Poisson Process, Spike Train and All That
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Figure 1: Counting process

1 Counting Process

Let Fig. 1 be a graph of the customers who are entering a bank. Every
time a customer comes, the counter is increased by one. The time of the
arrival of ¢ — th customer is ¢;. Since the customers are coming at random,
the sequence {t1,t, -+ ,t,}, denoted shortly by {¢;}, is a random sequence.
Also, the number of customers who came in the interval (¢, t] is a random
variable (process). Such a process is right continuous, as indicated by the
graph in Fig. 1.

As it is often case in the theory of stochastic processes, we assume that
the , i.e. the set where {t;} is taking values from, is 7" = [0, c0).
Therefore, we have a sequence of non-negative random variables

0<ty<ti<ta<---<t, >00 as m — oo.
WLOG! let ty = 0 and Ny = 0, then
N; = max{n, t, <t}, T =][0,00),

is called a (counting process), and is denoted shortly by
{N;, t > 0}.

"Without loss of generality
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Let T, £ t,, —t,_1 be inter-arrival time, then the sequence of inter-arrival
times {7},, n > 1} is another stochastic process.

Special case is when {T},, n > 1} is a sequence of i.i.d.? random variables,
then the sequence {t,} is called a renewal process. {Ny, t > 0} is the as-
sociated renewal point process, sometimes also called renewal process. Also,
keep in mind that t, =T} +To +-- -+ T,,.

Definition (Poisson process) A point process { Ny, t > 0} is called a Poisson
process if Ny = 0 and {N;} satisfies the following conditions

1. its increments are stationary and its non-overlapping increments are
independent

2. P(Nt—i-At — Nt = 1) = )\At + O(At)
3. P(Nt—i—At — Nt Z 2) = O(At)
Remarks

o {Ny,teT}; t,seT; t>s; N—Ns-istheincrement of stochas-
tic process N;.

e Niiny — Ny = the number of new arrivals during (¢, t + At].

e )\ = const > 0 and o(At) is understood as % — 0 when At — 0.
The Poisson process defined above is also known as homogeneous
Poisson process. In general A can be a time dependent function A(t),
in which case we are dealing with inhomogeneous Poisson process.
Finally, A itself can be a realization of stochastic process A(t,w), in
which case we have so-called doubly stochastic Poisson process.

In any case, the parameter X of a Poisson process is called the rate and
sometimes the intensity of the process. Its dimension is [events]/[time]
(e.g. spikes/sec in neuroscience).

Theorem Let {N;, t > 0} be a Poisson process, then

k
P(N, = k) = (A;') e k=0,1, - (1)

2Independent identically distributed
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The expression on the left hand side of (1) represents the probability of k
arrivals in the interval (0, ¢].

Proof A generating function of a discrete random variable X is defined
via the following z-transform (recall that the moment generating function of
a continuous random variable is defined through Laplace transform):

Gx(z) = E[z¥] = Zzipi,

where p; = P(X = i). Let us assume that X is a Poisson random variable
with parameter u, then

and . 4
ilU’Z — z—1
G - P o=k — pnl(z=1) 92
x(2) Zz:; e e (2)
Going back to Poisson process, define the generating function as
Gy(2) £ B[z™]

Then we can write

Gt—l—At(Z) = E[ZNH—At] — E[ZNt+Nt+At—Nt] _ E[ZNt] E[ZN“'At_Nt]

= Gy(2) [(1 = AAt+0o(At)) 2° + (NAL+ o(AL)) 2" + o(At) (22 + - -

Furthermore
Girae — Gi(z) o(At) o(At) o(At), 4
3 = Gy(2) [-A+ N + (A + N )z + N (" +--)]
. Ginar — Gt(z) o

= Alir_r}o Iy =Gy(2) [-A + A7

= T _ G-

= log G¢(z) — log Go(z) = At (z—1)

—_——
0

= Gy(z) = MED

)l
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Figure 2: Event description

Comparing this result to (2) we conclude that NV, is a Poisson random vari-
able with parameter \t. Il

Theorem If {NV;, ¢t > 0} is a Poisson process and T,, is the inter-arrival time
between the n — th and (n — 1) — th events, then {7}, n > 1} is a sequence
of i.i.d. random variables with exponential distribution, with parameter \.

Proof
P(Ty >t)=P(N,=0)=e¢* = T, — exponential
Need to show that T} and 75 are independent and 75 is also exponential.

P(Ty>t, T € (s — 6, s+ d])
P(Ty € (5— 0, 5 +0))

P(Ty>t|Ty € (s—6, s+0]) = (3)

The event {15 > t, T} € (s — 9, s + 0]} is a subset of the event described by
Fig. 2, i.e.

s+t—5 — Nogs = 9)

'

-

P(Tg >t 1) € (8—5, S+5]) < P(Ns_5 =0, Ns_;,_(; — Ny_s5 = 1,
—— — —

no arrivals one arrival no arrivals

P(T2>t, T1€(8—5,S+5])
S P(Ty >t Ty € (s— 6, 5+4))

P(Tl E (S_ (5, S+5])P(N3+t_5 _N8+5 == O)

<
< P(Ty € (s =6, s +0]) e M729

From (3) =
P(Ty > t| Ty € (s — 8, s +8]) < e =29 )
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Figure 3: Event description
Similarly, the event described by Fig. 3 is a subset of the event {T5 > ¢, T1 €
(s — 0, s+ 0]}, therefore

P(NS_(SZO,NS_H;—N _s =1, Ns+t+5 s+5—0)SP(TQ>t,T1€(8—5,S+(5])
o P(Ty € (s— 6, 5+08)) P(Nossys — Nors = 0) < P(Ty > t, Ty € (5 — 6, 5+ 0])
=P(Tec(s—0s+0)eM<PTy>t T €(s—06 s+

From (3) =
P(Ty>t|Ty € (s =6, s+0]) > e (5)

From (4) and (5), using squeeze theorem (§ — 0), it follows
P(T2 >t|T1 :S) :e_)‘t = fTQ‘les(t|8> :)\B_At

Therefore, T5 is independent of 77, and 715 is exponentially distributed ran-
dom variable.

Theorem
1. E[N] =\t
2. Var[Ny = At
Proof Recall that G¢(z) = E[2], then

[dcjztz( >] P [N M = E[N]

= B[N} = [AteMCED] =t
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Figure 4: Uniform bins

Likewise

{dQGt( z)
dz? _
:>EN2:[ 2 At(z 1] 1+E[Nt]:(>\t)2+>\t
=>Var[Nt]:()\) +At— (At =2t W

| -Emoi-y)

Theorem (Conditioning on the number of arrivals) Given that in the interval
(0, T'] the number of arrivals is Ny = n, the n arrival times are independent
and uniformly distributed on [0, 7.

Proof Independence of arrival times t1, t5 etc. directly follows from indepen-
dence of non-overlapping increments. In particular let ¢; and ¢ be arrival
times of first and second event, then

P(t; € (0, 8], ty € (s,t]) = P(Ny=1, Ny— N, =1) =
= P(N, = 1) P(N; = Ny = 1[N, = 1) = P(t, € (0, s]) P(tz € (s, ])

Suppose that we know exactly one event happened in the interval (0, T, and
suppose the interval is partitioned into M segments of length At, as shown
in Fig. 1. Let p; be the probability of event happening in the i —th bin, then
Zi]‘il p; = 1. From the definition of Poisson process it follows that p; oc A AAt,
say p; = C(AAt+ o(At)). The constant C' is determined from

1 1
AM At + M o(At) a T\ + O(At))

Y CAAt+o(At)=1=C =

i=1

Let t; be a random variable corresponding to the time of arrival, then the
probability density function (pdf) of ¢; can be defined as

i P I RV -
Ju(t) = At—»OAt i Vi =1,2, ,M where t =1/l
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Therefore, t; is uniformly distributed on [0, 77.

Let t; and t, be the arrival times of two events, and we know exactly two
events happened on (0, T]. Also assume that ¢; and ¢, represent mere labels
of events, not necessarily their order. Given that ¢; happened in j — th bin,
the probability of t; occurring in any bin of size At is proportional to the size
of that bin, i.e. p; oc A At, except for the j — th bin, where p; o o(At). By
rendering the bin size infinitesimal, we notice that the probability p; remains
constant over all but one bin, the bin in which ¢; occurred, where p; = 0.
But this set is a set of measure zero, so the cumulative sum over p; again
gives rise to uniform distribution on (0, 7. W

Question What is the probability of observing n events at instances 7y, 7o,
, To, on the interval [0, 77

Since arrival times ¢, t5 - - - , t,, are continuous random variables, the answer
is 0. However, we can calculate the associated pdf as

ft1t2~~~tn(7—17 T2, * 0y Tn) =
. Pty e(n,n+dt], -, t, € (T, Tn +dt], Np =n)
= lim
dt—0 dtn
where
Pty € (m,n+dt], -, t, € (Tn,Tn—l-dt], Ny=n) =
=Pty € ( T1+dt] by € (Tn, Tn +dt] | Nr = n) P(Nr = n)
(AT)" _yp  AMd™ _yp
B (T) o C T T €
A"
= ftltg---tn(Tla T2, =, Tn) - Fe

Question What is the power spectrum of Poisson process?

It does not make sense to talk about the power spectrum of Poisson process,
since it is not a stationary process. In particular the mean of Poisson

process is
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and its autocorrelation function is
R(t,s) £ E[N; N]
R(t,s) "= E[(N, — N, + N,) N,] = E[(N, — N,) N, + N?]

= E[N, — N,E[N,] + E[N?] = )\(t —s)As+ A2 s® +As=Ats+ As
R(t,s) = E[(N, — Ny + N;) Ny] = E[(N, — N;) N, + N2

= E[N, — NJE[N,] + E[N?] = M(s — )Mt + N2 2 + Xt = N ts+ Mt
Since R(t,s) # R(t — s), we conclude that {N;, t > 0} is not stationary

(in weak sense), therefore it does not make sense to talk about its power
spectrum. Let us define the following stochastic process (Fig. 5)

dN
- =t Z 6(t —t;) — spike train (6)

The fundamental lemma says that if Y(t) = L{X(¢)}, where L is a linear

Figure 5: Spike train

operator, then
EY(1)] = L{EX )]}
Since differentiation is a linear operator we have
d(\t)

Sl = =g~ =
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Also, it can be shown using theory of linear operators that

0 [aRNN(t,s)] B {%[A2t+>\] t>s
= |

Rgs(t,s) = —
st ) ds 2102 t<s
0
= [)\2t+)\ U(t—s)] =X+ A5t —s)
ot —_——
Heaviside function
Thus, S; is WWS? stochastic process, and it makes sense to define the power

spectrum of such a process as a Fourier transform of its autocorrelation
function i.e.

Ps(w) = f{Rss(T)} = /_Oo RSS(T) e_j“”dw =\ + )\2 27r(5(w)

Therefore, the spike train S; = >, d(t — ¢;) of independent times ¢; behaves
almost as a , since its power spectrum is flat for all frequencies,
except for the spike at w = 0. The process S; defined by (6) is a simple
version of what is in engineering literature known as a .

Definition (Inhomogeneous Poisson process) A Poisson process with a non-
constant rate A = A\(t) is called inhomogeneous Poisson process. In this case
we have

1. non-overlapping increments are independent (the stationarity is lost
though).

2. P(Nt—i-At — Nt = 1) = A(t) At + O(At)
3. P(Nt-i—At - Nt 2 2) = O(At)

Theorem If {N;, ¢t > 0} is a Poisson process with the rate A(¢), then IV, is
a Poisson random variable with parameter p = fot () dE ie.

PV = ) = S AOLS - o )

3Wide (weak) sense stationary. A stochastic process X (t) is WSS if E[X(¢)] = const
and Rxx(t, S) = Rxx(t - S)
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Proof The proof of this theorem is identical to that of homogeneous case
except that A is replaced by A(¢). In particular, one can easily get

Gy(z) = el DIXO, (8)

from which (7) readily follows. H

Theorem Let {N;, ¢ > 0} be an inhomogeneous Poisson process with the
rate A(¢) and let ¢t > s > 0, then

M — [T N) dg

P(N,— N, =k) = o (9)

The application of this theorem stems from the fact that we cannot use
P(N; — Ny = k) = P(N;_s = k), since the increments are no longer station-
ary.

Proof
Gyi(2) = E[z™] = B[N NtNe] = BNN) BI2Ne] = B2 N ] Gy (2)

t
= B[N Ne] = Gu(2) by®) M _ D) [IA©) de
G.(2) D T N &

Thus, N; — N, is a Poisson random variable with parameter p = f; A(€) dE,
and (9) easily follows. W

Theorem
L. E[N] = [y M) d¢
2. Var[N,] = [ M€) dé¢
Proof Recall that

EWF{%%%M wdEWﬂ:[

d*G.(t)
dz?

} . + E[Ny]

From (8) we have Gy(z) = e D /e A0 and the two results follow after
immediate calculations. W



Zoran Nenadic POISSON PROCESS 12

Theorem (Conditioning on the number of arrivals) Given that in the interval
(0, T'] the number of arrivals is Ny = n, the n arrival times are independently

distributed on [0, T] with the pdf A(t)/ [} A(€) e,

Proof The proof of this theorem is analogous to that of the homogeneous
case. The probability of a single event happening at any of M bins (Fig. 1)
is given by p; = C(A(i At) At + o(At)), where i is the bin index. Given that
exactly one event occurred in the interval (0, 7], we have

- 1
; SMONEAL) At + T 220

=1

B
fu(t) = Altlinoo At fOT A() dg

The argument for independence of two or more arrival times is identical to
that of the homogeneous case.

where t =1/At.

Question What is the probability of observing n events at instances 7y, 7o,
-, T, on the interval [0, 77

Since arrival times ¢, t5 - - - , t,, are continuous random variables, the answer
is 0. However, we can calculate the associated pdf as

ft1t2~~~tn(71> T2, ", Tn) =
. Ptie(n,n+dt], -, ty € (Tn,Tn +dt], Npr =n)
= lim
dt—0 dtn
where
P(ty € (ri, 7 +dt], -+, ty € (Tn, T +dt], Np =n) =
= P(tl - (7'1,7'1 +dt], cey t, € (Tn,Tn—f—dtHNT :n)P(NT :n)

f[ JTENE dr ) (T A) de)m o A€ de
o1y A©) dg "

it [H m)] O

_ o Mm) o= Jo ME)dg
n!

S
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Figure 6: Realization of a point process using conditioning on the number of
arrivals. (Top) Ten different sample paths of the same point process shown
as raster plots. (Bottom) The histogram of inter-arrival times, showing the
exponential trend
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Figure 7: Realization of a point process using method of infinitesimal incre-
ments. (Top) Ten different sample paths of the same point process shown
as raster plots. (Bottom) The histogram of inter-arrival times, showing the
exponential trend
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Figure 8: Realization of a point process using method of independent inter-
arrival times. (Top) Ten different sample paths of the same point process
shown as raster plots. (Bottom) The histogram of inter-arrival times, showing
the exponential trend



