and to realize a Kalman predictor to eliminate
the delays in visual input. The forward model had 12 input dimensions (3 positions of
the lower pole end, 2 angular positions, the corresponding 5 velocities, and 2 horizontal
accelerations of the fingertip) that are mapped to 10 outputs, i.e., the next state of the
pole. The robot only received training data when it actually moved.

Figure 3b shows the results of learning. It took about 10-20 trials before learning suc-
ceeded in reliable performance longer than one minute. We also explored learning from
demonstration, where a human demonstrated how to balance a pole for 30 seconds
while the robot was learning the forward model by just “watching”. From the demon-
stration, the robot could extract the forward dynamics model of the pole-balancing task
and synthesize the LQR controller. Now learning was reliably accomplished in one sin-
gle trial, using a large variety of physically different poles and using demonstrations
from arbitrary people in the laboratory.
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Figure 3: a) Sarcos Dexterous Robot Arm; b) Smoothed average of 10 learning curves of the robot for pole
balancing. The trials were aborted after successful balancing of 60 seconds. We also tested long term per-

formance of the learning system by running pole balancing for over an hour—the pole was never
dropped.

3.3 Inverse Dynamics Learning

As all our anthropomorphic robots are rather light-weight, compliant, and driven by di-
rect-drive hydraulic motors, using methods from rigid body dynamics to estimate their
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inverse models resulted in rather inaccurate performance due to unknown nonlineari-
ties in these systems. Therefore, the goal of the following learning experiments was to
approximate the inverse dynamics of a 7-degree-of-freedom anthropomorphic robot
arm (Figure 3a) from a data set consisting of 45,000 data points, collected at 100Hz from
the actual robot performing various rhythmic and discrete movement tasks (this corre-
sponds to 7.5 minutes of data collection). The data consisted of 21 input dimensions: 7
joint positions, velocities, and accelerations. The goal of learning was to approximate
the appropriate torque command of the shoulder motor in response to the input vector.
To increase the difficulty of learning, we added 29 irrelevant dimensions to the inputs
with N(0,0.052) Gaussian noise. 5,000 data points were excluded from the training data
as a test set.

The high dimensional input space of this learning problem requires an application of
LWPR. Figure 4 shows the learning results in comparison to parametric estimation of
the inverse dynamics based on rigid body dynamics (An et al., 1988), and in comparison
to a sigmoidal feedforward neural network with 30 hidden units trained with Leven-
berg-Marquardt optimization. From the very beginning, LWPR outperformed the pa-
rametric model. Within about 500,000 training points (about 30 minutes training on a
500Mhz DEC Alpha Computer), LWPR converged to the excellent result of
nMSE=0.042. It employed an average of only 3.8 projections per local model despite the
fact that the input dimensionality was 50. During learning, the number of local models
increased by a factor of 6 from about 50 initial models to about 310 models. This in-
crease is due to the adjustment of the distance metric D in Equation (10) that was ini-
tialized to form a rather large kernel. Since this large kernel oversmoothes the data,
LWPR reduced the kernel size, and in response more kernels needed to be allocated.
The sigmoidal neural network achieved the same learning results as LWPR, however, it
required one night of training and could only operate in batch mode.
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16

We also applied LWPR to an even more complex robot, a 30 DOFs humanoid robot
as shown in Figure 5a. Again, we learned the inverse dynamics model for the shoulder
motor, however, this time involving 90 input dimensions (i.e., 30 positions, 30 velocities,
and 30 accelerations of all DOFs). The learning results, shown in Figure 5b, are similar
to Figure 4. Very quickly, LWPR outperformed the inverse dynamics model estimated
from rigid body dynamics and settled at a result that was more than three times more
accurate. The huge learning space required more than 2000 local models, using about
2.5 local projections on average. In our real-time implementation of LWPR on this robot,
the learned models achieve by far better tracking performance than the parameter esti-
mation techniques.
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Figure 5: a) Humanoid robot in our laboratory; b) inverse dynamics learning for the right shoulder motor
of the humanoid.

4 Conclusions

This paper presented Locally Weighted Learning algorithms for real-time robot learn-
ing. The algorithms are easy to implement, use sound statistical learning techniques,
converge quickly to accurate learning results, and can be implemented in a purely in-
cremental fashion. We demonstrated that the latest version of our algorithms is capable
of dealing with high dimensional input spaces that even have redundant and irrelevant
input dimensions while the computational complexity of an incremental update re-
mained linear in the number of inputs. In several examples, we demonstrated how LWL
algorithms were applied successfully to complex learning problems with actual robots.
From the view point of function approximation, LWL algorithms are competitive meth-
ods of supervised learning of regression problem and achieve results that are compara-
ble with state-of-the-art learning techniques. However, what makes the presented algo-
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rithms special is their learning speed, numerical robustness in high dimensional spaces,
and ability to learn incrementally. To the best of our knowledge, there is currently no
comparable learning framework that combines all the required properties for real-time
motor learning as well as Locally Weighted Learning. Our learning results demonstrate
that autonomous learning can be applied successfully to rather complex robotic sys-
tems, and that learning can achieve performance that outperforms traditional tech-
niques from control theory.
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Abstract

Locally weighted projection regression is a new
algorithm that achieves nonlinear function ap-
proximation in high dimensional spaces with re-
dundant and irrelevant input dimensions. At its
core, it uses locally linear models, spanned by
a small number of univariate regressions in se-
lected directions in input space. This paper eval-
uates different methods of projection regression
and derives a nonlinear function approximator
based on them. This nonparametric local learn-
ing system i) learns rapidly with second order
learning methods based on incremental training,
ii) uses statistically sound stochastic cross vali-
dation to learn iii) adjusts its weighting kernels
based on local information only, iv) has a com-
putational complexity that is linear in the number
of inputs, and v) can deal with a large number of
- possibly redundant - inputs, as shown in evalua-
tions with up to 50 dimensional data sets. To our
knowledge, this is the first truly incremental spa-
tially localized learning method to combine all
these properties.

1. Introduction

Nonlinear function approximation with high dimensional
input data remains a nontrivial problem. An ideal algorithm
for such tasks needs to eliminate redundancy in the input
data, detect irrelevant input dimensions, keep the compu-
tational complexity low, and, of course, achieve accurate
function approximation and generalization. A route to ac-
complish these goals can be sought in techniques of pro-
jection regression. Projection Regression(PR) copes with
high dimensional inputs by decomposing multivariate re-
gressions into a superposition of single variate regressions
along particular projections in input space. The major dif-
ficulty of PR lies in how to select efficient projections, i.e.,
how to achieve the best fitting result with as few as possible

one dimensional regressions.

Previous work has focused on finding good global pro-
jections for fitting nonlinear one-dimensional functions.
Among the best known algorithms is projection pursuit re-
gression (Friedman & Stutzle, 1981), and its generalization
in form of Generalized Additive Models (Hastie & Tibshi-
rani, 1990). Sigmoidal neural networks can equally be con-
ceived of as a method of projection regression, in particu-
lar when new projections are added sequentially, e.g., as in
Cascade Correlation (Fahlman & Lebiere, 1990).

In this paper we suggest an alternative method of projection
regression, focusing on finding efficient local projections.
Local projections can be used to accomplish local func-
tion approximation in the neighborhood of a given query
point. Such methods allow to fit locally simple functions,
e.g., low order polynomials, along the projection, which
greatly simplifies the function approximation problem. Lo-
cal projection regression can thus borrow most of its statis-
tical properties from the well established methods of locally
weighted learning and nonparametric regression (Hastie &
Loader, 1993; Atkeson, Moore & Schaal, 1997). Counter-
intuitive to the curse of dimensionality (Scott, 1992), local
regression methods can work successfully in high dimen-
sional spaces as shown in a recent work (Vijayakumar &
Schaal, 1998). In the above work, using techniques of prin-
cipal component regression (Schaal, Vijayakumar & Atke-
son, 1998), the observation that globally high dimensional
movement data usually lie on locally low dimensional dis-
tributions was exploited. However, principal component
regression does not address an efficient selection of local
projections, nor is it well suited to detect irrelevant input di-
mensions. This paper will explore methods that can remedy
these shortcoming. We will introduce a novel algorithm,
covariance projection regression, that generalizes princi-
pal component regression to a family of algorithms capa-
ble of discovering efficient projections for locally weighted
linear regression and compare it to partial least squares
regression–one of the most successful global linear projec-
tion regression methods. Empirical evaluations highlight



Table 1. Pseudocode implementation of PLS, PCR and CPR projection regression

PLS/PCR/CPR Pseudocode

1. Initialize: Å F $ M �5Å , Æ F $ M �bÆ
2. for �:� @ to � do

(a) ÅÈÇ^�5Å F $ M § , where § is a diagonal weight matrix.
(b) If [PLS]: � D �5Å 4 Ç Æ F $ M . If [PCR/CPR]: � D � e Hg�ÊÉ�HK��Ë�HK+PÌ�ÍI' � Å 4 Ç Å Ç ��hÏÎÑÐiÒ .
(c)

� D �]Ó 4 D Æ F $ M � � Ó 4 D Ó D � where Ó D �ÔÅ F $ M � D .
(d) Æ F $ M �ÔÆ F $ M ; Ó D � D .
(e) Å F $ M �ÔÅ F $ M ; Ó D � D 4 where � D �dÅ 4 F $ M Ó D � � Ó 4 D Ó D � .

the pros and cons of the different methods. Finally, we em-
bed one of the projection regression algorithms in an in-
cremental nonlinear function approximation (Vijayakumar
& Schaal, 1998). In several evaluations, the resulting in-
cremental learning system demonstrates high accuracy for
function fitting in high dimensional spaces, robustness to-
wards irrelevant inputs, as well as low computational com-
plexity.

2. Linear Projection Regression for
Dimensionality Reduction

In this section we will outline several PR algorithms that fit
linear functions along the individual projections. Later, by
spatially localizing these algorithms, they can serve as the
core of nonlinear function approximation techniques. We
assume that our data is generated by the standard linear re-
gression model

� � �  � V(Õ , where
�

is a vector of input
variables and

�
is the scalar, mean-zero noise contaminated

output. Without loss of generality, both inputs and output
are assumed to be mean zero. For notational convenience,
all input vectors are summarized in the rows of the matrix
X=[

� 9 � � ...
� B h 4 and the corresponding outputs are the el-

ements of the vector y. � is the number of training data
and

�
is the dimensionality of the input data. All the PR

techniques considered here project the input data Å onto� orthogonal directions � 9 �K�«�Ö�«� � G along which they carry
out univariate linear regressions - hence, the name projec-
tion regression. If the linear model of the data was known,
it would be straightforward to determine the optimal pro-
jection direction: it is given by the vector of regression co-
efficients

�
, i.e., the gradient; along this direction, a single

univariate regression would suffice to obtain an optimal re-
gression result.

2.1 Partial Least Squares

Partial least squares (PLS) (Wold, 1975; Frank & Friedman,
1993), a technique extensively used in chemometrics, re-

cursively computes orthogonal projections of the input data
and performs single variable regressions along these projec-
tions on the residuals of the previous iteration step. Table 1
illustrates PLS in a pseudocode implementation. It should
be noted that for PLS, the matrix § in step 2a of the algo-
rithm needs to be the identity matrix. The key ingredient in
PLS is to use the direction of maximal correlation between
the residual error and the input data as the projection direc-
tion at every regression step. Additionally, PLS regresses
the inputs of the previous step against the projected inputsÓ in order to ensure the orthogonality of all the projections� (Step 2d,2e). Actually, this additional regression could
be avoided by replacing � with � in Step 2e, similar to tech-
niques used in principal component analysis(Sanger, 1989).
However, using this regression step leads to better perfor-
mance of the algorithm. This effect is due to the fact that
PLS chooses the most effective projections if the input data
has a spherical distribution: with only one projection, PLS
will find the direction of the gradient and achieve optimal
regression results. The regression step in 2e modifies the
input data Å F $ M such that each resulting data vectors have
coefficients of minimal magnitude and, hence, push the dis-
tribution of Å F $ M to become more spherical.

2.2 Principal Component Regression

A computationally efficient technique of dimensionality re-
duction for linear regression is Principal Component Re-
gression (PCR) (Massy, 1965; Vijayakumar & Schaal,
1998). PCR projects the input data onto its principal com-
ponents and performs univariate regressions in these direc-
tions. Only those � principal components are used that
correspond to the largest eigenvalues of the input covari-
ance matrix. The algorithm for PCR is almost identical to
PLS, with § again being the identity matrix. Only Step
2b in Table 1 is different, but this difference is essential.
PCR chooses projection � solely based on the input distri-
bution. Although this can be interpreted as a method that
maximizes the confidence in the univariate regressions, it



is prone to choose quite inefficient projections.

2.3 Covariant Projection Regression

In this section, we introduce a new algorithm which has
the flavour of both PCR and PLS. Covariant Projection Re-
gression(CPR) transforms the input data in Step 2a (Table
1) by a (diagonal) weight matrix § with the goal to elon-
gate the distribution in the direction of the gradient of the
input/output relation of the data. Subsequently, the major
principal component of this deformed distribution is cho-
sen as the direction of a univariate regression (Step 2b). In
contrast to PCR, this projection now reflects not only the in-
fluence of the input distribution but also that of the regres-
sion outputs. As in PLS, if the input distribution is spheri-
cal, CPR will obtain an optimal regression result with a sin-
gle univariate fit, irrespective of the actual input dimension-
ality.

CPR is actually a family of algorithms depending on how
the weights in § are chosen. Here, we consider two such
options:

Weighting scheme CPR1: ¨\©«ª F 9D«D � 9¬�­�®|¯[° �q± ² ®|¯�° R	S ±³�´ ®|¯[° R	S ³ � ª .
See Fig.1(a).

Weighting scheme CPR2: ¨\©«ª F��D«D � 9³�´ ®|¯[° R	S ³ �q± ² ®|¯�° R	S ±³�´ ®|¯[° R	S ³ � ª .
See Fig.1(b).

CPR1 spheres the input data and then weights it by the
“slope” of each data point, taken to the power ¡ for increas-
ing the impact of the input/output relationships. CPR2 is a
variant that, although a bit idiosyncratic, had the best av-
erage performance in practice: CPR2 first maps the input
data onto a unit-(hyper)sphere, and then stretches the dis-
tribution along the direction of maximal slope, i.e., the re-
gression direction (Fig.1) – this method is fairly insensitive
to noise in the input data. Fig.1 shows the effect of trans-
forming a gaussian input distributionby the CPR weighting
schemes. Additionally, the figure also compares the regres-
sion gradient against the projection direction extracted by
CPR. As can be seen, for gaussian distributions CPR finds
the optimal projection direction with a single projection.

2.4 Monte Carlo evaluations for performance
comparison

In order to evaluate the candidate methods, linear data sets,
consisting of 1000 training points and 2000 test points,
with 5 input dimension and 1 output were generated at ran-
dom. The outputs were calculated from random linear co-
efficients, and gaussian noise was added. Then, the input
data was augmented with 5 additional constant dimensions
and rotated and stretched to have random variances in all
dimensions. For some test cases, 5 more input dimensions

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x1

x2

 CPR1 projection vs Regression direction 

input distribution       
regression direction     
transformed data         
CPR1 projection direction

(a)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x1

x2

 CPR2 projection vs Regression direction 

input distribution       
regression direction     
transformed data         
CPR2 projection direction

(b)

Figure 1. CPR projection under two different weighting schemes

with random noise was added afterwards to explore the ef-
fect of irrelevant inputs on the regression performance. Em-
pirically, we determined ¡µ� � as a good choice for CPR.

The simulations considered the following permutations:
1. Low noise 1 ( ¶ t =0.99) and High noise ( ¶ t k rIz	· ) in

output data.
2. With and without irrelevant (non-constant) input di-

mensions.
Each algorithm was run 100 times on random data sets of
each of the 4 combinations of test conditions. Results were

1Noise is parametrised by the coefficient of determination ( ¶ t ).
We add noise scaled to the output variance, i.e. ¸�¹Kº�»«¼|½ k¿¾ z	¸�À ,
where ¾µk�Á uÂ t o�pgz The best normalized mean squared error
(nMSE) achievable by a learning system under this noise level ispÃoÄ¶�t .
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Figure 2. Simulation Results for PCR/PLS/CPR1/CPR2. The
subplots show results for projection dimensions 1, 3 and 5. Each
of the subplots have four additional conditions made of permu-
tations of : (i) low and high noise (ii) With and without irrele-
vant(non constant) inputs.

compiled such that the number of projection dimensions �
employed by the methods varied from one to five. Fig.2
show the summary results.

It can be seen that on average the PLS and CPR methods
outperform the PCR methods by a large margin, even more
in the case when irrelevant inputs were included. This can
be attributed to the fact that PCR’s projections solely rely
on the input distributions. In cases where irrelevant in-
puts have high variance, PCR will thus choose inappropri-
ate projection directions. For low noise cases ( ' � � ��� �
� ),
CPR performs marginally better than PLS, especially dur-
ing the first projections. For high noise cases ( ' � � ���	�

),
PLS seems be slightly better. Amongst the CPR candidates,
CPR2 seems to have a slight advantage over CPR1 in low
noise cases, while the advantage is flipped with larger noise.
Summarizing, it can be said that CPR and PLS both perform
very well. In contrast to PCR, they accomplish excellent re-
gression results with relatively few projections since their

choice of projections does not just try to span the input dis-
tribution but rather the gradient of the data.

3. Locally Weighted Projection Regression

Going from linear regression to nonlinear regression can
be accomplished by localizing the linear regressions (Vi-
jayakumar & Schaal, 1998; Atkeson, Moore & Schaal,
1997). The key concept here is to approximate nonlinear
functions by means of piecewise linear models. Of course,
in addition to learning the local linear regression, we must
also determine the locality of the particular linear model
from the data.

3.1 The LWPR network

In this section, we briefly outline the schematic layout of
the LWPR learning mechanism. Fig. 3.1 shows the asso-
ciated local units and the inputs which feed into it. Here, a
weighting kernel (determining the locality) is defined that
computes a weight ! G L D for each data point

��� D ��� D �
accord-

ing to the distance from the center   G of the kernel in each
local unit. For a gaussian kernel, ! G L D becomes

! G L D �dHK-
¡ � ; @) �|�
D ;   G � 4 � G ��� D ;   G ���%� (1)

where � G corresponds to a distance metric that determines
the size and shape of region of validity of the linear model.
Here we assume that there are ¢ local linear models com-
bining to make the prediction. Given an input vector

�
, each

linear model calculates a prediction
� G

. The total output of
the network is the weighted mean of all linear models:

£� ��¤d¥
G E 9 ! G � G
¤ ¥
G E 9 ! G �

(2)

as shown in Fig. 3.1. The parameters that need to be
learned includes the dimensionality reducing transforma-
tion (or projection directions) � D L G , the local regression pa-
rameter

� D L G and the distance metric / G for each local mod-
ule.

3.2 Learning the projection directions and local
regression

Previous work (Schaal & Atkeson, 1997) computed the
outputs of each linear model

� G
by traditional recursive

least squares regression over all the input variables. Learn-
ing in such a system, however, required more than ¦ � � �K�
(where � is the number of input dimensions) computations
which became infeasible for more than 10 dimensional in-
put spaces. However, using the PLS/CPR framework, we
are able to reduce the computational burden in each local
linear model by applying a sequence of one-dimensional re-
gressions along selected projections � F in input space (note
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that we drop the index � from now on unless it is necessary
to distinguish explicitly between different linear models) as
shown in Table 1. The important ingredient of PLS is to
choose projections according to the correlation of the input
data with the output data. The Locally Weighted Projection
Regression (LWPR) algorithm, shown in Table 2, uses an
incremental locally weighted version of PLS to determine
the linear model parameters.

In Table 2, � c�e ���K@�h
is a forgetting factor that deter-

mines how much older data in the regression parameters
will be forgotten, as used in the recursive system identifica-
tion techniques (Ljung & Soderstrom, 1986). The variables��� , ��� , and �^� are memory terms that enable us to do the
univariate regression in step (f) in a recursive least squares
fashion, i.e., a fast Newton-like method. Step (g) regresses
the projection from the current projected data s and the cur-
rent input data � . This step guarantees that the next projec-
tion of the input data for the next univariate regression will
result in a � D 8:9 that is orthogonal to � D . Thus, for '�� �

,
the entire input space would be spanned by the projections� D and the regression results would be identical to that of a
traditional linear regression. Once again, we emphasize the
important properties of the local projection scheme. First, if
all the input variables are statistically independent, PLS will
find the optimal projection direction � D in a single iteration
- here, the optimal projection direction corresponds to the
gradient of the assumed locally linear function to be approx-
imated. Second, choosing the projection direction from cor-
relating the input and the output data in Step (a) automati-
cally excludes irrelevant input dimensions, i.e., inputs that
do not contribute to the output. And third, there is no dan-

Incremental PLS Pseudocode

Given: A training point
�|�������

.

Update the means of input and output:� &�8:9� � � A & � & � V ! �A &�8:9� &�8:9� � � A & � &� V ! �A &�8:9
where

A &�8:9 ��� A & V ! and� �� ��� , � �D ��� ,
� �� � � , A � � �

Update the local model:

1. Initialize: �2� � , 'IHgJ 9 � � ; � &�8:9�
2. For ��� @�� '

(a) � &�8:9D ����� &D V ! ��'IHgJ
D

(b) J\�5� 4 � &�8:9D
(c) �^� &�8:9D �]���^� &D V ! J �
(d) �^� &�8:9D �]����� &D V ! Jq'IHgJ

D
(e) �^� &�8:9D �d����� &D V ! ��J
(f)

� &�8:9D �]��� &�8:9D � ��� &�8:9D
(g) � &�8:9D ����� &�8:9D � ��� &�8:9D
(h) �2�d� ; J�� &�8:9D
(i) 'IHgJ D 8:9 �]'IHgJ D ; J � &�8:9D
(j) ���^� &�8:9D �]�����^� &D V ! 'IHgJ �

D 8:9
Predicting with novel data:

Initialize:
� � � � � �W� � ; � �

For i=1:k

1. J\�5� 4D �
2.
� � � V �

D J
3. �2�5� ; J�� &D

Table 2. PLS Pseudocode

ger of numerical problems in PLS due to redundant input
dimensions as the univariate regressions will never be sin-
gular.

3.3 Learning the locality

So far, we have described the process of finding projection
directions and based on this, the local linear regression in
each local area. The validity of this local model and hence,
the size and shape of the receptive field is determined by the
distance metric � . It is possible to optimize the distance
metric � individually for each receptive field by using an
incremental gradient descent based on stochastic leave-one-
out cross validation criterion. The update rule can be writ-



LWPR outline� Initialize the LWPR with no receptive field (RF);� For every new training sample (x,y):

– For k=1 to RF: calculate the activation from eq.(1) update according to psuedocode of incremen-
tal PLS & Distance Metric update

– end
– If no linear model was activated by more than!#"%$�& ; create a new RF with '(�*) , +,�.- , /0�/21 $�3
– end� end

Table 3. LWPR Outline

ten as :

� � �546� � where 7 is upper triangular (3)7 &�8:9 � 7 &2;(<>=
?= 7 (4)

where the cost function to be minimized is:

? � @A BC D E 9
FCG E 9

! D 'IHKJ �G 8:9�L D��@ ; ! DNMPOQ�R	SM�T Q
U M Q � �WV>X
YCD L Z E 9 / �

D Z � (5)

The above update rules can be embedded in an incremental
learning system that automatically allocates new locally lin-
ear models as needed. An outline of the algorithm is shown
in Table 3.

In this pseudo-code algorithm, ! "%$[& is a threshold that de-
termines when to create a new receptive field, and / 1 $�3 is
the initial (usually diagonal) distance metric in eq.(1). The
initial number of projections is set to '\�]) . The algorithm
has a simple mechanism of determining whether ' should be
increased by recursively keeping track of the mean- squared
error (MSE) as a function of the number of projections in-
cluded in a local model, i.e., Step (j) in the incremental PLS
psuedocode. If the MSE at the next projection does not de-
crease more than a certain percentage of the previous MSE,
i.e., ����� D 8:9���^� D`_ba �

(6)

where
adcfe ���g@ih

, the algorithm will stop adding new pro-
jections to the local model. For a diagonal distance metric� and under the assumption that the ' remains small, the

computational complexity of the update of all parameters
of LWPR is linear in the number of input dimensions.

3.4 Empirical Evaluations

We implemented LWPR similar to the development in (Vi-
jayakumar & Schaal, 1998). In each local model, the pro-
jection regressions are performed by (locally weighted)
PLS, and the distance metric � is learned by stochastic in-
cremental cross validation (Schaal & Atkeson, 1998); all
learning methods employed second order learning tech-
niques. As a first test, we ran LWPR on 500 noisy training
data drawn from the two dimensional functionjlk max m exp n�oqp%rgs
tu�vPw exp n�oyxKrgs
tt w�pgz	{gx exp n�oyx�n|s�tu�}�s
tt v�v�vP~} N n|r�w�rIz	rIp%v
shown in Fig.4(a). This kind of function with a spatial mix-
ture of strong non-linearities and significant linear regions
is an excellent test of the learning and generalization ca-
pability. Models with low complexity find it hard to cap-
ture the non-linearities while it is easy to overfit with more
complex models, especially in linear regions. A second test
added 8 constant dimensions to the inputs and rotated this
new input space by a random 10-dimensional rotation ma-
trix. A third test added another 10 input dimensions to the
inputs of the second test, each having

�����������	�

����
Gaus-

sian noise, thus obtaining a 20-dimensional input space.
The learning results with these data sets are illustrated in
Fig.4(c). In all three cases, LWPR reduced the normal-
ized mean squared error (thick lines) on a noiseless test set
rapidly in 10-20 epochs of training to less than ������������	��


, and it converged to the excellent function approxima-
tion result of ��������� ��� ��@

after 100,000 data presenta-
tions. Fig.4(b) illustrates the reconstruction of the original
function from the 20-dimensional test – an almost perfect
approximation. The rising thin lines in Fig.4(c) show the
number of local models that LWPR allocated during learn-
ing. The very thin lines at the bottom of the graph indicate
the average number of projections that the local models al-
located: the average remained at the initialization value of
two projections, as is appropriate for this originally two di-
mensional data set.

Previous work (Schaal & Atkeson, 1998) has quantita-
tively compared the performance of RFWR, a predecessor
of LWPR, to baseline techniques like sigmoidal neural net-
works as well as to more advanced techniques like the mix-
ture of experts systems of Jordan & Jacobs (Jacobs, 1991;
Jordan & Jacobs, 1994) and the Cascade correlation algo-
rithms (Fahlman & Lebiere, 1990). These results show that
RFWR is very competitive, outperforms most of these tech-
niques and is especially robust to non-static input distri-
butions and interference during learning. One must note
that stripping the LWPR algorithm of it’s dimensionality re-
duction preprocessing essentially gives us the RFWR algo-
rithm.
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Figure 4. (a) Target and (b) learned nonlinear cross function.(c)
Learning curves for 2-D, 10-D and 20-D data

In the second evaluation, we approximated the inverse dy-
namics model of a 7-degree-of-freedom anthropomorphic
robot arm (see Fig.5(a)) from a data set consisting of 45,000
data points, collected at 100Hz from the actual robot per-
forming various rhythmic and discrete movement tasks
(this corresponds to 7.5 minutes of data collection). The in-
verse dynamics model of the robot is strongly nonlinear due
to a vast amount of superpositions of sine and cosine func-
tions in robot dynamics. The data consisted of 21 input di-
mensions: 7 joint positions, velocities, and accelerations.
The goal of learning was to approximate the appropriate
torque command of one robot motor in response to the input
vector. To increase the difficulty of learning, we added 29
irrelevant dimensions to the inputs with

�����������	��

���
Gaus-

sian noise. 5,000 data points were excluded from the train-
ing data as a test set. Fig.5(b) shows the learning results in
comparison to two other state of the art techniques in this
field - parameter estimation based on Rigid Body Dynamic
models and Levenberg-Marquardt based Backpropogation
with sigmoidal neural networks. The parameter estimation
technique uses apriori knowledge about the analytical form
of the robot dynamics equations and that these equations
are linear in the unknown inertial and kinematic parame-
ters of the robot. Linear regression techniques with com-
plex analytical data preprocessing was used to obtain these
parameters, thus resulting in a complete analytical model
of the robot inverse dynamics. From the very beginning,
LWPR outperformed the global parameter estimation tech-
nique. Within 250,000 training presentations, LWPR con-
verged to the excellent result of ��������� ��� ����


. It em-
ployed an average of only 3.8 projection dimensions per lo-
cal model inspite of the input dimensionality of 50. Dur-
ing learning, the number of local models increased by a fac-
tor of 10 from about 50 initial models to about 400 mod-
els. This increase is due to the adjustment of the distance
metric � in eq.(1), which was initialized to form a very
large kernel. Since this large kernel over-smoothes the data,
LWPR reduced the kernel size, and in response more ker-
nels needed to be allocated. In comparison, the LM Back-
Prop method, which is computationally much more inten-
sive, achieved ��������� ���	��
�
 , which is statistically sim-
ilar. However, as is evident from Fig.5(b), it took much
longer to converge to the optimal value compared to LWPR.
Once again, the key issue is that none of these compared al-
gorithms are incremental or online. We have not been able
to find another incremental, online algorithm in the litera-
ture which scales for the input dimensionality and redun-
dancy handled in the tasks here.

4. Discussion

This paper discussed methods of linear projection regres-
sion and how to use them in spatially localized nonlin-
ear function approximation for high-dimensional input data
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Figure 5. (a) Sketch of the SARCOS dextrous arm (b) Learning
curves for 50 dimensional robot dynamics learning

that has redundant and irrelevant components. We derived a
family of linear projection regression methods that bridged
the gap between principal component regression, a com-
monly used algorithm with inferior performance, and par-
tial least squares regression, a less known algorithm with,
however, superior performance. Each of these algorithms
can be used at the core of nonparametric function approx-
imation with spatially localized weighting kernels. As an
example, we demonstrated how one nonlinear function ap-
proximator derived from this family leads to excellent func-
tion approximation results in up to 50 dimensional data sets.
Besides showing very fast and robust learning performance
due to second order learning methods based on stochastic
cross validation, the new algorithm excels by its low com-
putational complexity: updating one projection direction
has linear computational cost in the number of inputs, and
since the algorithm accomplishes good approximation re-
sults with only 3-4 projections irrespective of the number
of input dimensions, the overall computational complexity
remains linear in the inputs. To our knowledge, this is the
first spatially localized incremental learning system that can
efficiently work in high dimensional spaces.
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Abstract. While recent research in neural networks and statistical learning has focused mostly on learning from
finite data sets without stringent constraints on computational efficiency, there is an increasing number of learn-
ing problems that require real-time performance from an essentially infinite stream of incrementally arriving
data. This paper demonstrates how even high-dimensional learning problems of this kind can successfully be
dealt with by techniques from nonparametric regression and locally weighted learning. As an example, we de-
scribe the application of one of the most advanced of such algorithms, Locally Weighted Projection Regression
(LWPR), to the on-line learning of the inverse dynamics model of an actual seven degree-of-freedom anthro-
pomorphic robot arm. LWPR’s linear computational complexity in the number of input dimensions, its inherent
mechanisms of local dimensionality reduction, and its sound learning rule based on incremental stochastic leave-
one-out cross validation allows – to our knowledge for the first time – implementing inverse dynamics learning
for such a complex robot with real-time performance. In our sample task, the robot acquires the local inverse
dynamics model needed to trace a figure-8 in only 60 seconds of training.

1 Introduction

An increasing number of learning problems involves real-time modeling of complex high-dimensional processes.
Typical examples include the on-line modeling of dynamic processes observed by visual surveillance, user model-
ing for advanced computer interfaces and game playing, and the learning of value functions, policies, and internal
models for learning control. Among the characteristics of these learning problems are high dimensional input spaces
with potentially redundant and irrelevant dimensions, nonstationary input and output distributions, essentially in-
finite training data sets with no representative validation sets, and the need for continual learning. Most of these
learning tasks fall into the domain of regression problems.

Interestingly, this class of problems has so far not been conquered by the new developments in statistical learn-
ing. Bayesian inference [3] is usually computationally too expensive for real-time application as it requires repre-
sentation of the complete joint probablity densities of the data. The framework of structural risk minimization[9],
the most advanced in form of Support Vector Machines, excels in classification and finite batch learning problems,
but has yet to show compelling performance in regression and incremental learning. In contrast, techniques from
nonparametric regression, in particular the methods of locally weighted learning [2], have recently advanced to meet
all the requirements of real-time learning in high-dimensional spaces. In this paper, we will describe how one of the
most highly developed algorithms amongst them, Locally Weighted Projection Regression (LWPR), accomplishes
learning of a highly nonlinear model for robot control– the inverse dynamics model of a seven degree-of-freedom
(DOF) anthropomorophic robot. In the following sections, we will first explain the learning task, then spell out the
LWPR algorithm, and finally illustrate learning results from real-time learning on the actual robot. To the best of
our knowledge, this is the first time that real-time learning of such a complex model has been accomplished in robot
control.

2 Inverse Dynamics Learning

A common strategy in robotic and biological motor control is to convert kinematic trajectory plans into motor com-
mands by means of an inverse dynamics model. The inverse dynamics takes the desired positions, velocities, and
accelerations of all DOFs of the robot and outputs the appropriate motor commands. For our robot, a seven DOF
anthropomorphic robot arm, the inverse dynamics model receives 21 inputs and outputs 7 torque commands. If
derived analytically using a rigid body dynamics assumption [1], the most compact recursive formulation of the in-
verse dynamics of our robot results in about 15 pages of compact C-code, filled with nested sine and cosine terms.



Table 1. Pseudocode of PLS projection regression

1. Initialize:Xres = X, yres = y

2. For r = 1 to R (# projections)
(a) ur = X

T

res
yres; �r = s

T

r
yres=(s

T

r
sr) where sr = Xresur.

(b) yres = yres � sr�r ; Xres = Xres � srpr
T where pr = X

T

res
sr=(s

T

r
sr).

For on-line learning, motor commands need to be generated from the model at 480Hz in our implementation. Up-
dating the learning system can take place at a lower rate but should remain above 10Hz to capture suffcient data in
fast movements.

Learning regression problems in a 21-dimensional input space is a daunting problem from the view of the bias-
variance trade-off. In learning control, training data is generated by the learning system itself, and it is impossible to
assess a priori what structural complexity that data is going to have. Fortunately, actual movement systems do not
fill the data space in a completely random way. Instead, when viewed locally, data distributionsare low dimensional,
e.g., about 4-6 dimensional for the inverse dynamics [8] of our robot instead of the global 21 input dimensions. This
property will be a key element in our approach to learning such models.

3 Locally Weighted Projection Regression

The core concept of our learning approach is to approximate nonlinear functions by means of piecewise linear mod-
els [2]. The learning system automatically determines the appropriate number of local models, the parameters of the
hyperplane in each model, and also the region of validity, called receptive field (RF), of each of the model, usually
formalized as a Gaussian kernel:

wk = exp(�
1

2
(x � ck)

T
Dk(x � ck)); (1)

Given a query point x, each linear model calculates a prediction yk. The total output of the learning system is the
weighted mean of all K linear models:

ŷ =

KX

k=1

wkyk=

KX

k=1

wk;

also illustrated in Fig.1. Learning in the system involves determining the linear regression parameter �k and the dis-
tance metricDk. The center ck of the RF remains fixed. Local models are created as and when needed as described
in Section 3.3.

3.1 Local Dimensionality Reduction

Despite its appealing simplicity, the “piecewise linear modeling” approach becomes numerically brittle and compu-
tationally too expensive in high dimensional problems. Given the empirical observation that high dimensional data
is often locally low dimensional, it is possible to develop a very efficient approach to exploit this property. Instead
of using ordinary linear regression to fit the local hyperplanes, we suggest to employ Partial Least Squares (PLS)
[11, 4]. PLS recursively computes orthogonal projections of the input data and performs single variable regressions
along these projections on the residuals of the previous iteration step. Table 1 illustrates PLS in pseudocode for a
global linear model where the input data is in the rows of the matrix X, and the corresponding one dimensional
output data is in the vector y. The key ingredient in PLS is to use the direction of maximal correlation between the
residual error and the input data as the projection direction at every regression step. Additionally, PLS regresses the
inputs of the previous step against the projected inputs sr in order to ensure the orthogonality of all the projections
ur (Step 2b). Actually, this additional regression could be avoided by replacing pr with ur, similar to techniques
used in principal component analysis [5]. However, using this regression step leads to better performance of the al-
gorithm. This effect is due to the fact that PLS chooses the most effective projections if the input data has a spherical
distribution:with only one projection, PLS will find the direction of the gradient and achieve optimal regression re-
sults. The regression step in 2b modifies the input data Xres such that each resulting data vectors have coefficients
of minimal magnitude and, hence, push the distribution of Xres to become more spherical.

An incremental locally weighted version of the PLS algorithm[10] is derived in Table 2. Here, � 2 [0; 1]denotes
a forgetting factor that determines how quickly older data will be forgotten in the various PLS parameters, similar to



Table 2. Incremental locally weighted PLS for one RF
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the recursive system identification techniques [12]. The variables SSr , SRr and SZr are memory terms that enable
us to do the univariate regression in step (7) in a recursive least squares fashion, i.e., a fast Newton-like method.

Since PLS selects the univariate projections very efficiently, it is even possible to run locally weighted PLS
with only one projection direction (denoted as LWPR-1). The optimal projection is in the direction of the local
gradient of the function to be approximated. If the locally weighted input data forms a spherical distribution in a
local model, the single PLS projection will suffice to find the optimal direction. Otherwise, the distance metric (and
hence, weighting of the data) will need to be adjusted to make the local distribution more spherical. The learning
rule of the distance metric can accomplish this adjustment, as explained below. It should be noted that Steps 2(h-j)
in Table 2 become unnecessary for the uni-projection case.

3.2 Learning the Distance Metric

The distance metric Dk and hence, the locality of the receptive fields, can be learned for each local model individ-
ually by stochastic gradient descent in a leave-one-out cross validation cost function. Note that this update does not
require competitive learning – only a completely local learning rule is needed, and leave-one-out cross validation
can be performed without keeping data in memory [7]. The update rule can be written as :

M
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n
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@M
where D =M

T
M (for positive definiteness) (2)

and the cost function to be minimized is:
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where M denotes the number of training data, and N the number of input dimensions. A stochastic version of the
gradient @J

@M
can be derived from the cost function by keeping track of several “memory terms” as shown in Table

3.

3.3 The Complete LWPR Algorithm

All the ingredients above can be combined in an incremental learning scheme that automatically allocates new lo-
cally linear models as needed. The final learning network is illustrated in Fig. 1 and an outline of the algorithm is
shown below.



Table 3. Derivatives for distance metric update

@J

@M
�

RX

r=1

(

MX

i=1

@J1;r

@w
)
@w

@M
+

w

Wn+1

@J2

@M
(stochastic update)

@w

@Mkl

= �
1

2
w(x� c)T

@D

@Mkl

(x� c);
@J2

@Mkl

= 2



N

NX

i=1;j=1

Dij

@Dij

@Mkl

@Dij

@Mkl

= Mkj�il +Mki�jl; where �ij = 1 if i = j else �ij = 0:

Compute the following for each projection direction r:

MX

i=1

@J1;r

@w
=

e
2
cv;r

Wn+1
� 2

(Pn+1
r

srer)

Wn+1
H

n

r
� 2

(Pn+1
r

sr)
2

Wn+1
R
n

r
�

E
n+1
r

(Wn+1)2

+[Tn+1
r

� 2Rn+1
r

P
n+1
r

C
n+1
r

]
(I� uru

T

r
=(uT

r
ur))z resr

Wn+1
p
uT
r
ur

C
n+1
r

= �C
n

r
+wsrz

T
; er = resr+1; ecv;r =

er

1� wP
n+1
r s2

r

; P
n+1
r

=
1

SS
n+1
r

H
n+1
r

= �H
n

r
+

w ecv;rsr

(1�w hr)
; R

n+1
r

= �R
n

r
+

w
2
s
2
r
e
2
cv;r

(1 �w hr)
where hr = P

n+1
r

s
2
r

E
n+1
r

= �E
n

r
+ we

2
cv;r

; Tn+1
r

= �T
n

r
+
w(2we2

cv;r
srP

n+1
r

� ecv;r�
n+1
r

)

(1�w hr)
z
T

LWPR outline

– Initialize the LWPR with no receptive field (RF);
– For every new training sample (x,y):

� For k=1 to K:
� calculate the activation from eq.(1)
� update projections & regression (Table 2) and Distance Metric (Table 3)

� If no RF was activated by more than wgen;
� create a new RF with r = 2, c = x, D = Ddef

In this pseudo-code, wgen is a threshold that determines when to create a new receptive field, and Ddef is the
initial (usually diagonal) distance metric in eq.(1). The initial number of projections is set to r = 2. The algo-
rithm has a simple mechanism of determining whether r should be increased by recursively keeping track of the
mean-squared error (MSE) as a function of the number of projections included in a local model, i.e., step (g) in the
incremental PLS pseudocode. If the MSE at the next projection does not decrease more than a certain percentage
of the previous MSE, i.e., MSEi+1

MSEi
> �, where � 2 [0; 1], the algorithm will stop adding new projections locally.

For a diagonal distance metric D and under the assumption that the number of projections R remains small, the
computational complexity of the update of all parameters of LWPR is linear in the number of input dimensions.
The LWPR-1 variant on the other hand uses just one projection direction.

4 Real-Time Learning of Inverse Dynamics

4.1 Performance Comparison on a Static Data Set

Before demonstrating the applicability of LWPR in real-time, a comparison with alternative learning methods will
serve to demonstrate the complexity of the learning task. We collected 50,000 data points from various movement
patterns from a 7 DOF anthropomorphic robot (Fig.2a) at 50Hz sampling frequency. 10 percent of this data was
excluded as a test set. The training data was approximated by 4 different methods: i) parameter estimation based on
an analytical rigid body dynamics model [1], ii) Support Vector Regression[6], iii) LWPR-1, and iv) full LWPR. It
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Fig. 1. (a) Information processing unit of LWPR (b) Humanoid Robot used for learning in our laboratory

should be noted that neither i) nor ii) are incremental methods. Using a parametric model as suggested in i) and just
approximating its open parameters from data results in a global model of the inverse dynamics and is theroretically
the most powerful method. However, given that our robot is actuated hydraulically and rather lightweight and com-
pliant, we know that the rigid body dynamics assumption is not fully justified. In all our evaluations, the inverse
dynamics model of each DOF was learned separately, i.e., all models had a univariate output and 21 inputs. LWPR
employed a diagonal distance metric.

Fig.2b illustrates the function approximation results for the shoulder motor command graphed over the number
of training iterations (one iteration corresponds to the update from one data point). Surprisingly, rigid body param-
eter estimation achieved the worst results. LWPR-1 outperformed parameter estimation, but fell behind SVM re-
gression. Full LWPR performed the best. The results for all other DOFs were analogous. For the final result, LWPR
employed 260 local models, using an average of 3.2 local projections. LWPR-1 did not perform better because we
used a diagonal distance metric. The abilities of a diagonal distance metric to “carve out” a locally spherical dis-
tribution are too limited to accomplish better results – a full distance metric can remedy this problem, but would
make the learning updates quadratic in the number of inputs. These results demonstrate that LWPR is a competitive
function approximation technque.

4.2 On-line Learning

We implemented full LWPR on our robotic setup. Out of the four parallel processors of the system, one 366Mhz
PowerPC processor was completely devoted to lookup and learning with LWPR. Each DOF had its own LWPR
learning system, resulting in 7 parallel learning modules. In order to accelerate lookup and training times, we added
a special data structure to LWPR. Each local model maintained a list of all other local models that overlapped suf-
ficiently with it. Sufficient overlap between two local model i and j can be determined from the centers and dis-
tance metrics. The pointx in input space that is the closest to both centers in the sense of a Mahalanobis distance is
x = (Di+Dj)

�1(Dici+Djcj). Inserting this point into eq.(1) of one of the local models gives the activationw
due to this point. The two local models are listed as sufficiently overlapping ifw >= wgen (cf. LWPR outline). For
diagonal distance metrics, the overlap computation is linear in the number of inputs. Whenever a new data point
is added to LWPR, one neighborhood relation is checked for the maximally activated RF. An appropriate counter
for each local model ensures that overlap with all other local models is checked exhaustively. Given this “nearest
neighbor” data structure and the fact that a movement system generates temporally highly correlated data, lookup
and learning can be confined to only few RFs. For every lookup (update), the identification number of the maximally
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Fig. 3. (a) Robot end effector motion traces under different control schemes (b) Progress of online learning with LWPR control

activated RF is returned. The next lookup (update) will only consider the neighbors of this RF. It can be proved that
this method performs as good as an exhaustive lookup (update) strategy that excludes RFs that are activated below
a certain threshold wcutoff .

The LWPR models were trained on-line while the robot performed a pseudo randomly drifting figure-8 pattern
in front of its body. Lookup proceeded at 480Hz, while updating the learning model was achieved at about 70Hz. At
certain intervals, learning was stopped and the robot attempted to draw a planar figure-8 at 2Hz frequency for the
entire pattern. The quality of these drawing patterns is illustrated in Fig.3a,b. In Fig.3a, Xdes denotes the desired
figure-8 pattern,Xsim illustrates the figure-8 performed by our robot simulator that uses a perfect inverse dynamics
model (but not necessarily a perfect tracking and numerical integration algorithm), Xparam is the performance of
the estimated rigid body dynamics model, and Xlwpr shows the results of LWPR. While the rigid body model has
the worst performance, LWPR obtained the best results, even better than the simulator. Fig.3b illustrates the speed
of LWPR learning. The Xnouff trace demonstrates the figure-8 patterns performed without any inverse dynamics
model, just using a low gain PD controller. The other traces show how rapidly LWPR learned the figure-8 pattern
during training: they denote performance after 10, 20, 30, and 60 seconds of training. After 60 seconds, the figure-8
is hardly distinguishable from the desired trace.



5 Conclusions

This paper illustrated an application of Locally Weighted Projection Regression to a complex robot learning task.
The O(n) update complexity of LWPR, together with its statistically sound dimensionality reduction and learning
rules allowed a reliable and successful real-time implementation of the algorithm on an actual anthropomorphic
robot. From the viewpoint of learning control, these results demark the first time that complex internal models can
be learned autonomously in real-time on sophisticated robotic devices. In an even more challenging application, we
will implement LWPR for inverse dynamics learning on a 30 DOF full-body humanoid robot (Fig.1b) in the near
future.
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Abstract
We introduce a constructive, incremental learning system for regression problems that
models data by means of spatially localized linear models. In contrast to other ap-
proaches, the size and shape of the receptive field of each locally linear model as well as
the parameters of the locally linear model itself are learned independently, i.e., without
the need for competition or any other kind of communication. Independent learning is
accomplished by incrementally minimizing a weighted local cross validation error. As a
result, we obtain a learning system that can allocate resources as needed while dealing
with the bias-variance dilemma in a principled way. The spatial localization of the linear
models increases robustness towards negative interference. Our learning system can be
interpreted as a nonparametric adaptive bandwidth smoother, as a mixture of experts
where the experts are trained in isolation, and as a learning system which profits from
combining independent expert knowledge on the same problem. This paper illustrates
the potential learning capabilities of purely local learning and offers an interesting and
powerful approach to learning with receptive fields.

1 Introduction

Learning with spatially localized basis functions has become a popular paradigm in
machine learning and neurobiological modeling. In the context of radial basis function
networks (Moody & Darken, 1988; Poggio & Girosi, 1990), it was demonstrated that
such local learning offers an alternative to learning with global basis functions, such as
sigmoidal neural networks, and that its theoretical foundation can be solidly grounded
in approximation theory (Powell, 1987). In neurophysiological studies, the concept of
localized information processing in the form of receptive fields has been known since at
least the work of Mountcastle (1957) and Hubel and Wiesel (1959). Since then, a wealth
of experimental evidence has been accumulated which suggests that information proc-
essing based on local receptive fields is a ubiquitous organizational principle in neuro-
biology that offers interesting computational opportunities (e.g., Lee, Rohrer, & Sparks,
1988; Georgopoulos, 1991; Field, 1994; Olshausen & Field, 1996; Daugman & Downing,
1995).
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In this paper we explore the computational power of local, receptive field-based in-
cremental learning with the goal of approximating unknown functional relationships
between incoming streams of input and output data. By incremental learning we do not
just mean that the parameters of the learning system are updated incrementally. We
want to address a learning scenario in which limited memory is available such that after
a new data point is incorporated in the learning system it is discarded and cannot be re-
used, in which input and output distributions of the data are unknown, and in which
these distribution may change over time. This situation resembles the learning of sen-
sory and sensorimotor transformations in biology, and it also applies to a variety of arti-
ficial domains, ranging from autonomous robotic systems to process control.

Given these constraints on incremental learning, two major problems need to be ad-
dressed. The first is how to allocate the appropriate number of resources, e.g., receptive
fields, in order to deal with the tradeoff between overfitting and oversmoothing, called
the bias-variance dilemma (e.g., Geman, Bienenstock, & Doursat, 1992). The second
problem of incremental learning comes from negative interference, the forgetting of
useful knowledge while learning from new data. Methods to prevent negative interfer-
ence require either validation data sets, memorizing of all training data, or strong prior
knowledge about the learning problem. However, none of these alternatives are avail-
able in the setting we have described as we want to avoid storing data and do not have
much knowledge about the structure of the learning task.

In order to address the problems of incremental learning, we will resort to techniques
from nonparametric statistics (e.g., Scott, 1992; Hastie & Tibshirani, 1990). Nearest
neighbor algorithms for pattern recognition and Parzen windows for density estimation
are among the best known methods out of this field (e.g., Duda & Hart, 1973). It is inter-
esting to note that many nonparametric methods are essentially receptive field-based:
predictions are made using data from a restricted local neighborhood around the query
point. The size of the neighborhood can be irregular, as typically is the case in nearest
neighbor approaches, or it can be a symmetric smooth weighting function as in Parzen
windows. Receptive fields in nonparametric regression are mostly built on the fly and
are discarded right after the prediction—a paradigm that has been termed lazy learning
(Aha, 1997). Necessarily, such nonparametric methods need to store training data. An-
other characteristic is that predictions are usually based on a single receptive field. This
property inspired the field of nonparametric regression to pursue more complex models
in a receptive field, for instance, low order polynomials (e.g., Cleveland, 1979; Cleve-
land & Loader, 1995). In contrast, many neural network algorithms, such as radial basis
function systems, focused on combining the activation strengths of many receptive
fields to optimize predictions.

In this paper we will demonstrate how a nonparametric regression approach can be
used to build a receptive field-based learning system for incremental function approxi-
mation without the need to store the training data and without discarding receptive
fields after using them. A locally linear model will be fitted incrementally within each
receptive field such that local function approximation is accomplished in the spirit of a
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Taylor series expansion. A new property of this learning approach is that each receptive
field is trained independently of all other receptive fields, thereby adjusting the parame-
ters of its locally linear model, the size and shape of its receptive field, as well as the
bias on the relevance on its individual input dimensions. New receptive fields are allo-
cated as needed. The resulting algorithm, Receptive Field Weighted Regression
(RFWR), achieves robust incremental learning. It also has some interesting relations to
previously suggested learning methods. It can be interpreted as a mixture of experts
system (Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan & Jacobs, 1994) where the ex-
perts are trained in isolation. It can also be interpreted as system where a set of experts
is trained independently on the same problem, and which profits from combining these
experts for making predictions (e.g., Perrone & Cooper, 1993). And finally, RFWR can
be interpreted as a nonparametric memory-based learner (Atkeson, Moore, & Schaal,
1997) which only stores data that are surprising.

In the next section, we will give some motivation for our approach to incremental
learning. Section 3 describes the details of our nonparametric incremental learning sys-
tem and outlines some of its statistical characteristics. Section 4 discusses a variety of
empirical evaluations. Section 5 outlines related work, while Section 6 concludes this
paper.

2 Incremental Learning

2.1 Statistical Assumptions

The assumed statistical model of our problems is the standard regression model:

y x= ( ) +f ε
where x ∈ℜn  denotes the n-dimensional vector of input variables, y ∈ℜm  the m-
dimensional vector of output variables, and f ⋅( )  a deterministic vector valued function
mapping the input x to the output y. The additive random noise ε is assumed to be in-
dependently distributed, E i j{ }ε ε = 0  for i j≠ , and mean zero, E{ | }ε x = 0 , but otherwise
of unknown distribution ( E{}⋅  denotes the expectation operator). The input data is dis-
tributed according to the density p( )x .

2.2 Localizing Interference

Interference in learning is a natural side-effect of the ability to generalize, i.e., to inter-
polate or extrapolate an output for an unseen input from previously learned data. Gen-
eralization is accomplished by allowing changes to the parameters of the learning sys-
tem to have non-local effects. If these effects reduce the overall correctness of predic-
tions to a larger extent than they improve them, interference is called negative or even
catastrophic. Incremental learning is particularly endangered by negative interference
because there is no direct way to balance the amount of positive interference (i.e., gen-

(1)
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eralization) with the amount of negative interference: any parameter update is usually
greedy; its only concern is with the reduction of the error of the current piece of training
data. To see the statistical causes of interference, consider using the mean squared error
criterion J to select a model ˆ( )f ⋅  to approximate the true function f ( )⋅ :

J E f f p d d f p p d d= − ( ){ } = − ( ) ( ) = − ( ) ( ) ( )
−∞

+∞

−∞

+∞

∫ ∫y x y x x y x y y x y x x x yˆ ˆ , ˆ2 2 2

This equation states that, in general, the approximation result for ˆ( )f ⋅  depends on both
the conditional distribution p( | )y x  and the input distribution p( )x  of the data (Fan &
Gijbels, 1996). Only for an infinite amount of training data, ˆ( )f ⋅  will asymptotically de-
pend solely on p( | )y x  (Papoulis, 1991):

f̂ E p dx y x y y x y( ) = { } = ( )
−∞

+∞

∫
Thus, for a finite amount of data, a stable model ˆ( )f ⋅  can only be obtained if neither of
these distributions changes during learning.

These considerations point towards the two major causes for negative interference. If
p( | )y x  changes, i.e., the functional relationship between x and y is non-stationary, the
parameters in a learning system may have to change. Analogously, if the data for
learning are not sampled from a fixed input distribution p( )x , the parameters of the
learning system may also change. It is particularly a change of the input distribution
p( )x  which is likely to happen in incremental learning. Imagine a robot learning an in-
verse dynamics model of its arm, a model which maps joint positions, joint velocities,
and joint accelerations to corresponding joint torques. Whenever the robot moves, it re-
ceives valid data about this functional relationship. However, since the robot is fulfill-
ing different tasks at different times, the sampled data will come from quite different
input distributions—for example, consider the difference between movements for
cooking and movements for playing tennis.

One of the interesting properties of learning with localized receptive fields lies in
their potential robustness towards interference. If learning is spatially localized, i.e.,
training data at one location have negligible effect on the parameters of distant recep-
tive fields, interference will be spatially localized as well. The example of Figure 1 gives
an illustration of this effect. Using a synthetic data set suggested by Fan and Gijbels
(1995), we trained a 3-layer sigmoidal feedforward neural network (6 hidden units, us-
ing backpropagation with momentum) on 130 noisy data points uniformly distributed
in x ∈ −[ . , . ]2 0 0 5  (“•” in Figure 1). The excellent function fit obtained is shown by the
“predicted y” trace in Figure 1a. Then we continued training the network on 70 new
data points (“+” in Figure 1) drawn from the same function but with a changed input
distribution x ∈[ . , . ]0 5 2 0 . The network learned to accommodate these new data points,
but in doing so, it also significantly changed its predictions for the previously learned
data, although this data is largely separate from the new training data. This effect is due

 (2)

(3)
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to the non-local nature of sigmoidal basis functions, and is prone to lead to catastrophic
interference, as shown in Figure 1a.

We repeated the same experiment with our receptive field-based learning system,
RFWR, which generates locally linear models in each receptive field and blends them
for predictions (Figure 1b,c). On the original training data, RFWR achieves comparable
results to that of the sigmoidal neural network. After training on the new data, how-
ever, no interference is apparent. The original fit in the left part of the graph was not
visibly altered, in contrast to the neural network. Robustness towards negative interfer-
ence is accomplished by localizing interference—the best we can do since interference
cannot be eliminated for finite data samples.

2.3 Avoiding The Problem of Resource Allocation

Due to the bias-variance tradeoff (Geman et al., 1992), learning algorithms have to in-
clude a model selection phase in order to find an appropriate compromise between
oversmoothing and overfitting. Usually, this is accomplished by setting certain meta
parameters, for instance, the number of hidden units in a neural network, according to
some model selection criterion, e.g., cross validation (Stone, 1974). A question fre-
quently asked in model selection (e.g., Bishop, 1996) thus becomes: “How many free pa-
rameters should be allocated in order to achieve (in expectation) a good bias-variance
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b) Local Function Fitting With Receptive Fieldsa) Global Function Fitting With Sigmoidal Neural
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Figure 1: a) Results of function approximation of the function y=sin(2x)+2exp(-16x2)+N(0,0.16)
with a sigmoidal neural network, b)  results of function approximation by a local receptive
field-based algorithm, fitting locally linear models in each receptive field (note that the data
traces “true y”, “predicted y”, and “predicted y after new training data” largely coincide), c)
the organization of the (Gaussian) receptive fields of b) after training.
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tradeoff?” However, another approach can be pursued: “Given a fixed number of free
parameters, how should a given data set be spatially limited in order to achieve (in ex-
pectation) a good bias-variance tradeoff for the remaining data?”—instead of adapting
the complexity of the learning system, one can also adapt the complexity of the region
the data is drawn from. For general nonlinear function approximators, it is unclear how
to answer this question. For spatially localized function fitting, however, this question
translates into: “How should the extent of a receptive field be changed in order to make
its associated parametric model fit the data appropriately?” Such an approach trans-
forms the global bias-variance problem into a local one.

The advantage of having each receptive field deal with the bias-variance tradeoff in-
dividually lies in avoiding the resource allocation problem. In the spirit of a Taylor se-
ries expansion, let us assume that we know how to adjust the region of validity, i.e., the
size and shape of a receptive field, of each locally linear model such that its approxima-
tion error at the center—its bias θk—is determined by an optimal bias-variance tradeoff
(Figure 2a). In order to approximate the entire nonlinear function, we have to cover the
input space with sufficiently many locally linear models such that every data point is
handled by at least one of them.  Importantly, it does not matter whether we allocate too
many local models: if we restrict extrapolation of the linear models to the θk  bound
(which actually corresponds to a minimal activation strength of a receptive field), an
average of the outputs of all k linear models at a query point xq  cannot have a larger er-
ror than max( )θk  as illustrated in Figure 2b. Indeed, allocating too many local models
has actually a positive effect: due to averaging, more overlapping linear models will
tend to improve function estimates in the spirit of and with the same limitations as in
ensemble methods (Perrone & Cooper, 1993).

Although deriving an optimal local bias-variance tradeoff remains hard (Friedman,
1984; Fan & Gijbels, 1996), the local nature of the problem allows new ways to find at
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Figure 2: a) Region of validity of a linear model and its approximation bias θk; b) function approximation
with piecewise linear models.
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least satisfying and computationally affordable solutions. Section 3 will demonstrate
how a stochastic approximation of local leave-one-out cross validation in conjunction
with a regularization approach can be used to realize the local bias-variance tradeoff,
and to even approximately control the expected bias θk  in each local model.

2.4 Summary

Given the discussion of the last two sections, a promising route to robust incremental
learning seems to be a local receptive field-based system that can also adjust the extent
of its receptive fields. However, care must be taken how one goes about accomplishing
this goal. Learning methods based on competitive learning do usually not achieve the
properties described in the previous section. In competitive learning, the size of a recep-
tive field results from a global competition process of all local models to account for the
training data. Therefore, changing the number of local models causes a change of the
extent of all receptive fields such that the number of local models becomes a critical
choice for the bias-variance tradeoff—exactly what we would wish to avoid. The next
section will explain how an alternative approach based on nonparametric statistics of-
fers a route to achieve our goals without resorting to competitive learning.

3 Receptive Field Weighted Regression

RFWR constructs a system of receptive fields for incremental function approximation. A
prediction ŷ  for a query point x is built from the normalized weighted sum of the indi-
vidual predictions ŷk  of all receptive fields:

ˆ
ˆ

y
y

= =

=

∑

∑

w

w

k k
k

K

k
k

K
1

1

The weights wk  correspond to the activation strengths of the corresponding receptive
fields. They are determined from the size and shape of each receptive field, character-
ized by a kernel function. A variety of possible kernels have been suggested (e.g., At-
keson et al., 1997). For analytical convenience, we use a Gaussian kernel:

wk k

T

k k k k
T

k= − −( ) −( )



 =exp ,

1

2
x c D x c D M Mwhere   

which parameterizes the receptive field by its location in input space, ck
n∈ℜ , and a

positive definite distance metric Dk , determining the size and shape of the receptive
field. For algorithmic reasons, it is convenient to generate Dk from an upper triangular
matrix Mk  in order to ensures that Dk  is positive definite.

Within each receptive field, a simple parametric function models the relationship be-
tween input and output data. Local polynomials of low order have found widespread

(4)

(5)
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use in nonparametric statistics (Nadaraya, 1964; Watson, 1964; Wahba & Wold, 1975;
Cleveland, 1979; Cleveland & Devlin, 1988). We will focus on locally linear models, as
they accomplish a favorable compromise between computational complexity and qual-
ity of result (Hastie & Loader, 1993):

ˆ ˜ , ˜ ,,y x c b x x x ckk k

T

k
T

k k

T T

b= −( ) + = = −( )( )0 1β

where βk  denotes the parameters of the locally linear model and x̃  a compact form of
the center-subtracted, augmented input vector to simplify the notation.

To clarify the elements and parameters of RFWR, Figure 3 gives a network-like illus-
tration for a single output system. The inputs are routed to all receptive fields, each of
which consists of a linear and a Gaussian unit. The learning algorithm of RFWR deter-
mines the parameters ck , Mk , and βk  for each receptive field independently, i.e., without
any information about the other receptive fields, in contrast to competitive learning.
RFWR adds and prunes receptive fields as needed, such that the number of receptive
fields, K, will automatically adjust to the learning problem at hand. A one dimensional
example of function fitting with RFWR was already shown in Figure 1b,c. It should be
noted that the size of each receptive field adapted according to the local curvature of the
function, that there is a certain amount of overlap between the receptive fields, and that
the center locations have not been chosen with respect to any explicit optimization crite-
rion.

(6)
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Figure 3: A network illustration of Receptive Field Weighted Regression
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3.1 Learning With RFWR

Three ingredients of the algorithm need to be discussed: the update of the linear model
parameters βk , the decomposed distance metric Mk , and when and where to add and
prune receptive fields. The centers ck  are not changed after they are allocated. For the
sake of clarity, we will drop the subscript k  whenever we deal with one receptive field
at a time from now on since each receptive field is updated in the same way.

3.1.1 Learning the Linear Model

Learning of β  is straightforward since the problem is linear in β . It will be useful to
leave the incremental learning framework for a moment and think in terms of a batch
update. If we summarize the input part of all p training data points in the rows of the
matrix X x x x= …(˜ , ˜ , , ˜ )1 2 p

T , the corresponding output part in the rows of the matrix
Y y y y= …( , , , )1 2 p

T , and the corresponding weights in the diagonal matrix

W = …( )diag w w w1 2 p, , , , the parameter vector β  can be calculated from a weighted re-
gression:

β = ( ) =
−

X WX X WY PX WYT T T1

This kind of locally weighted regression has found extensive application in non-
parametric statistics (Cleveland, 1979; Cleveland & Loader, 1995), in time series predic-
tion (Farmer & Sidorowich, 1987, 1988), and in regression learning problems (Atkeson,
1989; Moore, 1991; Schaal & Atkeson, 1994; Atkeson et al., 1997). The result for β  in
Equation (7) is exactly the same when β  is calculated by recursive least squares from
one sequential sweep through the training data (Ljung & Söderström, 1986). Given a
training point ( , )x y , the incremental update of β  yields:

β β

λ λ β

n n n
cv
T

n n
n T n

T n
cv

nT

w

w

+ +

+

= +

= −
+

















= −( )

1 1

1 1

P x e

P P
P x x P

x P x
e y x

˜

˜ ˜

˜ ˜
˜

 

where and

This update is employed by RFWR. It is useful to note that recursive least squares corre-
sponds to a Newton training method with guaranteed convergence to the global mini-
mum of, in our case, a weighted squared error criterion (Atkeson et al., 1997). Further-
more, the recursive update avoids an explicit matrix inversion. Differing from the batch
update in Equation (7), Equation (8) also includes a forgetting factor λ . Changes to the
decomposed distance metric M during learning (see below) will change the weights w.
For this reason, it is necessary to include λ in (8) in order to gradually cancel the contri-
butions from previous data points where M was not yet learned properly (Ljung &
Söderström, 1986).

(7)

(8)
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3.1.2 Learning the Shape and Size of the Receptive Field

Adjusting the shape and size of the receptive field is accomplished by adjusting the de-
composed distance metric M. At the first glance, one might hope that this can be done
by gradient descent in the weighted mean squared error criterion:

J
W

w W wi i i
i

p

i
i

p

= − =
= =
∑ ∑1 2

1 1

y ŷ    where   

which is the basis of the solution of locally weighted regression in Equation (7) (Atkeson
et al, 1997). Unfortunately, minimizing (9) may result in a quite inappropriate solution.
If for each training point one receptive field is centered right on this point, and the cor-
responding M is chosen such that the receptive field is so narrow that it is only acti-
vated by this data point, the corresponding linear model can fit this one data point with
zero error. The function approximation result would strongly tend towards overfitting.
It is this property that has made learning algorithms resort to competitive learning with
a fixed number of local receptive fields: the global competitive process will prevent re-
ceptive fields from modeling just one data point (assuming there are more data points
than receptive fields) (e.g., Moody & Darken, 1988; Jordan & Jacobs, 1994). But allowing
for such a global competitive process takes away the property of being a local learner,
even if the receptive fields are actually spatially localized.

An alternative way to address this overfitting effect is to use leave-one-out cross
validation. The cost function to be minimized changes from Equation (9) to

J
W

wi i i i
i

p

= − −
=
∑1 2

1

y ŷ ,

The notation ˆ
,yi i−  denotes that the prediction of the i-th data point is calculated from

training the learning system with the i-th data point excluded from the training set.
Thus, it becomes inappropriate for a receptive field to just focus on one training point
since the error measure is calculated from data which did not exist in the training set.
Leave-one-out cross validation is usually computationally very expensive since a p-fold
training of the learning system is required, for p data points in the training set. Fur-
thermore, for example for a sigmoidal neural network, it might be unclear how to com-
bine the resultant p different learned parameters into a single solution. However, for
linear regression problems, there is a result rendering these concerns irrelevant. Due to
the Sherman-Morrison-Woodbury Theorem (e.g., Belsley, Kuh, & Welsh, 1980), Equa-
tion (10) can be re-written as:

J
W

w
W

w

w
i i i i

i

p
i i i

i i
T

ii

p

= − =
−

−( )−
= =
∑ ∑1 1

1

2

1

2

2
1

y y
y y

x P x
ˆ

ˆ

˜ ˜
,

This equation states that the leave-one-out cross validation error can be obtained with-
out p-fold training of the learning system, but instead by an adjustment of the weighted
mean squared error with the help of the inverted covariance matrix P (cf. (7)). Equation

(9)

(10)

(11)
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(11) corresponds to a weighted version of the PRESS residual error in standard linear
regression techniques (Myers, 1990).  Neglecting for a moment how this cost function
can be minimized incrementally, we have obtained a criterion which can be used to
adjust M (Schaal & Atkeson, 1994).

Unfortunately, there is still a point of concern with Equation (11). Minimizing the lo-
cally weighted leave-one-out cross validation error results in a consistent learning sys-
tem, i.e., with an increasing number of training data, the receptive fields will shrink to a
very small size. The advantage of this behavior is that function approximation becomes
asymptotically unbiased, i.e., consistent, but as a disadvantage, an ever increasing
number of receptive fields will be required to represent the approximated function. This
property can be avoided by introducing a penalty term in (11):

J
W

w

w
Di i i

i i
T

ii

p

ij
i j

n

=
−

−( )
+

= =
∑ ∑1

1

2

2
1

2

1

y y

x P x

ˆ

˜ ˜ ,

γ

where the scalar γ determines the strength of the penalty. By penalizing the sum of
squared coefficients of the distance metric D, we are essentially penalizing the second
derivatives of the function at the site of a receptive field. This is similar to approaches
taken in spline fitting (deBoor, 1978; Wahba, 1990) and acts like a low-pass filter: the
higher the second derivatives, the more smoothing (and thus bias) will be introduced
locally. Another positive effect of the penalty term is that the introduction of bias re-
duces the variance of the function estimate, a problem usually associated with local
function fitting methods (Friedman, 1984). Section 3.3 will outline the properties of (12)
in more detail.

What remains is how to minimize (12) incrementally by adjusting M by gradient de-
scent with learning rate α :

M M
M

n n J+ = −1 α ∂
∂

Applying the chain rule, the derivative of (13) can be written as

∂
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+
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
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Without storing data in incremental learning, we cannot use cross validation and, thus,
cannot obtain the true gradient in (14). The usual approach to deriving a stochastic gra-
dient would be to drop the two sums in (14). However, this approximate gradient
would be quite inaccurate since the first term of (14)  would always be positive: shrink-
ing the receptive field reduces the weight of a data point and thus its contribution to the
weighted error. It turns out that we are able to derive a much better stochastic approxi-

(12)

(13)

(14)
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mation. Given one training point ( , )x y  and its associated weight w from (5), the deriva-
tive for this point can be approximated as:

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

J J

w

w w

W

J w J

w

w

W

Ji

i

p
i

i

p

M M M M M
≈ + = +

= =
∑ ∑1

1

2 1

1

2, ,

Summing (15) over all data points and recalling that W stands for the sum of weights
(cf. Equation (9)), Equation (15) can be verified to result in Equation (14). Despite the
term J i1, , it is now possible to obtain an incremental version of the stochastic derivative
in (15) by introducing the “memory traces” W, E, H, and R (cf. notation in (8)):
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   where   

The resulting incremental version of the derivative (15) becomes:
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where :

   

   (  is the Kronecker operator)
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Deriving this derivative is possible due to the fact that an application of the Sherman-
Morrison-Woodbury theorem allows us to take derivatives through the inverted covari-
ance matrix P (Belsley et al., 1980; Atkeson & Schaal, 1995), and that a sum of the form
Σv Qvi

T
i  can be written as Σ Σv Qv Q v vi

T
i i i

T= ⊗ , where the operator ⊗  denotes an ele-
ment-wise multiplication of two homomorphic matrices or vectors with a subsequent
summation of all coefficients, Q V⊗ = ΣQ Vij ij . It is interesting to note that the stochastic
derivative (17) is not just concerned with reducing the error of the current training point
as in many other learning algorithms, but rather that it takes into account the previously
encountered training data, too, through the memory traces (16). Thus, both the β and M

(15)

(16)

(17)
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update in RFWR are not greedy with respect to the current training sample, a charac-
teristic which will contribute favorably to speed and robustness of incremental learning.

3.1.3 Adding Receptive Fields and Automatic Bias Adjustment

A new receptive field is created if a training sample ( , )x y  does not activate any of the
existing receptive field by more than a threshold wgen . The center of the new receptive
field becomes c x= , M is set to a manually chosen default value, Mdef , and all other pa-
rameters are initialized to zero, except the matrix P. P corresponds to an inverted co-
variance matrix of the weighted inputs (treating the constant input “1” as the (n+1)-th
input). A suitable initialization of P is as a diagonal matrix, the diagonal elements set to
P rii i= 1 2/ , where the coefficients ri  are usually small quantities, e.g., 0.001 (Ljung &
Söderström, 1986). We summarize all ri  in the ( n + 1 )-dimensional vector
r = …( )+r r rn

T

1 2 1, , , .

The parameters r  have an interesting statistical interpretation: they introduce bias in
the regression coefficients β, and correspond to one of the common forms of biased re-
gression, ridge regression (Belsley et al., 1980). From a probabilistic point of view, they
are Bayesian priors that the coefficients of β are zero. From an algorithmic perspective,
they are fake data points of the form [ ( ,..., , ,...) , ]x yr i

T
rr= =0 0 02  (Atkeson et al., 1997).

Under normal circumstances, the sizes of the coefficients of r are too small to introduce
noticeable bias. However, ridge regression parameters are important if the input data is
locally rank deficient, i.e., the matrix inversion in (7) is close to singular. For high di-
mensional input spaces, it is quite common to have locally rank deficient input data. Al-
though RFWR does not explicitly require matrix inversions, the rank deficiency affects
the incremental update in (8) by generating estimates of β with very large variances,
causing unreliable predictions. Non-zero ridge regression parameters reduce this vari-
ance, however at the cost of introducing bias. An appropriate compromise can be found
by including the ridge parameters as adjustable terms in RFWR using gradient descent
in the cost (12):

r r
r

n n
r

J+ = −1 α ∂
∂

After each update of P, the change in r is added to P. Additionally, it is necessary to add
back the fraction of r which was lost due to the forgetting factor λ—bias should not be
forgotten over time. These two computations can be performed together and are sur-
prisingly simple. Appendix 8.1 details this update and the stochastic approximation of
∂J/∂r, which is analogous to the derivation of (17).

3.1.4 Pruning Receptive Fields

The last element in RFWR is a pruning facility. A receptive field is pruned if it overlaps
too much with another receptive field. This effect is detected by a training sample acti-

 (18)
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vating two receptive fields simultaneously more than wprune . The receptive field with the
larger determinant of the distance metric D is pruned. For computational convenience,
det(D) can be approximated by ΣDii

2  (Deco & Obradovic, 1996). It should be noted that
pruning due to overlap aims primarily at computational efficiency, since, as discussed
in Section 2.3, overlap does not degrade the approximation quality. The second cause
for pruning is if the bias-adjusted weighted mean squared error

wMSE
E

W
D

n

n ij
i j

n

= −
=

∑γ 2

1,

of the linear model of a unit is excessively large in comparison to other units—the bias
adjustment term can be derived from the asymptotic behavior of RFWR, outlined in
Section 3.3 and detailed in Schaal and Atkeson (1997).  Empirically, there are usually
two ways to adjust M in order to minimize (12). The one we normally want to avoid is
M=0, i.e., the zero matrix. It indicates that the receptive field performs global regression
instead of locally weighted regression. Global linear regression for a nonlinear function
has a large wMSE. A simple outlier detection test among the wMSE of all receptive
fields suffices to deal with such behavior. The receptive field is then reinitialized with
randomized values. Normally, pruning takes place rarely, and if it happens, it is mostly
due to an inappropriate initialization of RFWR.

3.1.5 Summary of RFWR

Initialize the RFWR with no receptive field (RF);
For every new training sample (x,y):

a) For k=1 to #RF:
– calculate the activation from (5)
– update the receptive field parameters according to (13), and (18)

end;
b) If no subnet was activated by more than wgen;

– create a new RF with c=x, M=Mdef
end;

c) If two RFs are activated more than wprune:
– erase the RF with the larger det(D)

end;
d) calculate the m=E{wMSE} and std=E{(wMSE-m)2}0.5 of all RFs;
e) For k=1 to #RF:

If |wMSE–m| >  ϕ std,
– reinitialize receptive field with M = ε  Mdef

end;
end;

In summary, each receptive field in RFWR has three sets of adjustable parameters:
β for the locally linear model, M for the size and shape of the receptive field, and r for
the bias. The linear model parameters are updated by a Newton method, while the

(19)



15

other parameters are updated by gradient descent. A compact pseudo-code overview of
RFWR is shown above.

The scalar ϕ  is a (positive) outlier removal threshold, e.g., ϕ=2.576 or ϕ=3.291 (corre-
sponding to a 99% or 99.9% confidence value with respect to a normal distribution), and
the scalar ε is a random value ε=1+|N(0,1)|. This choice of ε ensures that the new dis-
tance metric will result in a smaller receptive field which is less likely to converge to a
M=0 solution. It useful to note that the parameters wprune , wgen , and ϕ can be chosen in-
dependently of a particular learning problem and should thus be considered more like
constants of the algorithm and not open parameters.

3.2 Second Order Gradient Descent

With little extra computation, it is possible to replace the gradient descent update of M
in (13) by second order gradient descent to gain learning speed. For this purpose, we
adopted Sutton’s (1992a,b) Incremental Delta-Bar-Delta (IDBD) algorithm. The deriva-
tion of the algorithm remains as demonstrated in Sutton (1992a,b), only that his stan-
dard least squares criterion is replaced by our cost function (12), and that we apply
IDBD to updating a distance metric. Appendix 8.2 provides the details of the algorithm.
It is also possible to apply second order learning to the ridge regression update (18).
Empirically, however, we did not find any significant improvements of doing so and,
hence, only incorporated second order updates for the distance metric in RFWR.

3.3 Asymptotic Properties of RFWR

In Schaal and Atkeson (1996,1997) we derived the asymptotic properties of RFWR’s cost
function (12).  Here we will just mention some of these results that are directly relevant
to this paper. Assuming i) that the number of training data points p goes to infinity, ii)
that within the range of a receptive fields a second order Taylor series expansion fits the
training function sufficiently accurate, iii) that the variance of the noise σ 2  is locally
constant, and iv) that the input distribution is locally uniform, the following statements
can be made:

-  The penalty term in the cost (12) introduces non vanishing bias like a low pass filter:
the higher the second derivatives (Hessian) of the function, the more bias is in-
curred.

-  The estimated locally linear model b is asymptotically unbiased.

-  The distance metric D will be a scaled approximation of the Hessian.

-  An appropriate penalty term γ  for a learning problem can be computed from an es-
timate of the maximal eigenvalues of the Hessian—this corresponds to a smoothness
bias.
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-  A bias adjusted weighted mean squared error, wMSE, can be formulated in order to
compare the approximation quality of receptive fields. This measure was in em-
ployed in Equation (19).

These asymptotic results confirm that the penalty term in the cost function (12) has
the desired characteristics as mentioned in Section 2.3 and Section 3.1.2: receptive fields
cannot shrink to zero size, and a controlled amount of bias was introduced. It is inter-
esting that the estimated locally linear model b tends to become unbiased (under the as-
sumption that O(2) errors of the Taylor series are negligible). This implies that applica-
tions requiring a gradient estimate from the function approximator can expect reliable
results. The calculation of the gradient estimate is a natural by-product of every lookup
in RFWR.

4 Simulation Results

4.1 Basic Function Approximation with RFWR

First, we will establish that RFWR is capable of competing with state-of-the-art super-
vised learning techniques on a fixed training set. A sufficiently complex learning task
that can still be illustrated nicely is to approximate the function

z e e e Nx y x y= { } + ( )− − − +( )max , , . , .10 50 52 2 2 2

1 25 0 0 01

from a sample of 500 points, drawn uniformly from the unit square. This function con-
sists of a narrow and a wide ridge which are perpendicular to each other, and a Gaus-
sian bump at the origin (Figure 4a). Training data is drawn uniformly from the training
set without replacement; training time is measured in epochs, i.e., multiples of 500
training samples. The test set consists of 1681 data points corresponding to the vertices
of a 41x41 grid over the unit square; the corresponding output values are the exact func-
tion values. The approximation error is measured as a normalized mean squared error,
nMSE, i.e., the MSE on the test set normalized by the variance of the outputs of the test
set. RFWR’s initial parameters are set to M Idef = 5  (I is the identity matrix),
γ = −10 7, wgen = 0 1. , and wprune = 0 9. . The pruning and generation thresholds are of minor
importance, just determining the overlap of the receptive fields. The choice for the pen-
alty term was calculated to tolerate a maximal bias of 0.1 (Schaal & Atkeson, 1997). The
default value for the decomposed distance metric was determined manually such that
an initial receptive field covered a significant portion of the input space. Ridge regres-
sion parameters did not play any role in this example and were omitted.

A first qualitative evaluation of Figure 4 confirms that RFWR fulfills our expecta-
tions. The initially large receptive fields (Figure 4c) adjust during learning according to
the local curvature of the function: they become narrow and elongated in the region of
the ridges, and they remain large in the flat parts of the function ((Figure 4d). The num-

(20)
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ber of the receptive fields increased from 16 after one training epoch to 48, and the final
approximation result was nMSE=0.02.

We compared the learning results of RFWR with 3 other algorithms: standard global
linear regression and a sigmoidal 3-layer backpropagation neural network as baseline
comparisons, and the mixture of experts algorithm as a state-of-the-art comparison
(Jacobs et. al, 1991; Jordan & Jacobs, 1994; Xu, Jordan, & Hinton, 1995). Standard linear
regression cannot accomplish a better result than nMSE=1.0 on this example—the func-
tion has no linear trend in the chosen region of input space. The sigmoidal network was
trained by backpropagation with momentum in a variety of configurations using 20 to
100 units in the hidden layer (the output layer had one linear unit). These networks did
not accomplish results better than nMSE=0.1 within 20000 training epochs. Doubling
the number of training samples and reducing the noise level to N(0,0.0001) finally re-
sulted in nMSE=0.02 for a 100 hidden unit net after about 15000 epochs. By using the
Cascade Correlation algorithm (Fahlman & Lebiere, 1990) to fit our original 500 data
point training set we confirmed that the function (20) seems to be a difficult learning
task for sigmoidal networks: Cascade Correlation did not converge when confined to
using only sigmoidal hidden units, while it achieved good function fitting (nMSE=0.02)
when it was allowed to use Gaussian hidden units.

a) -1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1
y

-0.5

0

0.5

1

1.5

  z

-1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1
y

   b) -1

-0.5

0

0.5

1

  x  

-1

-0.5

0

0.5
1   y  

-0.5

0

0.5

1

1.5

    z

-1

-0.5

0

0.5

1

  x  

-1

-0.5

0

0.5
1   y  

-

0

0

1

1

   

c)

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕ ⊕
⊕

⊕

⊕

⊕

⊕

⊕
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

• ••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

••
•

•

• •

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

••

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y

x    d)

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕ ⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕
⊕

⊕

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

• ••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

••
•

•

• •

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

••

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

Figure 4: a) target function to be approximated; b) approximated function after 50 epochs of training; c)
receptive fields in input space after 1 epoch, given by contour lines of 0.1 isoactivation and a ⊕  mark for
the centers (the training data is displayed by small dots); d) receptive fields after 50 epochs of training.
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A more natural and interesting comparison is with the mixture of experts (ME) sys-
tem, particularly as suggested in Xu et al. (1995). In Xu et al. (1995), in contrast to the
softmax gating network of Jordan and Jacobs (1994), the experts use a mixture of Gaus-
sians as the gating network, and both the gating net and the locally linear models in
each leaf of the gating net can be updated by an analytical version of the Expecta-
tion–Maximation (EM) algorithm (Dempster, Laird, & Rubin, 1977). Thus, the basic
elements of this form of ME are the same as in RFWR—locally linear models and Gaus-
sian receptive fields—while the training methods of the two systems differ signifi-
cantly—competitive parametric likelihood maximization vs. local nonparametric
learning. As ME does not add resources, the performance determining parameters are
how many experts are allocated and how the system is initialized. The algorithm was
tested with 25, 50, 75, and 100 experts. Initially, the experts were uniformly distributed
in the input space with an initial covariance matrix of the Gaussians comparable to the
initialization of RFWR’s distance metric. We conducted a similar test with RFWR, set-
ting its determining parameter, the penalty γ , to 10-6, 10-7, 10-8, and 10-10.

Figure 5 summarizes the results. Each learning curve is the average of 10 learning tri-
als for each condition of the corresponding algorithm; the training data was randomly
generated for each trial. Both algorithms achieve a nMSE=0.12 after only one training
epoch—a typical signature of the fast recursive least squares updating of the linear
models employed by both algorithms—which is about what the sigmoidal neural net-
work had achieved after 10000 to 20000 epochs. Both algorithms converge after about
100 epochs. By adding more experts, the mixture of experts improves its performance to
a best average value of nMSE=0.04 with a slight trend to overfitting for 75 experts.
RFWR accomplishes consistently a result of nMSE=0.02 for all but the γ =10-6  runs,
with a slight tendency to overfitting for γ =10-10. One standard deviation error bars are
indicated by the black bars at the beginning and end of each learning curve.

It was surprising that ME did not achieve the same ultimate fit accuracy as RFWR.
This behavior was due to a) the relative small training set, b) the relatively low signal to
noise ratio of the training data, and c) the way the gating network assigns training sam-
ples to each expert. By significantly increasing the amount of training data and/or low-
ering the noise, the results of both algorithms become indistinguishable. It seems to be
the method of credit assignment which makes a significant difference. The expectation
step in ME uses normalized weights (i.e., posterior probabilities) to assign training data
to the experts. Normalized weights create much sharper decision boundaries between
the experts than unnormalized weights as in RFWR. Thus, in the case of noise and not
too much training data, the ME algorithm tends to establish too sharp decision bounda-
ries between the experts and starts fitting noise. Given the underlying assumption of
ME that the world was generated by a mixture of linear models, this behavior may be
expected. Since in our test cases, the world is actually a continuous function and not a
mixture of linear models, the assumptions of ME are only an approximation, which ex-
plains why the algorithm does not perform entirely appropriately.
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The assumptions of RFWR are quite different: each receptive field tries to find a re-
gion of validity which allows it to approximate the tangent plane in this region with
some remaining bias. In the spirit of a low order Taylor series expansion, this is a rea-
sonable way to proceed. Thus, RFWR achieves consistent results with low variance
(Figure 5b). It is also interesting to see how the number of receptive fields of RFWR
grows as a function of the penalty factor (Figure 5b). As expected from the derivation of
the cost function (12), a very small penalty parameter causes the receptive fields to keep
on shrinking and entails a continuous growth of the number of receptive fields. Never-
theless, the tendency towards overfitting remained low, as can be seen in the γ =10-10

traces in Figure 5b. When continuing learning until 10000 epochs, the nMSE saturated
close to the current values for all penalty factors. The local cross validation term in (12)
is responsible for this desirable behavior—when cross validation was not used, overfit-
ting was significantly more pronounced and the nMSE continued increasing for very
small penalty factors.

4.2 Dealing With Irrelevant Inputs

In order to establish the usefulness of the ridge regression parameters, we conducted a
further comparison with  the Mixture of Experts. In sensorimotor control, it is unlikely
that all variables given to the learning system are equally relevant to the task. Possible
kinds of extraneous inputs include: a) constant inputs, b) changing inputs which are
meaningless, and c) copies and linear combinations of other inputs. Ideally, one would
like an autonomous learning system to be robust towards such signals. To explore the
behavior of ME and RFWR in such cases, three additional inputs were added to the
function (20): a) one almost constant input of N(0.1,0.001), b) one input with a Brownian
walk in the interval [-0.1,0.1], and c) one input which was a copy of x with added Gaus-
sian noise N(0,0.0025). Otherwise, training data was generated uniformly by the func-
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Figure 5: Average learning curves (solid lines) for a) ME, and b) RFWR. The black bars indicate one stan-
dard deviation error bars at the beginning and at the end of learning; for overlapping traces having ap-
proximately the same standard deviation, only one bar is shown. For RFWR (b), the increase of the num-
ber of receptive fields over time (dashed lines) is indicated as well.
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tion (20), but with reduced additive noise of N(0,0.0025) to improve the signal to noise
ratio. For these tests, the ridge regression coefficients were initialized to 0.25 for each
input.

Figure 6 summarizes the average results of 10 trials for each algorithm. In Figure 6a,
we show the mean nMSE and its standard deviation on two test sets. In Test1, the pre-
dictions were generated by using only the regression coefficients of the relevant inputs,
i.e., β β β0 1 2, , , on the same 1681 point test set as in the experiment of Section 4.1. This was
to establish whether these coefficients adjusted correctly to model the target function.
Both algorithms achieved good learning results on this test (Figure 6a). In Test2, we
probed the robustness of the learned model towards the irrelevant inputs: we added the
noisy constant, the Brownian, and the noisy x-copy input to the test set, but we also
added an offset of 0.1 to each of these signals. If the algorithm learned that these inputs
were irrelevant, this change should not matter. However, if the irrelevant inputs were
mistakenly employed as signal to improve the nMSE on the training data, the predic-
tions should deteriorate. Figure 6a demonstrates that the results of RFWR remained vir-
tually unaltered by this test, while those of ME became significantly worse. This out-
come can be explained by looking at the standard deviations of the regression coeffi-
cients of all the locally linear models (Figure 6b). In contrast to ME, RFWR set the re-
gression coefficients of the irrelevant inputs ( β β β3 4 5, , ) very close to zero, thus achieving
the desired robustness. Such behavior was due to an adjustment of the corresponding
ridge regression parameters: they increased for the irrelevant inputs and decreased to
zero for the relevant inputs. We should point out that ME was not designed to deal with
learning problems with irrelevant inputs, and that there are ways to improve its per-
formance in such cases. Nevertheless, this experiment clearly illustrates that it is neces-
sary to deal with the problem of irrelevant inputs, and that local bias adjustment by
means of ridge regression is one possible way to do so.
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Figure 6: a) average nMSE of ME and RFWR after 1000 training epochs (see text for further ex-
planations); b) mean and standard deviation of the regression coefficients of the irrelevant inputs.
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4.3 Shifting Input Distributions

As mentioned in the Introduction, it is easy to conceive of learning tasks where the in-
put distribution of the training data changes over time. To test RFWR’s performance on
such problems, we designed the following experiment. In three sequential episodes
training data for learning (20) was uniformly drawn from three slightly overlapping in-
put regions in the unit cube: T x y z x1 1 0 0 2= − < < −{( , , ) | . . }, T x y z x2 0 4 0 4= − < <{( , , ) | . . },
andT x y z x3 0 2 1 0= < <{( , , ) | . . }. First the algorithm was trained on T1  for 50,000 points
and tested on T1 , then trained on T2  for 50,000 points and tested on T1  and T2 , and fi-
nally trained on T3  for 50,000 points and tested on test data from all regions. Figure 7
gives an example of how learning proceeded. This test probes how much of the previ-
ously learned competence is forgotten when the input distribution shifts. All parame-
ters of RFWR were chosen as in 4.1.

As the ME algorithm is not constructive and thus not well suited for learning with
strongly shifting input distributions, we chose the Resource Allocating Network (RAN)
of Platt (1991) for a comparison, a learning algorithm which is constructive, which has
no competitive learning component, and which has inspired a variety of other algo-
rithms. RAN is a radial basis function (RBF) network that adds RBFs at the site of a
training sample according to two criteria: a) when the approximation of the training
sample error is too large, and b) when no RBF is activated by the training sample more
than a threshold ξ  value. Both criteria have to be fulfilled simultaneously to create a
new RBF. The spherical width of the RBF is chosen according to its distance to the near-
est neighboring RBF. By using gradient descent with momentum, the RBF centers are
adjusted to reduce the mean squared approximation error, as are the weights of the lin-
ear regression network in the second layer of the RBF net. The strategy of RAN is to
start initially with very wide RBFs and to increase the threshold ξ  over time until a pre-
chosen upper limit is reached, causing the creation of ever smaller RBFs at sites with
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large error. As in RFWR, we used Gaussians (Equation (5)) as the parametric structure
for the RBF.

Figure 8 summarizes the average of 10 learning trials for each algorithm. RFWR
shows large robustness towards the shift of input distribution: there is only a minor in-
crease of nMSE due to interference in the overlapping parts of the training data (Figure
7). In contrast, as can be seen in the “original RAN” trace of Figure 8a, RAN signifi-
cantly increases the nMSE during the second and third training episode. Since RAN
starts out with initial RBFs which cover the entire input space interference is not prop-
erly localized, which explains the observed behavior. Note that we already have ex-
cluded the constant term in the linear regression layer of RAN (Platt, 1991), a term that
is globally active and would decrease the performance in Figure 8 significantly.

From the experience with RFWR, three possible improvements of RAN come to
mind. First, instead of starting with very large RBFs initially, we can limit the maximal
initial size as in RFWR to Mdef . Second, we can employ the hyper radial basis function
technique of Poggio and Girosi (1990) to also adjust the shape M of the RBFs by gradi-
ent descent as in RFWR (Furlanello, Giuliani, & Trentin, 1995). And third, instead of
having the time varying threshold ξ  a global variable, we can define it as an individual
variable for each RBF, thus removing the explicit dependency on global training time.
By initializing RAN with M Idef = 5  as in RFWR, these modification resulted in a signifi-
cant improvement of robustness of RAN as shown in Figure 8a. Note that this version
of RAN requires only half as many RBFs, converges more quickly, and achieves very
low final approximation errors. As in RFWR, localizing the learning parameters leads to
a clear improvement of robustness of incremental learning.
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4.4 Sensorimotor Learning

As a last evaluation, we use a traditional example of sensorimotor learning, the ap-
proximation of the inverse dynamics of a two-joint arm (Atkeson, 1989). The configura-
tion of the arm is given by two joint angles, θ1 and θ2 (Figure 9a). The inverse dynamics
model is the map from the two joint angles, two joint velocities, and two joint accelera-
tions to the corresponding torques (we assume that the arm controller makes use of a
low gain feedback PID controller whose performance is enhanced by feedforward
commands from the learned inverse dynamics (An, Atkeson, & Hollerbach, 1988)). The
torques for the shoulder and elbow joint are learned by separate networks as there is no
reason to believe that a receptive field for the elbow torque should have the same shape
as for the shoulder torque—for RFWR this would mean that both outputs have the
same Hessian which is definitely not the case. The task goal is to draw a figure “8”  in
two parts of the work space. Figure 9a shows the desired and the initial performance
without the learned commands. Training proceeded in two steps: first, the arm per-
formed sinusoidal movements with varying frequency content in the area of the upper
“8”. A total of 45,000 training points, sampled at 100Hz, was used for training—each
training sample was only used once in the sequential order it was generated. The
learning results are shown in the top part of Figure 9b for RFWR, and Figure 9c for the
modified RAN. Both algorithms were able to track the figure “8” properly.

Next, the algorithms were trained in an analogous fashion on 45,000 samples around
the lower figure “8”. The bottom parts of Figure 9b,c show the corresponding good
learning results. However, when returning to performing the upper figure “8”, RAN
showed significant interference (dashed line in Figure 9c), although both algorithms
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were initiated with the same M Idef = 6 0.  (note that position, velocity, and acceleration
inputs were normalized prior to learning to compensate for  the differences in units).
This interference effect highlights the difference between the learning strategy of RBF
networks in comparison to the nonparametric statistics approach to modeling with lo-
cally linear models. RBF networks need a sufficient overlap of the radial basis functions
to achieve good learning results—one RBF by itself has only limited function approxi-
mation capabilities, an effect discussed in the context of hyperacuity (e.g., Churchland
& Sejnowski, 1992). Gradient descent on the shape parameter M of the Gaussian RBFs
quickly decreased M in our example to achieve an appropriately large overlap. This
overlap, however, encourages negative interference, as is evident in Figure 9c. The 6-
dimensional input space of this example emphasized the need for large overlap, while
the 2-dimensional example of the previous section did not. Experiments which used a
fixed M as in the original RAN algorithm did not achieve better learning results within
a reasonable training time. To avoid interference, there is always the unattractive solu-
tion of adding thousands of quite narrow overlapping RBFs. In the results of Figure 9,
both algorithms allocated less than 100 receptive fields.

5 Related Work

The field which contributes the most to the development of RFWR is nonparametric sta-
tistics. Cleveland (1979) introduced the idea of employing locally linear models for
memory-based function approximation, called locally weighted regression (LWR). In a
series of subsequent papers, he and his colleagues extended the statistical framework of
LWR to include multi-dimensional function approximation and local approximation
techniques with higher order polynomials (e.g., Cleveland, Devlin, & Gross, 1988;
Clevland & Devlin, 1988). Cleveland and Loader (1995) suggested local Cp-tests and lo-
cal PRESS for choosing the degree of local mixing of different order polynomials as well
as local bandwidth adjustment and reviewed a large body of literature on the history of
LWR. Hastie and Tibshirani (1990, 1994) give related overviews of nonparametric re-
gression methods. Hastie and Loader (1993) discuss the usefulness of local polynomial
regression and show that locally linear and locally quadratic function fitting have ap-
pealing properties in terms of the bias/variance trade-off. Friedman (1984) proposed a
variable bandwidth smoother for one dimensional regression problems. Using different
statistical techniques, Fan and Gijbels (1992, 1995) suggested several adaptive band-
width smoothers for LWR and provided detailed analyses of the asymptotic properties
of their algorithms.

For the purpose of time series prediction, LWR was first used by Farmer and Si-
derowich (1987, 1988). Atkeson (1989) introduced the LWR framework for supervised
learning in robot control. Moore (1991) employed LWR for learning control based on
learning forward models. In the context of learning complex manipulation tasks with a
robot, Schaal and Atkeson (1994a,b) demonstrated how LWR can be extended to allow
for local bandwidth adaptation by employing local cross validation and local confi-
dence criteria. Schaal and Atkeson (1996) introduced the first non memory-based ver-



25

sion of LWR. Schaal (1997) applied RFWR for value function approximation in rein-
forcement learning. Locally weighted learning for classification problems can be found,
e.g., in Lowe (1995). Aha (1997) compiled a series of papers on nonparametric local clas-
sification and regression learning, among which Atkeson, Moore, and Schaal (a,b, 1997)
give an extended survey on locally weighted learning and locally weighted learning
applied to control.

Besides nonparametric statistics, RFWR is related to work on constructive learning
algorithms, local function approximation based on radial basis functions (RBF), and
Kohonen-like self-organizing maps (SOM). A RBF function approximator with a locally
linear model in each RBF was suggested by Millington (1991) for reinforcement learn-
ing. Platt (1991) suggested a constructive RBF-based learning system. Furlanello et al.
(1995b) and Furlanello and Giuliani (1995a) extended Platt’s method by using Poggio
and Girosi’s (1990) hyper radial basis functions and local principal component analysis.
For learning control, Cannon and Slotine (1995) derived a constructive radial basis func-
tion network which used wavelet-like RBFs to adapt to spatial frequency; this is similar
to local bandwidth adaptation in nonparametric statistics and the adjustable receptive
fields in RFWR. Orr (1995) discussed recursive least squares methods and ridge regres-
sion for learning with radial basis function networks. He also suggests several other
methods, e.g., generalized cross validation, for regularizing ill-conditioned regression.

One of the most established constructive learning systems is Cascade Correlation
(Fahlman & Lebiere, 1990), a system sharing ideas with projection pursuit regression
(Friedman, 1981). Related to this line of research is the Upstart algorithm of Frean
(1990), the SOM based cascading system of Littman and Ritter (1993), and the work of
Jutton and Chentouf (1995). The first usage of locally linear models for regression
problems in the context of SOMs was by Ritter and Schulten (1986) who extended Ko-
honen maps to fit locally linear models (LLM) within each of the units of the SOM. Re-
lated to this work is Smagt and Groen’s (1995) algorithm which extended LLM to a hi-
erarchical approximation in which each Kohonen unit itself can contain another LLM
network. Fritzke (1994, 1995) demonstrated how SOMs can constructively add units,
both in the context of RBF and LLM regression problems. Bruske and Sommer (1995)
combined Fritzke’s ideas with Martinetz and Schulten’s (1994) Neural Gas algorithm to
accomplish a more flexible topographic representation as in the original SOM work. A
large body of literature on constructive learning stems from fitting high order global
polynomials to data, for instance, as given in Sanger (1991), Sanger, Sutton, and
Matheus (1992), and Shin and Ghosh (1995). Due to the global character of these learn-
ing methods, the danger of negative interference is quite large. Additional references on
constructive learning for regression can be found in the survey by Kwok and Yeung
(1995).

The idea of the mixture of experts in Jacobs et al. (1991) and hierarchical mixtures of
experts in Jordan and Jacobs (1994) is related to RFWR as the mixture of experts ap-
proach looks for similar partitions of the input space, particularly in the version of Xu et
al. (1995). Ormeneit and Tresp (1995) suggested methods to improve the generalization
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of mixture models when fit with the EM algorithm (Dempster et al, 1977) by introduc-
ing Bayesian priors. Closely related to the hierarchical mixture of experts are non-
parametric decision-tree techniques, in which the seminal work of Breiman, Friedman,
Olshen, and Stone introduced classification and regression trees (CART), and Friedman
(1991) proposed the MARS algorithm, a CART derivative particularly targeted at
smooth function approximation for regression problems.

Finally, adaptive receptive fields and the way receptive fields are created in RFWR
resemble in part the classification algorithms of Reilly, Cooper, and Elbaum (1982) and
Carpenter and Grossberg (1987).

6 Discussion

This paper emphasizes two major points. First, truly local learning—i.e., learning with-
out competition, without gating nets, without global regression on top of the local re-
ceptive fields—is a feasible approach to learning, and, moreover, it can compete with
state-of-the-art learning systems. Second, truly incremental learning—i.e., learning
without knowledge about the input and conditional distributions, learning that must
cope with continuously incoming data with many partially redundant and/or partially
irrelevant inputs—needs to have a variety of mechanisms to make sure that incremental
learning is robust. A carefully designed local learning system can accomplish this ro-
bustness.

RFWR borrowed in particular from work in nonparametric statistics. Following the
definition of Hájek (1969), the term “nonparametric” indicates that the function to be
modeled potentially consists of very large families of distributions which cannot be in-
dexed by a finite-dimensional parameter vector in a natural way. This view summarizes
the basic assumptions of our learning system, with the addition of prior knowledge
about smoothness incorporated in a penalty term. It should be stressed that, if more
prior knowledge is available for a particular problem, it should be incorporated in the
learning system. It is unlikely that a nonparametric learner outperforms problem-
tailored parametric learning—e.g., fitting sinusoidal data with a sinusoid is the best one
can do. The examples given throughout this paper are to highlight when local non-
parametric learning can be advantageous, but there is no claim that it is generally supe-
rior over other learning systems. On the other hand, when it comes to learning without
having strong prior knowledge about the problem, nonparametric methods can be quite
beneficial. For instance, Quartz and Sejnowski (in press) claim that constructive non-
parametric learning might be one of the key issues in understanding the development
of the organization of brains.

RFWR makes use of several new algorithmic features. We introduced a stochastic
approximation to leave-one-out local cross validation, i.e., cross validation which does
not need a validation set anymore. This technique can potentially be useful for many
other domains as it only requires that the (local) parameters to be estimated are linear in
the inputs. By employing a novel penalized local cross validation criterion, we were
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able to derive locally adaptive multidimensional distance metrics. These distance met-
rics can be interpreted as local approximations of the Hessians of the function to be
modeled. In order to speed up learning of the distance metric, we derived a second or-
der gradient descent method. Finally, the penalized local cross validation criterion
could also be employed to achieve automatic local bias adjustment of the relevance of
input dimensions, obtained by local ridge regression. Using all these features, the con-
structive process of RFWR only needs to monitor the activation strength of all receptive
fields in order to decide when to create a new receptive field—most constructive learn-
ing system need to monitor an approximation error criterion as well, which can easily
lead to an unfavorable bias-variance tradeoff.

Several issues have not been addressed in this paper and are left to future research.
RFWR makes use of gradient-based learning which requires a proper choice of learning
rates. Even though we incorporated second order learning derived from Sutton
(1992a,b), it may still be useful to do some experimentation with the choice of the
learning rates in order to achieve close to optimal learning speed without entering un-
stable domains. It is also necessary to choose a roughly appropriate initial distance met-
ric D (cf. Equation (5)), characterizing the initial size of a receptive field. A way too
large initial receptive field has the danger that the receptive field grows to span the en-
tire input domain: the initial receptive field has to be such that structure in the data
cannot be mistaken for high variance noise. As a positive side-effect of local learning,
however, these open parameters can be explored by allowing just a small number of re-
ceptive fields on an initial data set and monitoring their learning behavior—each recep-
tive field learns independently and there is no need to do parameter exploration with a
large number of receptive fields.

A last algorithmic point concerns computational complexity. Recursive least squares
is an O(n2) process, i.e., quadratic in the number of inputs, and the update of a full dis-
tance metric is worse than O(n2). If the dimensionality of the inputs goes beyond about
10, a learning task with many receptive fields will run fairly slowly on a serial com-
puter. Fitting only diagonal distance metrics alleviates this effect and might be neces-
sary anyway since the number of open parameters in the learning system might become
too large compared to the number of training data points.

This discussion naturally leads to the long standing question of how local learning
methods can deal with high dimensional input spaces at all. As nicely described in Scott
(1992), the curse of dimensionality has adverse effects on all systems which make use of
neighboring points in the Euclidean sense, since the concept of “neighborhood” be-
comes gradually more counterintuitive when growing beyond 10 input dimensions,
and it pretty much vanishes beyond 20 dimensions: every point is about the same dis-
tance from every other point. In such domains, the parametric model chosen for learn-
ing—be it local or global—becomes the key to success, essentially meaning that any
learning system requires strong bias in high-dimensional worlds. However, it remains
unclear whether high dimensional input spaces have locally high dimensional distribu-
tions. Our experience in sensorimotor learning is that this may not be true for many in-
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teresting problems, as physical systems do not realize arbitrary distributions. For in-
stance, a seven degree-of-freedom anthropomorphic robot arm, whose inverse dynam-
ics model requires learning in a 21-dimensional input space, seems to realize locally not
more than 4-8 dimensional input distributions. In Vijayakumar and Schaal (1997)  we
we incorporated local dimensionality reduction as a preprocessing step in every recep-
tive field, allowing us to approximate high dimensional data successfully ().

As a last point, one might wonder in how far a local learning system like RFWR
could have any parallels with neurobiological information processing. Particularly in-
spired by work on the visual cortex, one of the mainstream assumptions about receptive
field-based learning in the brain is that receptive fields are broadly tuned and widely
overlapping, and that the size of the receptive fields does not seem to be a free parame-
ter in normal learning (as opposed to developmental and reorganizational processes af-
ter lesions, e.g., Merzenich, Kaas, Nelson, Sur, & Felleman, 1983). This view emphasizes
that accuracy of encoding must be achieved by subsequent postprocessing steps. In con-
trast, RFWR suggest overlapping but much more finely tuned receptive fields, such that
accuracy can be achieved directly by one or several overlapping units. Fine tuning can
be achieved not only by a change of the size of the receptive field, but also by “plug-in”
approaches where several receptive fields tuned for different spatial frequencies con-
tribute to learning (Cannon & Slotine, 1995). To distinguish between those two princi-
ples, experiments that test for interference and generalization during learning can pro-
vide valuable insights into the macroscopic organization of learning. In motor control,
the work by Shadmehr and Mussa-Ivalidi (1994), Imamizu, Uno, and Kawato (1995),
and Shadmehr, Brashers-Krug, and Mussa-Ivaldi (1995) are examples of such investiga-
tions.

Whether the learning principles of RFWR are biologically relevant or not remains
speculative. What we have demonstrated, however, is that there are alternative and
powerful methods to accomplish incremental constructive learning based on local re-
ceptive fields, and it might be interesting to look out for cases where such learning sys-
tems might be applied. Receptive field-based local learning is an interesting research
topic for neural computation, and truly local learning methods are just starting to dem-
onstrate their potential.
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8 Appendix

8.1 Ridge Regression Derivatives

Each ridge regression parameter can be conceived of as a weighted data point of the
form [ ( ,..., , ,...) , ]x yr i

T
rr= =2 0 1 0 0  which was incorporated in the regression by the recur-

sive least squares update (8). Thus, the derivative of the cost function (12) is a simplified
version of the derivative (17):
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By taking advantage of the many zero elements of the ridge “data points”, the actual
computation of this derivative is greatly sped up.

There are several ways to incorporate the update of the ridge regression parameters
in the matrix P, and it should be noted that we also need to add back the fraction of the
ridge parameters which was forgotten due to the forgetting factor λ  in each update of P
(Equation (8)). It turns out, that there is a quite efficient way to perform this update. At
every update of a receptive field, the forgetting factor effectively reduces the contribu-
tion of each ridge parameter by:

∆ λ λ,i ir= −( )1 2

The update due to gradient descent is:

∆ ∆grad i i i ir r r, = +( ) −2 2

and the total increment becomes:
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Due to the fact that the ridge vectors are all unit vectors, it is possible to update P by
just executing a recursive least squares update for the increment, i.e., to add a ridge data
point of the form [ ( ,..., , ,...) , ]x yr i

T
r= =∆ 0 1 0 0  for every ridge parameter by using Equa-

tion (8). This update can be accelerated by taking into account the zeros in the ridge
points. An additional speed up can be obtained by not updating P every iteration but
rather by accumulating the increments until they exceed a manually chosen threshold.

8.2 Second Order Learning of the Distance Metric

The idea of the Incremental Delta-Bar-Delta (IDBD) algorithm (Sutton, 1992a,b) is to re-
place the learning rate α  in the gradient descent update (13) by an individual learning
rate for each coefficient of M of the following form:

M M
J

M

J

M
hij

n
ij
n

ij
n

ij
ij
n

ij
n

ij
n

ij
n

ij
ij
n+ + + + += − = ( ) = −1 1 1 1 1α ∂

∂
α β β β θ ∂

∂
, expwhere and

(21)

(22)

(23)

(24)

(25)



30

Thus, the learning rates α ij  are changed in geometric steps by gradient descent in the

meta parameter βij  with meta learning rate θ. The term hij  is updated as
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hij  is initialized to zero when a receptive field is created. It corresponds to a memory
term which stores a decaying trace of the cumulative sum of recent changes to Mij . For
more details see Sutton (1992a,b). In order to apply this second order update, it is neces-
sary to store the parameters α ij , βij , and hij , and to compute the second derivative in
(26). This second derivative of the cost function (12) with respect to the coefficients of
the decomposed distance metric becomes:
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Equation (27) makes use of notation and results derived in (16) and (17).
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