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Motivation
There are many imaging methods, inverse problems and 
synthesis/design problems for which some needed 
information is missing and difficult to estimate.

Sampling strategies/theorems

Superresolution

Phase retrieval

Inverse scattering problems

Analytic properties of waves and many physically 
important functions can provide insights, constraints 
and solutions to these problems.



Causality and Dispersion Relations

Titchmarsh’s Theorem p125, Intro to the Theory of Fourier 
Integrals, 2nd Ed, OUP, 1948

J. S. Toll Phys.Rev.104(1956) pp1760-1770.

The famous Kramers-Kronig relations in optics have been 
known since 1927
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Mathematical statement of causality:

0,0 <= tE     i.e.  no response before E applied

( ) 0=⇒ tχ  for 0<t
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The subtraction of a single Fourier component from 
the input pulse field is shown in part (c) of the 
figure.  It no longer obeys causality: analyticity.

Hagan



Blackbody Radiation
Problem:

Recover spectral 
information g(ν) from 
modulus of the complex 
degree of coherence |γ(τ)| 

{Hanbury Brown and Twiss} 

Solution: 

Consider analytic properties 
of γ(τ)

Since g(ν) is causal, invoke Titchmarsh’s theorem which allows 
a dispersion relation (Hilbert transform) to be written between 
Re{γ(τ)} and Im{γ(τ)} or Re{log γ(τ)} and Im{log γ(τ)} under 
certain conditions. 



Recovering missing phase information
Phase retrieval

…….assume field analytic function (regular in uhp)
F = |F|exp(iφ) = FT{f} where f causal or of compact support

φ (�) =
1
π

[
log| F(x)|dx

x − x'uhp
∫ + ∩]

“Minimum phase” condition: zero free half plane

Kano and Wolf proved that for blackbody radiation, 
γ(ν) ��ζ �iτ) / π4 and has a zero-free half plane.

ζ  :  generalized Riemann zeta-function Question posed (p1271): seems likely that zeros in 
this half plane should have physical significance?



Sampling methods
The theorem was first formulated 
by Harry Nyquist in 1928 
("Certain topics in telegraph 
transmission theory"), but was 
only formally proved by Claude E. 
Shannon in 1949 ("Communication 
in the presence of noise”)

If a function s(x) has a Fourier transform F[s(x)] = S(f) = 
0 for |f| > W, then it is completely determined by 
giving the value of the function at a series of points 
spaced 1/(2W) apart. The values sn = s(n/(2W)) are the 
samples of s(x). 

The Nyquist-Shannon Sampling Theorem states that if a 
function s(x) has a Fourier transform F[s(x)] = S(f) = 0 
for | f | > W, then s(x) can be recovered from its samples 
sn by the formula: 

Infinite number of uniformly distributed samples required: interpolation function is zero at 
all sample points but one and asymptotic zeros at 1/2W. 
Nonuniform samples (e.g. Yen 1956): replace sinc(.) by Ln(x) = G(x)/[(x - zn) G1(z)] 
where G(z)=Π(1-z/zn) and Ln(xk) = δnk   giving s(x) = Σ F(xn)Ln (x) provided 
asymptotic zeros spaced at intervals of 1/2W. 



Sampling methods
For f(u) = 0 for |u| > W  ( u = space, time, frequency…) then F(x) can 

be represented by 

i) its samples F(xn) or

ii) its roots or zeros using the Hadamard product.
∞

F(x) = ∫f(u)exp(-ikux)du  ~  ∏(1−���)
� j = −∞

FT of function with compact support is a W-bandlimited function, or 
entire function of exponential type W.  

Its growth properties and zero distributions are highly constrained. 

It can be encoded by samples at 1/2W or by its zero locations, much 
like a polynomial.  The zeros of the function have some physical
significance.

Nonuniform sampling is possible as is slower than Nyquist sampling 
rates, i.e. at m/2W (see Papoulis IEEE CAS-24, 652, (1977))



How do zeros code information?

Space-bandwidth product ~ ∆x∆u
[Lukosz  JOSA 57 p932, (1967)]

∆u
FT

Moving mth zero in x-domain introduces m cycles in u-
domain: amplitude ~ distance from mπ/k∆u and phase ~ 
arctan(imag co-ord/distance).  

[Fiddy et al, Opt Acta 29, (1982), p23-40]
λ/2 limit?

sin(k∆u.x) = Π [1 - x/{jπ/k∆u)}]
j≠0



Information Retrieval  Problems

Missing phase

Limited data

Multiple scattering
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Recovering missing phase information
Phase retrieval

…….assume field analytic function

F = |F|exp(iφ) = FT{f} where f causal and/or of compact support

φ (�) =
1
π

[
log| F(x)|dx

x − x'uhp
∫ + ∩]

“Minimum phase” condition: zero free half plane



Zero flipping and phase ambiguities
1D problems:

F(x) = ∫f(u)exp(-ikux)du  ~  Π(1−���)

��������� I ~ F.F*     we need to 
factor I

∆

∞

� = −
∞

f(u)

F.F*

f(u)

Early work: O’Neill and Walther, Opt. Act. 10, p33, 1963;   Kohler and Mandel, J.O.S.A. 63, p126, 1973.



Zeros and their trajectories in diffracted fields

The study of the zero trajectories of diffraction patterns has lead to the 
relatively new field of “singular optics”

e.g.  Soskin and Vasnetsov, ch 4, Prog. in Optics, 42, 2001, ed. Emil Wolf.

Schouten, Visser and 
Wolf, New effects in 
Young’s interference 
experiment with 
partially coherent 
light, Opt. Lett., 28, 
p1182, 2003

Winthrop/Gabor: 
“tubes” of information



Phase dislocation at zero in field



around each zero point in the 
intensity of a field, there is a phase 
discontinuity of 2π. and a spiral 
phase structure or a wavefront 
dislocation.

Local analytic 
representation is 

(x1 + ix2)n

(z1 + iz2)n

z = x + iy

F(z1,z2) = F(x1 + iy1, x2 + iy2) = ∫f(u,v)exp(-y1u - y2v) exp {i2π (x1u + x2v)} dudv

Zeros and vortices
The zeros of an analytic function encode that function 
just like (Shannon) sampling points…….and



Properties of a fifth-order vortex

TextEnd y1 = y2 = 0.1

y1 = 0.1

y1 = y2 = 0.2 y1 = y2 =- 0.2



Spectral anomalies at wavefront dislocations

S. A. Ponomarenko and E. 
Wolf, Spectral anomalies in a 
Fraunhofer diffraction 
pattern, Opt. Lett., July 2002, 
27, p1211.



Spectral anomalies at wavefront dislocations

J. Foley and E. Wolf, Phenomenon of spectral switches as a new 
effect in singular optics with polychromatic light, JOSA A, 19, 
p2510, 2002

see also Pu and Nemoto, Spectral changes and 1 X N spectral 
switches, JOSA A 19, p339, 2002

Diffraction induced 
abrupt spectral red 
and blue shifts at 
critical distances 
where the dominant 
spectral component of 
the diffracted field has 
a zero.



Vortices for 
superresolved 
lithography



Zeros and superresolution

A 1

A 2

I
S c r e e n

Separable and hence 
reducible analytic functions 

only in ideal simple noise 
free casesE. Wolf and M. Nieto-Vesperinas, 

“Analyticity of the angular spectrum 
amplitude of scattered fields and some of its 
consequences”, J.O.S.A. A2, p886, 1985



Definitions

Strehl ratio = S = 

intensity of superres peak
intensity of Airy disk

G = 1st zero of superres peak
1st zero of Airy disk

Tasso and Morris, Fundamental limits of 
optical superresolution,  OL 22, p582, 1997



Synthesis of Superresolving Filters
Fraunhofer diffraction

Far-field scattering integral

where FT = Ψ/Ψο 

……and F(x,y) is an entire function.

and Ψ =Ψο in 1st Born approximation

F(x,y) = ∫∫f(u,v)exp(-ik(ux+vy))dudv

F(x,y) = ∫∫f(u,v)FT(u,v)exp(-ik(ux+vy))dudv

Results suggest that methods attempting to invert multiply scattered
data do permit some sub-λ superresolution (e.g Chen and Chew, 
App.Phys.Lett, 72, p1284, (1998);  multiple scattering between sub-
structures leading to evanescent waves which couple into 
propagating waves……a degree of freedom for synthesis problems)



New zero pattern



Superresolved PSF from filter

PSF from aperture PSF from superresolved filter

Superresolving filter

Field at aperture Field f(u,v)FT(u,v) exiting filter



2D analytic functions
2D problems:

F(x,y) = ∫f(u,v)exp(-ik[ux + vy]) du.dv ~ Π?
��������� I ~ F.F*     Phase retrieval: we still need 

to factor I

∆

No fundamental theorem of 
algebra: generally irreducible

Analytic properties: 

i) similar to 1D but no simple concept of zero-free half “plane”

ii) zeros are 2n - 2 dimensional in nD case and cannot be isolated points

iii) no unique definition of dispersion relations (which is consistent with 
causality condition)

Approximate factoring of 2D analytic functions, F, accomplished by taking logF, 
and separating additive terms to become factors…..if logF is well behaved. 

Wiener-Levy Theorem: if a continuous F > 0 has an absolutely convergent Fourier 
series (FS) then logF has an absolutely convergent FS. [AMS Trans,  p791, (1933)]



Effect of a reference wave on phase

Scivier and Fiddy, JOSA A2 (1985) p693-697

“reference”



Disrupting the phase of a wavefront

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 20 40 60 80 100 120
0

20

40

60

80

100

120

“reference”



Ensuring the minimum phase condition in 1D

Minimum phase condition: 

-π < φ ≤ π

���”����������”��������
�…useful…

Force minimum phase condition by introducing 
a reference wave (Rouche’s theorem)

f(u)

u

Reference point



Inverse scattering

…possible by nonlinear filtering

…if have minimum phase function

ψs(r, kroˆ )  = k2 
eikr
4πr ⌡⎮

⌠

D
dr´e-ikr̂·r´V(r´)Ψ(r´, kroˆ ) 

          = ⌡⎮
⎮⌠

D
dr´e-ik(β̂ - α̂)·r´  V(r´) 

Ψ(r´,kα̂)
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Homomorphic filtering for factoring

VB(r, kroˆ )  -  V(r) 
Ψ(r, kroˆ )
Ψo(r, kroˆ ) . 

VΨ log VΨ =  log|V| + log |Ψ| +

i[arg(V) + arg(Ψ)]

Inverse FT therefore not amenable to filtering to isolate V from Ψ

Phase contains discontinuities (wavefront dislocations)

Phase unwrapping virtually impossible in ≥ 2D



Minimum phase condition

Minimum phase condition in 1D: zero free half plane

Minimum phase condition in >1D:

Dudgeon and Mersereau [Multidimensional Digital Signal 
Processing, Prentice Hall, ch 4, p202]:

“Multidimensional minimum phase signal is one that is 
absolutely summable and whose inverse and complex cepstrum
have the same region of support”
Definition: Cepstrum of g is FT-1{logG} where G = FT{g}



Creating a 2D minimum phase function
Let cepstrum = g

FT{g} = G = |G| exp(iθ) = Re{G} + iIm{G}

Create an object:

exp(G) = exp(Re{G}).exp(iIm{G})   [≡ F = |F| exp(iθ) ]

Hence exp(iIm{G}) = exp(iθ) ……this phase will be unwrapped and 
should be a “minimum” phase function….

and exp(Re{G}) = |F|  ….so no zeros!

Apply Rouche’s theorem in 2D.

Trivial case:  with a strong reference wave added to F, i.e.  1 + F then ~ exp(F) for |F| << 
1 and FT{1 + F} = δ + f;  thus we expect to recover f when a (strong) reference point is 
present somewhere in the object domain. 



Creating a 2D minimum phase function
Rouche’s Theorem in 1D and nD

Suppose w = f(z) is analytic in a  domain D where f = (f1,f2,…fn) 
and the boundary of D is smooth and contains no zeros of f, then
if for each point z on the boundary, there is at least one index j (j 
= 1,2….n) such that |gj(z)| < |fj(z)| then g(z) and g(z) + f(z) have 
the same number of zeros in D. 

[It actually suffices that Re{gj(z)} < Re{fj(z)}; see Integral 
Representations and Residues in Multidimensional Complex 
Analysis, Aizenberg and Yuzhakov, AMS, 1982]

Trivial case:  with a strong reference wave added to F, i.e.  1 + F then ~ exp(F) for |F| << 
1 and FT{1 + F} = δ + f;  thus we expect to recover f when a (strong) reference point is 
present somewhere in the object domain. 



Reference 
waves and 
holography

“off-axis” reference point:

amplitude 5

Reconstruction from      |F| exp(iθ)              |F|2

reference point:

amplitude 1

10



Importance of Phase and Reference Waves

See also Millane and Hsiao, “On 
apparent counterexamples to 
phase dominance”, JOSA A 20, 
p753, 2003

JOSA A 14, p2901, 1997

reference point (“peak”) not shown



2D factorization and inverse scattering

Consider VΨ  recovered 
(approximately) from k-
space data
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reference point in 
k-space

linear phase factor 
added to VΨ

FT and 
spatially filter



Probing penetrable targets

Image Estimates of Ipswich Targets
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Conclusions

Physical fields are strongly constrained by their analytic properties and 
these properties can be exploited.

The analytic properties of the field dictate zero properties and the zeros 
encode information.

The study of the zero trajectories of diffraction patterns has lead to the 
relatively new field of “singular optics” (see e.g. Soskin and Vasnetsov, ch 4, Prog. in 
Optics, 42, 2001, Ed. E. Wolf)

Solutions to phase retrieval, superresolution and inverse scattering 
problems are intimately tied to the properties of the function’s zeros. 

Minimum phase properties are important and the incorporation of a 
reference wave can accomplish this. 





Appendix 1:Hilbert Transform
Since

exp(G) = exp(Re{G}).exp(iIm{G})

= exp(S.cos(cx)).exp(iS.sin(cx))

= |F| exp(iθ) 

where Im{G}) = θ {= S sin(cx) in simple example)

We require HT to transform Scos(cx) to iSsin(cx) ….hence:
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HT filter      [not i.sgn(x).sgn(y)] Point spread function

Let cepstrum = g 

= s ⊗ δ(�causal 
�����)

then FT{g} = G = |G| exp(iθ) 

= Re{G} + iIm{G}
= S * exp(i[causal shift]x)

          ≡ S*exp(icx)



Appendix 2:What do we mean by phase?

F(x,y) = |F(x,y)| exp[�φx,y)]

Recent clarification:

Emil Wolf   “Significance and measurability of the phase of a 
spatially coherent optical field”  Opt. Lett.  28 p5  2003

Phase usually considered in context of monochromatic wave

….but fields have finite bandwidth and phase fluctuates rapidly

Ability to interfere is measure of coherence and nonmonochromatic 
fields can be completely spatially coherent.

We can associate with any field that is spatially coherent at ω, a 
monochromatic field of the same frequency that yields the cross-
spectral density of the field. 



Trivial case:  with a strong reference wave added to F, i.e.  1 + F then ~ exp(F) for |F| << 
1 and FT{1 + F} = δ + f;  thus we expect to recover f when a (strong) reference point is 
present somewhere in the object domain. 

Encoding phase information

reference point:

amplitude

1

6

10

FT{log(Fourier intensity)}

FT{log(F)}

A test: if FT{log(I)} can be 
approximately separated then 
F is probably close to being 
minimum phase!
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