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Spatio-temporal pulse shaping problem
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Motivation

There are many imaging methods, inverse problems and
synthesis/design problems for which some needed
information is missing and difficult to estimate.

Sampling strategies/theorems
Superresolution

Phase retrieval

Inverse scattering problems

Analytic properties of waves and many physically
important functions can provide insights, constraints
and solutions to these problems.




Causality and Dispersion Relations

Mathematical statement of causality:
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Titchmarsh’s Theorem p125, Intro to the Theory of Fourier
Integrals, 2nd Ed, OUP, 1948

J. S. Toll Phys.Rev.104(1956) pp1760-1770.

The famous Kramers-Kronig relations in optics have been
known since 1927
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The subtraction of a single Fourier component from
the input pulse field is shown in part (c) of the
figure. It no longer obeys causality: analyticity.




Blackbody Radiation
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Since g(v) is causal, invoke Titchmarsh’s theorem which allows
a dispersion relation (Hilbert transform) to be written between
Re{y(t)} and Im{y(t)} or Re{log y(t)} and Im{log y(t)} under
certain conditions.



Recovering missing phase information

Phase retrieval
....... assume field analytic function (regular in uhp)

F = |Flexp(ip) = FT{f} where f causal or of compact support

1 § [10g| F(X)|dX

b= T +m]\

“Minimum phase” condition: zero free half plane

Kano and Wolf proved that for blackbody radiation,
y(v)[1 DG it) / n* and has a zero-free half plane.

/

C : generalized Riemann zeta-function Question posed (p1271): seems likely that zeros in

this half plane should have physical significance?




Sampling methods

The theorem was 1.“1rst formulated If a function S(X) has a Fourier transform F/s(x)] = S(f) =
b'?' Harry Nyquist in 1928 0 for |f] > W, then it is completely determined by
("Certain topics in telegraph giving the value of the function at a series of points

transmission theory"), but was spaced 1/(2W) apart. The values S, = s(n/(2W)) are the

only formally proved by Claude E. samples of s(x).

Shannon in 1949 (""Communication

in the presence of noise”) The Nyquist-Shannon Sampling Theorem states that if a
function S(X) has a Fourier transform F[s(x)] = S(f) =0

00 _ for | f| > W, then S(X) can be recovered from its samples
F(s) = F(f)(s) = / Ft)e ™ dt. || s, by the formula:
'1_ ~ | o) — > | sin (m(2Wz — n))
f6)= FH P = o / Flgetrds. || 58 = 2 sn T(2Wz — n)

n=——00

o0

Infinite number of uniformly distributed samples required: interpolation function is zero at

all sample points but one and asymptotic zeros at 1/2W.

Nonuniform samples (e.g. Yen 1956): replace sinc(.) by L _(x) = G(x)/ [(x - z,) G!(2)]
where G(z)=11(1-z/z ) and L (x,) =8, giving s(x) = 2 F(x,)L_(x) provided
asymptotic zeros spaced at intervals of 1/2W.




Sampling methods

For f(u) = 0 for [u| > W (u = space, time, frequency...) then F(x) can
be represented by

1) 1ts samples F(x,) or

11) 1ts roots or zeros using the Hadamard product.

F(x) = jf(u)exp( ikux)du ~'H(1—DDD)

J——oo

FT of function with compact support is a W-bandlimited function, or
entire function of exponential type W.

Its growth properties and zero distributions are highly constrained.

It can be encoded by samples at 1/2W or by its zero locations, much
like a polynomial. The zeros of the function have some physical
significance.

Nonuniform sampling is possible as 1s slower than Nyquist sampling
rates, 1.e. at m/2W (see Papoulis IEEE CAS-24, 652, (1977))




How do zeros code information?

. . sinkAux) = L1 [1 - x/{jnkau) ]
- 70
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Moving mt zero in x-domain introduces m cycles in u-
domain: amplitude ~ distance from mmn/kAu and phase ~

arctan(imag co-ord/distance).
A/2 limit?

T [Fiddy et al, Opt Acta 29, (1982), p23-40]

Space-bandwidth product ~ AxAu

[Lukosz JOSA 57 p932, (1967)]




Information Retrieval Problems

Missing phase
Limited data

Multiple scattering

Single Monostatic
Measurement
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Single View - Multiple Wavelength
Measurement
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PROCEEDINGS OF THE IEEE, VOL. 69, NO. 5, MAY 1981

The Importance of Phase in Signals

ALAN V. OPPENHEIM, reLiow, 1eeg, anp JAE S. LIM, MEMBER, 1EEE

Fig. 3. (a) Original image A. (b) Original image B. (c) Image synthe-
sized from the Fourier transform phase of image A and the magni-
tude of image B. (d) Image synthesized from the Fourier transform
magnitude of image A and the phase of image B,

1kT
u(r, ko) =k © f dr gikrr VI, ki)




Recovering missing phase information

Phase retrieval
....... assume field analytic function

F = |Flexp(ip) = FT{f} where f causal and/or of compact support

1 log| F(x)|d
0 ()= — § BT,

T o X—X \

“Minimum phase” condition: zero free half plane




Zero tlipping and phase ambiguities

1D problems:

F(x) = l f(u)exp(-ikux)du ~ Dl}(l—ﬁ [10)

00000000 I~FF* “we need to
f

F.F*

Early work: O’Neill and Walther, Opt. Act. 10, p33, 1963; Kohler and Mandel, J.O.S.A. 63, p126, 1973.




Zeros and therr trajectories in diffracted fields

Schouten, Visser and

1
I[IEi Wolf, New effects in

0.6 .
Young’s interference

10 experiment with
N L 102 partially coherent
M § "0 .
= 4" o light, Opt. Lett., 28,
IS |0 p1182, 2003
#

-0.4

N Winthrop/Gabor:
“tubes’ of information

The study of the zero trajectories of diffraction patterns has lead to the
relatively new field of “singular optics”

e.g. Soskin and Vasnetsov, ch 4, Prog. in Optics, 42, 2001, ed. Emil Wollf.




Phase dislocation at zero 1n field




Zeros and vortices

The zeros of an analytic function encode that function

just like (Shannon) sampling points....... and
around each zero point in the Local analytic
igtensity of a field, there 1s a.phase representation is
discontinuity of 27w. and a spiral
phase st.ructure or a wavefront (Xl 4+ in)n
dislocation.
11 11 1
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F(z,,2)) = F(x; + 1y, X, T 1y,) = I f(u,v)exp(-y,u - y,v) exp {127 (x,u + X,v)} dudv




Properties of a fifth-order vortex
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Spectral anomalies at wavefront dislocations
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Fig. 5. ' Spectral changes in the neighborhood of a zero at
a point P in the Airy diffraction pattern at frequency wy
of a circular aperture, along a small circular loop of ra-
dius e centered at P, which is at the distance r from the
center O of the aperture. The vector OS points toward
the critical direction that makes the angle 8. with the =z
axis. The spectrum is displayed for different values of the
angle ¢. The numerical parameters are chosen so that
e/r6. = 0.005.

S. A. Ponomarenko and E.
Wolf, Spectral anomalies in a
Fraunhofer diffraction
pattern, Opt. Lett., July 2002,
27, pl211.




Spectral anomalies at wavefront dislocations

e 03
£ 0.2 | Diffraction induced
> I abrupt spectral red
§ 0.1 : and blue shifts at
3 obe— 1 critical distances
% | where the dominant
2 -01 : spectral component of
E ] I the diffracted field has
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J. Foley and E. Wolf, Phenomenon of spectral switches as a new

effect in singular optics with polychromatic light, JOSA A, 19,
p2510, 2002

see also Pu and Nemoto, Spectral changes and 1 X N spectral
switches, JOSA A 19, p339, 2002




Vortices for
superresolved
lithography
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Vortex Via Validation

Marc D. Levenson, M.D. Levenson Consulting, Saratoga CA 95070
Takeaki (Joe) Ebihara, Canon USA Inc., San Jose, CA 95134
Yasutaka Morikawac & Naoya Hayashic, Dai Nippon Printing Co., Ltd., Kamifukuoka, Japan

ABSTRACT

The first vortex masks composed of rectangles with phases of 0°, 90°, 18(°, and 270°—as proposed at
Photomask 2002—have been fabricated and shown to print sub-100nm contacts. The walls of the phase
trenches are very nearly vertical, with all four phase regions meeting at sharp corners, which define the
phase singularities. Arrays with pitches down to 210nm have been printed in negative DUV resist using
KrF illumination with NA=0.73 and 6=0.15. The developed contacts are somewhat elliptical, but their
shapes can be corrected (if necessary) by OPC techniques. The depth of focus for £10% CD variation is
~400nm for 85nm CD vias at 210nm pitch and ~500nm for 95nm vias at 250nm pitch - with 12% exposure
latitude. At constant exposure dose, the via CDs vary with pitch approximately as predicted by simula-
tions. Increasing exposure dose makes the openings smaller, more uniform and more circular. No signifi-
cant surface development has appeared due to phase-edge printing. However, the spacewidth alternation

Conrtinues on page 4.
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Figure 1. Typical N=4 chromeless vortex via mask array design (o] along with a top-down SEM image
ofg such a mask [b). Dashed lines enclose the repeating unit cell. Figure Tc shows the expected aerial
image for @ 250nm pifch array. Note that the maximum intensify of the simulated image is above the
flood exposure level |_.
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InpusTRY BRIEFS
For new developments
in technology —see page 12
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—see page 14




Zeros and superresolution

Screen

E. Wolf and M. Nieto-Vesperinas,
“Analyticity of the angular spectrum

amplitude of scattered fields and some of its
consequences”, J.0.S.A. A2, p886, 1985

Separable and hence
reducible analytic functions
only in ideal simple noise
free cases




Definitions
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. . Fig. 2. Upper bound for the Strehl ratio S* when con-
lst ZCTro Of Alry dlSk ventional imaging is used. The solid curve corresponds to
the solution obtained with the series expansion for S*, and
the inset shows the same data on a logarithmic scale. The
dashed curve is a better estimate of the upper bound in the
region G € (0.46 1].

Tasso and Morris, Fundamental limits of
optical superresolution, OL 22, p582, 1997



Synthesis of Superresolving Filters

Fraunhofer diffraction
Foy) = JJf(uv)exp(-ik(ux+vy))dudv
Far-field scattering integral
Foxy) = JJf(uv)F-(uv)exp(-ik(ux-+vy))dudv
where F; = ¥/¥_ and ¥ =¥ in 1st Born approximation

...... and F(X,y) is an entire function.

Results suggest that methods attempting to invert multiply scattered
data do permit some sub-A superresolution (e.g Chen and Chew,

App.Phys.Lett, 72, p1284, (1998); multiple scattering between sub-
structures leading to evanescent waves which couple into
propagating waves a degree of freedom for synthesis problems)







Superresolved PSF from filter

PSF from aperture PSF from superresolved filter

Superresolving filter

Field at aperture Field f(u,v)F.(u,v) exiting filter




2D analytic functions

2D problems: No fundamental theorem of
algebra: generally irreducible

F(x,y) = _[ f(u,v)exp(-ik[ux + vy]) du.dv ~ I17?
A

00000000 IT~F.F*  Phase retrieval: we still need

{osytisy droperties:

i) similar to 1D but no simple concept of zero-free half “plane”
ii) zeros are 2n - 2 dimensional in nD case and cannot be isolated points

iii) no unique definition of dispersion relations (which is consistent with
causality condition)

Approximate factoring of 2D analytic functions, F, accomplished by taking logF,
and separating additive terms to become factors.....if logF 1s well behaved.

Wiener-Levy Theorem: if a continuous F > 0 has an absolutely convergent Fourier
series (FS) then logF has an absolutely convergent FS. [AMS Trans, p791, (1933)]




Effect of a reference wave on phase
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Scivier and Fiddy, JOSA A2 (1985) p693-697



Disrupting the phase of a wavetront

“reference”




Ensuring the minimum phase condition in 1D

Force minimum phase condition by introducing
a reference wave (Rouche’s theorem)

f(u)

Reference point

Minimum phase condition:
-T<P=<T

Jog>0uoidooudorouuooudo
l...useful...



Inverse scattering

...possible by nonlinear filtering

...if have minimum phase function

elkl’ o
y(r, kro) =k J dr' €TV (1, ki) b Ko
D

:id"'e”k@ @ V(r') o

(@)

vwi - In(V) + 1n(\|"l’j — FT[In(V)]+ F%" In(V) > V',
0 0

spatial filter



Homomorphic filtering for factoring

A Y(r, kr,)
Vi(r, kio) - V(IO (v, ki) .

\A 4 > log V¥ = log|V| + log || +
larg(V) + arg(*t)]

Inverse FT therefore not amenable to filtering to 1solate V from ¥
Phase contains discontinuities (wavefront dislocations)

Phase unwrapping virtually impossible in > 2D




Minimum phase condition

Minimum phase condition in 1D: zero free half plane

Minimum phase condition in >1D:

Dudgeon and Mersereau [Multidimensional Digital Signal
Processing, Prentice Hall, ch 4, p202/:

“Multidimensional minimum phase signal is one that is
absolutely summable and whose inverse and complex cepstrum
have the same region of support”

Definition: Cepstrum of g is FT-1{logG} where G = FT{g}




Creating a 2D minimum phase function

Let cepstrum = g

FT{g! =G = |G| exp(10) = Re{G} +1Im{G}

Create an object:

exp(G) = exp(Re{G}).exp(ilm{G}) [=F =|F| exp(i0) ]

Hence exp(ilm{G}) = exp(10) ...... this phase will be unwrapped and
should be a “minimum” phase function....

and exp(Re{G}) = |F| ....S0 NO zeros!

Apply Rouche’s theorem 1n 2D.

Trivial case: with a strong reference wave added to F, i.e. 1+ F then ~ exp(F) for |F| <<
1 and FT{1 + F} =0 + f; thus we expect to recover f when a (strong) reference point is

present somewhere in the object domain.




Creating a 2D minimum phase function

Rouche’s Theorem in 1D and nD

Suppose w = {(z) 1s analytic in a domain D where { = (f,1,,...1,)
and the boundary of D is smooth and contains no zeros of f, then
if for each point z on the boundary, there is at least one index j (j
= 1,2....n) such that |g,(z)| < |f,(z)| then g(z) and g(z) + {(z) have
the same number of zeros in D.

[It actually suffices that Re{g;(z)} < Re{f;(z)}; see Integral
Representations and Residues in Multidimensional Complex
Analysis, Aizenberg and Yuzhakov, AMS, 1982]

Trivial case: with a strong reference wave added to F, i.e. 1+ F then ~ exp(F) for |F| <<
1 and FT{1 + F} =0 + f; thus we expect to recover f when a (strong) reference point is
present somewhere in the object domain.




Reconstruction from |F| i |F|?

reference point:

amplitude 1

Reference
waves and
holography

10

“off-axis” reference point:

amplitude 5



Importance of Phase and Reference Waves

Significance of phase and amplitude in
the Fourier domain

Adolf W. Lohmann,* David Mendlovic, and Gal Shabtay

Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel

Received March 5, 1997; revised manuscript received May 20, 1997; accepted May 22, 1997

We add new thoughts and aspects to the importance of phase and amplitude in the Fourier domain. We show
how very similar objects react radically differently if, in the Fourier domain, either the phase was lost com-
pletely or the amplitude was modified to be constant. We also discuss the great influence of symmetry on the
relative significance of the Fourier amplitude and of the Fourier phase. We show how changing the value of
one pixel in some objects completely changes the significance of the Fourier phase and amplitude. © 1997
Optical Society of America [S0740-3232(97)00111-7]

JOSA A 14, p2901, 1997

See also Millane and Hsiao, “On
apparent counterexamples to
phase dominance”, JOSA A 20,
p753, 2003

Fig. 8. Reconstructions from an asymmetric object with tota.Hy
random phase: @ ase zero amplitude-only recqnstructmn
(upper left), peak phase zero phase-only reconstruction (upper

right), peak phase 90° amplitude-only reconstructign (lower left),
peak phase 90° phase-only reconstruction (lower right).

reference point (“peak”) not shown




2D factorization and inverse scattering

Consider VY recovered Sinﬁljals\jf;ngtﬁc
(approximately) from k- K, :
space data i) k
b, k#,
L2
N Sk

FT and .
, linear phase factor reference point in
spatially filter added to V¥ G

k-space




Probing penetrable targets
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Conclusions

Physical fields are strongly constrained by their analytic properties and
these properties can be exploited.

The analytic properties of the field dictate zero properties and the zeros
encode information.

The study of the zero trajectories of diffraction patterns has lead to the

relatively new field of “singular OptiCS” (see e.g. Soskin and Vasnetsov, ch 4, Prog. in
Optics, 42, 2001, Ed. E. Wolf)

Solutions to phase retrieval, superresolution and inverse scattering
problems are intimately tied to the properties of the function’s zeros.

Minimum phase properties are important and the incorporation of a
reference wave can accomplish this.







Appendix 1:Hilbert Transform

Let cepstrum =g

Since = 3
=s ® o([,/causal
exp(G) = exp(Re{G}).exp(iIm{G}) / chDDDD{)} G Gl expti
en FT{g} =G = exp(i

\

= exp(S.cos(cx)).exp(iS.sin(cx)) = Re{G} +iIm{G}
. = S * exp(i[causal shift]x)
- |F| eXp(le) = S*exp(icx)

where Im{G}) =0 {= S sin(cx) in simple example)

We require HT to transform Scos(cx) to 1Ssin(cx) ....hence:

70
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HT filter  [not i.sgn(x).sgn(y)] Point spread function




Appendix 2:What do we mean by phase?

F(x,y) = [F(x,y)| exp[[1¢x,y)]

Recent clarification:

Emil Wolf “Significance and measurability of the phase of a
spatially coherent optical field” Opt. Lett. 28 p5 2003

Phase usually considered in context of monochromatic wave
....but fields have finite bandwidth and phase fluctuates rapidly

Ability to interfere is measure of coherence and nonmonochromatic
fields can be completely spatially coherent.

We can associate with any field that is spatially coherent at ®, a
monochromatic field of the same frequency that yields the cross-
spectral density of the field.




Encoding phase information

<= F'T{log(Fourier intensity)}
FT{log(F

reference point:

2
amplitude
6
A test: if FT{log(I)} can be
approximately separated then
10 F is probably close to being

minimum phase!

Trivial case: with a strong reference wave added to F, i.e. 1+ F then ~ exp(F) for |F| <<
1 and FT{1 + F} =0 + f; thus we expect to recover f when a (strong) reference point is
present somewhere in the object domain.




