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Figure 1: Counting process

1 Counting Process

Let Fig. 1 be a graph of the customers who are entering a bank. Every
time a customer comes, the counter is increased by one. The time of the
arrival of i − th customer is ti. Since the customers are coming at random,
the sequence {t1, t2, · · · , tm}, denoted shortly by {ti}, is a random sequence.
Also, the number of customers who came in the interval (t0, t] is a random
variable (process). Such a process is right continuous, as indicated by the
graph in Fig. 1.

As it is often case in the theory of stochastic processes, we assume that
the index set, i.e. the set where {ti} is taking values from, is T = [0,∞).
Therefore, we have a sequence of non-negative random variables

0 ≤ t0 < t1 < t2 < · · · < tm → ∞ as m → ∞.

WLOG1 let t0 = 0 and N0 = 0, then

Nt = max{n, tn ≤ t}, T = [0,∞),

is called a point process (counting process), and is denoted shortly by
{Nt, t ≥ 0}.

1Without loss of generality
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Let Tn , tn − tn−1 be inter-arrival time, then the sequence of inter-arrival
times {Tn, n ≥ 1} is another stochastic process.

Special case is when {Tn, n ≥ 1} is a sequence of i.i.d.2 random variables,
then the sequence {tn} is called a renewal process. {Nt, t ≥ 0} is the as-
sociated renewal point process, sometimes also called renewal process. Also,
keep in mind that tn = T1 + T2 + · · · + Tn.

Definition (Poisson process) A point process {Nt, t ≥ 0} is called a Poisson

process if N0 = 0 and {Nt} satisfies the following conditions

1. its increments are stationary and its non-overlapping increments are
independent

2. P (Nt+4t − Nt = 1) = λ4t + o(4t)

3. P (Nt+4t − Nt ≥ 2) = o(4t)

Remarks

• {Nt, t ∈ T}; t, s ∈ T ; t > s; Nt−Ns - is the increment of stochas-
tic process Nt.

• Nt+4t − Nt = the number of new arrivals during (t, t + 4t].

• λ = const > 0 and o(4t) is understood as o(4t)
4t

→ 0 when 4t → 0.

The Poisson process defined above is also known as homogeneous

Poisson process. In general λ can be a time dependent function λ(t),
in which case we are dealing with inhomogeneous Poisson process.
Finally, λ itself can be a realization of stochastic process λ(t, ω), in
which case we have so-called doubly stochastic Poisson process.

In any case, the parameter λ of a Poisson process is called the rate and
sometimes the intensity of the process. Its dimension is [events]/[time]
(e.g. spikes/sec in neuroscience).

Theorem Let {Nt, t ≥ 0} be a Poisson process, then

P (Nt = k) =
(λ t)k

k!
e−λ t k = 0, 1, · · · (1)

2Independent identically distributed



Zoran Nenadic POISSON PROCESS 4

The expression on the left hand side of (1) represents the probability of k
arrivals in the interval (0, t].

Proof A generating function of a discrete random variable X is defined
via the following z-transform (recall that the moment generating function of
a continuous random variable is defined through Laplace transform):

GX(z) = E[zX ] =
∞∑

i=0

zi pi,

where pi = P (X = i). Let us assume that X is a Poisson random variable
with parameter µ, then

P (X = i) =
µi

i!
e−µ i = 0, 1, 2, · · ·

and

GX(z) =
∞∑

i=0

zi µi

i!
e−µ = eµ(z−1). (2)

Going back to Poisson process, define the generating function as

Gt(z) , E[zNt ]

Then we can write

Gt+4t(z) = E[zNt+4t ] = E[zNt + Nt+4t −Nt] = E[zNt ] E[zNt+4t −Nt]

= Gt(z) [(1 − λ4t + o(4t)) z0 + (λ4t + o(4t)) z1 + o(4t)(z2 + · · · )]

Furthermore

Gt+4t − Gt(z)

4t
= Gt(z) [−λ +

o(4t)

4t
+ (λ +

o(4t)

4t
) z +

o(4t)

4t
(z2 + · · · )]

⇒ lim
4t→0

Gt+4t − Gt(z)

4t
= Gt(z) [−λ + λ z]

⇒
dGt(z)

dt
= Gz(t)λ (z − 1)

⇒ logGt(z) − log G0(z)
︸ ︷︷ ︸

= λ t (z − 1)

0

⇒ Gt(z) = eλ t (z−1)
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Figure 2: Event description

Comparing this result to (2) we conclude that Nt is a Poisson random vari-
able with parameter λ t. �

Theorem If {Nt, t ≥ 0} is a Poisson process and Tn is the inter-arrival time
between the n − th and (n − 1) − th events, then {Tn, n ≥ 1} is a sequence
of i.i.d. random variables with exponential distribution, with parameter λ.

Proof

P (T1 > t) = P (Nt = 0) = e−λ t ⇒ T1 − exponential

Need to show that T1 and T2 are independent and T2 is also exponential.

P (T2 > t |T1 ∈ (s − δ, s + δ]) =
P (T2 > t, T1 ∈ (s − δ, s + δ])

P (T1 ∈ (s − δ, s + δ])
(3)

The event {T2 > t, T1 ∈ (s − δ, s + δ]} is a subset of the event described by
Fig. 2, i.e.

P (T2 > t, T1 ∈ (s−δ, s+δ]) ≤ P (Ns−δ = 0
︸ ︷︷ ︸

, Ns+δ − Ns−δ = 1
︸ ︷︷ ︸

, Ns+t−δ − Ns+δ = 0
︸ ︷︷ ︸

)

no arrivals one arrival no arrivals

P (T2 > t, T1 ∈ (s − δ, s + δ]) ≤ P (T1 ∈ (s − δ, s + δ]) P (Ns+t−δ − Ns+δ = 0)

⇒ P (T2 > t, T1 ∈ (s − δ, s + δ]) ≤ P (T1 ∈ (s − δ, s + δ]) e−λ (t−2 δ)

From (3) ⇒
P (T2 > t |T1 ∈ (s − δ, s + δ]) ≤ e−λ (t−2 δ) (4)
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Figure 3: Event description

Similarly, the event described by Fig. 3 is a subset of the event {T2 > t, T1 ∈
(s − δ, s + δ]}, therefore

P (Ns−δ = 0, Ns+δ − Ns−δ = 1, Ns+t+δ − Ns+δ = 0) ≤ P (T2 > t, T1 ∈ (s − δ, s + δ])

⇒ P (T1 ∈ (s − δ, s + δ]) P (Ns+t+δ − Ns+δ = 0) ≤ P (T2 > t, T1 ∈ (s − δ, s + δ])

⇒ P (T1 ∈ (s − δ, s + δ]) e−λ t ≤ P (T2 > t, T1 ∈ (s − δ, s + δ])

From (3) ⇒
P (T2 > t |T1 ∈ (s − δ, s + δ]) ≥ e−λ t (5)

From (4) and (5), using squeeze theorem (δ → 0), it follows

P (T2 > t |T1 = s) = e−λ t ⇒ fT2 |T1=s(t | s) = λ e−λ t

Therefore, T2 is independent of T1, and T2 is exponentially distributed ran-
dom variable. �

Theorem

1. E[Nt] = λ t

2. V ar[Nt] = λ t

Proof Recall that Gt(z) = E[zNt ], then

[
dGt(z)

dz

]

z=1

= E
[
Nt z

Nt−1
]

z=1
= E[Nt]

⇒ E[Nt] =
[
λ t eλ t(z−1)

]

z=1
= λ t
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Likewise
[
d2Gt(z)

dz2

]

z=1

= E[Nt(Nt − 1)]

⇒ E[N2
t ] =

[
(λ t)2 eλ t(z−1)

]

z=1
+ E[Nt] = (λ t)2 + λ t

⇒ V ar[Nt] = (λ t)2 + λ t − (λ t)2 = λ t �

Theorem (Conditioning on the number of arrivals) Given that in the interval
(0, T ] the number of arrivals is NT = n, the n arrival times are independent
and uniformly distributed on [0, T ].

Proof Independence of arrival times t1, t2 etc. directly follows from indepen-
dence of non-overlapping increments. In particular let t1 and t2 be arrival
times of first and second event, then

P (t1 ∈ (0, s], t2 ∈ (s, t]) = P (Ns = 1, Nt − Ns = 1) =

= P (Ns = 1) P (Nt − Ns = 1|Ns = 1) = P (t1 ∈ (0, s]) P (t2 ∈ (s, t])

Suppose that we know exactly one event happened in the interval (0, T ], and
suppose the interval is partitioned into M segments of length 4t, as shown
in Fig. 1. Let pi be the probability of event happening in the i−th bin, then
∑M

i=1 pi = 1. From the definition of Poisson process it follows that pi ∝ λ4t,
say pi = C(λ4 t + o(4t)). The constant C is determined from

M∑

i=1

C(λ4t + o(4t)) = 1 ⇒ C =
1

λ M 4t + M o(4t)
=

1

T (λ + o(4t)
4t

)

Let t1 be a random variable corresponding to the time of arrival, then the
probability density function (pdf) of t1 can be defined as

ft1(t) = lim
4 t→0

pi

4t
=

1

T
∀i = 1, 2, · · · , M where t = i4t.
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Therefore, t1 is uniformly distributed on [0, T ].
Let t1 and t2 be the arrival times of two events, and we know exactly two
events happened on (0, T ]. Also assume that t1 and t2 represent mere labels
of events, not necessarily their order. Given that t1 happened in j − th bin,
the probability of t2 occurring in any bin of size 4t is proportional to the size
of that bin, i.e. pi ∝ λ4t, except for the j − th bin, where pj ∝ o(4t). By
rendering the bin size infinitesimal, we notice that the probability pi remains
constant over all but one bin, the bin in which t1 occurred, where pj = 0.
But this set is a set of measure zero, so the cumulative sum over pi again
gives rise to uniform distribution on (0, T ]. �

Question What is the probability of observing n events at instances τ1, τ2,
· · · , τn on the interval [0, T ]?

Since arrival times t1, t2 · · · , tn are continuous random variables, the answer
is 0. However, we can calculate the associated pdf as

ft1 t2 ··· tn(τ1, τ2, · · · , τn) =

= lim
dt→0

P (t1 ∈ (τ1, τ1 + dt], · · · , tn ∈ (τn, τn + dt], NT = n)

dtn

where

P (t1 ∈ (τ1, τ1 + dt], · · · , tn ∈ (τn, τn + dt], Nt = n) =

= P (t1 ∈ (τ1, τ1 + dt], · · · , tn ∈ (τn, τn + dt] |NT = n) P (NT = n)

=

(
dt

T

)n
(λ T )n

n!
e−λ T =

λn dtn

n!
e−λ T

⇒ ft1 t2 ··· tn(τ1, τ2, · · · , τn) =
λn

n!
e−λ T

Question What is the power spectrum of Poisson process?

It does not make sense to talk about the power spectrum of Poisson process,
since it is not a stationary process. In particular the mean of Poisson
process is

E[Nt] = λ t
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and its autocorrelation function is

R(t, s) , E[Nt Ns]

R(t, s)
t>s
= E[(Nt − Ns + Ns) Ns] = E[(Nt − Ns) Ns + N2

s ]

= E[Nt − Ns]E[Ns] + E[N2
s ] = λ(t − s)λ s + λ2 s2 + λ s = λ2 t s + λ s

R(t, s)
t<s
= E[(Ns − Nt + Nt) Nt] = E[(Ns − Nt) Nt + N2

t ]

= E[Ns − Nt]E[Nt] + E[N2
t ] = λ(s − t)λ t + λ2 t2 + λ t = λ2 t s + λ t

Since R(t, s) 6= R(t − s), we conclude that {Nt, t ≥ 0} is not stationary
(in weak sense), therefore it does not make sense to talk about its power
spectrum. Let us define the following stochastic process (Fig. 5)

St =
dNt

dt
=

∑

i

δ(t − ti) − spike train (6)

The fundamental lemma says that if Y (t) = L{X(t)}, where L is a linear

N
t
 

S
t
 

Figure 5: Spike train

operator, then
E[Y (t)] = L{E[X(t)]}

Since differentiation is a linear operator we have

E[St] =
d(λt)

dt
= λ
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Also, it can be shown using theory of linear operators that

RSS(t, s) =
∂

∂t

[
∂RNN (t, s)

∂s

]

=

{
∂
∂t

[λ2 t + λ] t > s
∂
∂t

[λ2 t] t < s

=
∂

∂t

[

λ2 t + λ U(t − s)
︸ ︷︷ ︸

]

= λ2 + λ δ(t − s)

Heaviside function

Thus, St is WWS3 stochastic process, and it makes sense to define the power
spectrum of such a process as a Fourier transform of its autocorrelation
function i.e.

PS(ω) = F{RSS(τ)} =

∫ ∞

−∞

RSS(τ) e−j ω τdω = λ + λ2 2πδ(ω)

Therefore, the spike train St =
∑

i δ(t − ti) of independent times ti behaves
almost as a white noise, since its power spectrum is flat for all frequencies,
except for the spike at ω = 0. The process St defined by (6) is a simple
version of what is in engineering literature known as a shot noise.

Definition (Inhomogeneous Poisson process) A Poisson process with a non-
constant rate λ = λ(t) is called inhomogeneous Poisson process. In this case
we have

1. non-overlapping increments are independent (the stationarity is lost
though).

2. P (Nt+4t − Nt = 1) = λ(t)4t + o(4t)

3. P (Nt+4t − Nt ≥ 2) = o(4t)

Theorem If {Nt, t > 0} is a Poisson process with the rate λ(t), then Nt is
a Poisson random variable with parameter µ =

∫ t

0
λ(ξ) dξ i.e.

P (Nt = k) =
(
∫ t

0
λ(ξ) dξ)k

k!
e−

∫
t

0
λ(ξ) dξ (7)

3Wide (weak) sense stationary. A stochastic process X(t) is WSS if E[X(t)] = const

and RXX(t, s) = RXX (t − s)
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Proof The proof of this theorem is identical to that of homogeneous case
except that λ is replaced by λ(t). In particular, one can easily get

Gt(z) = e(z−1)
∫

t

0
λ(ξ) dξ, (8)

from which (7) readily follows. �

Theorem Let {Nt, t > 0} be an inhomogeneous Poisson process with the
rate λ(t) and let t > s ≥ 0, then

P (Nt − Ns = k) =
(
∫ t

s
λ(ξ) dξ)k

k!
e−

∫
t

s
λ(ξ) dξ (9)

The application of this theorem stems from the fact that we cannot use
P (Nt − Ns = k) = P (Nt−s = k), since the increments are no longer station-
ary.

Proof

Gt(z) = E[zNt ] = E[zNt−Ns+Ns ] = E[zNt−Ns] E[zNs ] = E[zNt−Ns ]Gs(z)

⇒ E[zNt−Ns ] =
Gt(z)

Gs(z)

by (8)
=

e(z−1)
∫

t

0
λ(ξ) dξ

e(z−1)
∫

s

0
λ(ξ) dξ

= e(z−1)
∫

t

s
λ(ξ) dξ

Thus, Nt − Ns is a Poisson random variable with parameter µ =
∫ t

s
λ(ξ) dξ,

and (9) easily follows. �

Theorem

1. E[Nt] =
∫ t

0
λ(ξ) dξ

2. V ar[Nt] =
∫ t

0
λ(ξ) dξ

Proof Recall that

E[Nt] =

[
dGz(t)

dz

]

z=1

and E[N2
t ] =

[
d2Gz(t)

dz2

]

z=1

+ E[Nt]

From (8) we have Gt(z) = e(z−1)
∫

t

0
λ(ξ) dξ, and the two results follow after

immediate calculations. �
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Theorem (Conditioning on the number of arrivals) Given that in the interval
(0, T ] the number of arrivals is NT = n, the n arrival times are independently

distributed on [0, T ] with the pdf λ(t)/
∫ T

0
λ(ξ) dξ.

Proof The proof of this theorem is analogous to that of the homogeneous
case. The probability of a single event happening at any of M bins (Fig. 1)
is given by pi = C(λ(i4t)4t + o(4t)), where i is the bin index. Given that
exactly one event occurred in the interval (0, T ], we have

M∑

i=1

pi = 1 ⇒ C =
1

∑M
i=1 λ(i4t)4t + T o(4t)

4t

ft1(t) = lim
4t→∞

pi

4t
=

λ(t)
∫ T

0
λ(ξ) dξ

where t = i4t.

The argument for independence of two or more arrival times is identical to
that of the homogeneous case. �

Question What is the probability of observing n events at instances τ1, τ2,
· · · , τn on the interval [0, T ]?

Since arrival times t1, t2 · · · , tn are continuous random variables, the answer
is 0. However, we can calculate the associated pdf as

ft1 t2 ··· tn(τ1, τ2, · · · , τn) =

= lim
dt→0

P (t1 ∈ (τ1, τ1 + dt], · · · , tn ∈ (τn, τn + dt], NT = n)

dtn

where

P (t1 ∈ (τ1, τ1 + dt], · · · , tn ∈ (τn, τn + dt], NT = n) =

= P (t1 ∈ (τ1, τ1 + dt], · · · , tn ∈ (τn, τn + dt] |NT = n) P (NT = n)

=

[
n∏

i=1

∫ τi+dt

τi

λ(τ) dτ
∫ T

0
λ(ξ) dξ

]

(
∫ T

0
λ(ξ) dξ)n

n!
e−

∫
T

0
λ(ξ) dξ

dt→0
≈

[
n∏

i=1

λ(τi)

]

dtn

n!
e−

∫
T

0
λ(ξ) dξ

⇒ ft1 t2 ··· tn(τ1, τ2, · · · , τn) =

∏n

i=1 λ(τi)

n!
e−

∫
T

0
λ(ξ) dξ
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Figure 6: Realization of a point process using conditioning on the number of
arrivals. (Top) Ten different sample paths of the same point process shown
as raster plots. (Bottom) The histogram of inter-arrival times, showing the
exponential trend
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Figure 7: Realization of a point process using method of infinitesimal incre-
ments. (Top) Ten different sample paths of the same point process shown
as raster plots. (Bottom) The histogram of inter-arrival times, showing the
exponential trend



Zoran Nenadic POISSON PROCESS 15

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

Time (s)

R
as

te
r 

N
um

be
r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.17

0.34

0.51

Time (s)

R
el

at
iv

e 
F

re
qu

en
cy

Sample Mean: 0.031979

Standard Deviation: 0.031894

Sample Size: 29214

Figure 8: Realization of a point process using method of independent inter-
arrival times. (Top) Ten different sample paths of the same point process
shown as raster plots. (Bottom) The histogram of inter-arrival times, showing
the exponential trend


