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Abstract

Ž .Recurrence plots RPs often have fascinating structures, especially when the embedding dimension is 1. We identify four
Ž .basic patterns of a RP, namely, patterns along the main 458 diagonal, patterns along the 1358 diagonal, block-like

structures, and square-like textures. We also study how the structures of and quantification statistics for RPs vary with the
embedding parameters. By considering the distribution of the main diagonal line segments for chaotic systems, we relate
some of the known statistics for the quantification of a RP to the Lyapunov exponent. This consideration enables us to
introduce new ways of quantifying the diagonal line segments. Furthermore, we categorize recurrence points into two
classes. A number of new quantities are identified which may be useful for the detection of nonstationarity in a time series,
especially for the detection of a bifurcation sequence. A noisy transient Lorenz system is studied, to demonstrate how to
identify a true bifurcation sequence, to interpret false bifurcation points, and to choose the embedding dimension. q 2000
Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .Recurrence plots RPs were initially designed to
graphically display recurring patterns and nonstation-

w xarity in time series 1 . Recurring patterns are among
the most important features of chaotic systems, while
nonstationarity may arise from a variety of reasons
such as drifting of a parameter, time-varying nature
of a driving force, sudden changes in dynamics, etc.
It is thus no wonder that ever since RPs were

) Corresponding author; Some source Fortran codes can be
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introduced, RPs have found utility in a wide range of
scientific explorations. For instance, RPs have been
used to study various biological systems including

w xneuronal spike trains 2 , quiet and active breathing
w x Ž . w x3 , electromyographic EMG data 4 , periodically

w xmodulated inhibition 5 , mood variation in bipolar
w x w xdisorder 6 , synaptic noise of a central neuron 7 ,

w xintracranial EEG recordings 8 , rhythmic eye move-
w x w xments 9 , older-age tachogram data 10 , and protein

w x w xsequence 11;12 and dynamics 13 . A number of
statistics have also been proposed to quantify RPs
w x3;14 .

One of the major reasons that RPs are popular lies
in the fact that the structures of RPs are visually
appealing. See, for instance, some RPs in Iwanski

w x Ž .and Bradley 15 see also Fig. 2 . To promote
further applications of RPs in the analysis of nonlin-
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ear time series arising from diverse disciplines of
science, it would be very desirable that the basic
structures of RPs can be understood geometrically.
As mentioned earlier, one of the initial purposes of
RPs is to show recurrent patterns in chaotic systems,

w xwhile the time-delay embedding technique 16;17
has long become a starting point for the analysis of
chaotic time series, one naturally expects that the
structures of RPs will generally depend on the em-
bedding parameters, especially the embedding di-

w xmension. However, Iwanski and Bradley 15 claim
that the structures of RPs for the many low-dimen-
sional systems they have studied do not depend on
the embedding dimension very much. In particular,
they claim that in detecting bifurcations using the

w xstatistics introduced in 3;14 , embedding need not be
done. Understanding qualitatively the structures of
RPs, how the structures of and the quantification
statistics for RPs depend upon the embedding param-
eters will thus constitute the first goal of this Letter.

The quantification statistics for RPs introduced in
w x3;14 , though interesting, have not been carefully
studied to be related to the invariants of a chaotic
system such as the Lyapunov exponents, dimension
or entropy, when a chaotic time series is studied via
RPs. We shall make efforts to relate some of the

w xstatistics of 3;14 to the Lyapunov exponents of a
chaotic system. We will also show in this Letter that
the recurrence points constituting a RP can be further
classified as true recurrence points and sojourn points.
This classification allows us to introduce new ways
of quantifying RPs.

One of the more interesting applications of RPs to
the study of an experimental time series is its ability

w xto detect a bifurcation sequence 14;15 . In an ex-
ploratory scientific study, the underlying bifurcation
sequence is, however, unknown. Hence, it is equally
or even more important that that quantity may not
suggest false bifurcations. And if it does, that quan-
tity itself should suggest a way to allow one to
interpret the latter. One should also bear in mind that
an experimental time series is typically noise cor-
rupted. To understand the effects of noise on an
algorithm for the detection of a bifurcation sequence
is thus of great practical value. The final purpose of
this Letter is to show how one may make efforts to
identify the true bifurcation sequence and the causes
for the false bifurcation points, and to show how one

may choose suitable embedding parameters so that
the algorithm may still work when the signal is
heavily noise corrupted.

2. Structures of recurrence plots and their quan-
tifications

� Ž . 4Given a scalar time series x i ,is1,2, . . . , it is
w xnow customary to form vectors of the form 16;17 :

Ž Ž . Ž . Ž Ž . ..X s x i , x iqL , . . . , x iq my1 L , with mi

being the embedding dimension and L the delay
� 4time. X , is1,2, PPP , N then represents certain tra-i

jectory in a m-dimensional space. RPs are N=N
Ž .arrays in which a dot is placed at i, j whenever a

point X on the trajectory is close to another pointi

X . In its original form, the closeness between Xj i
< < < <and X is simply expressed by X yX Fd, wherej i j

the scale d is a prescribed number. One may modify
< <the definition for closeness by requiring d F X y1 i

< < Ž .X Fd . When d or d and d is dependent uponj 2 1 2

location in the time series or in the phase space, the
constructed RP can be slightly asymmetric about the

Ž o.main 45 diagonal. Such a version was originally
w xused by Eckmann et al. 1 . However, we shall

Ž .simply fix d or d and d so that the RP is1 2

symmetric about the main diagonal. An example is
Ž .shown in Fig. 1 for a sine wave signal, x t s

Ž . y4sin 2p t , where we used ms1 and ds2 . Since
our Rps are symmetric, to save space in the follow-
ing discussions, we shall only plot half of the RP
Ž .i.e., at the upper left or lower right triangular part .

We shall adopt Euclidean norm in our numerical
simulations. However, our analysis and geometrical
arguments apply to any form of norms. We note that
Ž .0,d simply represents a ball centered around X ori

Ž . w xX . d ,d is called a corridor in 15 , and a shell inj 1 2
w x18–20 . When d s0, then the modified version1

reduces to the original form. The introduction of
shells is purported at capturing the concept of scales
in dynamical systems, which is so important in the
study of the effects of dynamic noise on chaotic

w xsystems 21–24 . While one may still want to use the
concept of shells to combat the notorious effects of
noise on some statistics of RPs, we will argue below
that the concept of a shell makes the interpretation
and computation of certain statistics for RPs much
harder.
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Fig. 1. A ‘full’ RP generated from sine wave.

Ž . Ž . Ž .Figs. 2 A,B , C,D and E,F show respectively
Ž .the RPs for time series generated from i sine wave;

Ž . Ž . Ž . Ž .ii quasi-periodic signal torus , x t ssin 2p t q
'Ž . Ž .sin 2 2 p t ; and iii the x-component of the chaotic

w xLorenz system 25 ,

dxrdtsy10 xyy , dyrdtsyxzqrxyy ,Ž .
dzrdtsxyy8 zr3. 1Ž .
with the parameter r being 28. The sampling time
for all three systems is 0.01. Each time series is first

Ž .normalized to the unit interval 0,1 before analysis.
Each figure actually contains two RPs, located at the
upper left and lower right triangular parts, respec-
tively. For ease of explaining the parameters used to
obtain each RP, we shall further denote each RP by 1
and 2, such as A1 and A2 for the upper left and
lower right triangular parts, etc. The embedding

Ž .parameters used are then ms1 for A,C,E , ms2
Ž . Ž .for B,D1,F1 , ms3 for D2,F2 , Ls25, 15, 25 for

Ž . Ž .B,D,F . The shells or balls used to define the RPs
Ž y9r2 y4. Ž . Ž y5 y9r2 .are 2 ,2 for A1,C1,E1 , 2 ,2 for

Ž . Ž y5r2 y2 . Ž . Ž y7r2 y3. Ž .A2 , 2 ,2 for B1,D , 2 ,2 for B2 ,
Ž y13r2 y6. Ž . Ž y4 . Ž .2 ,2 for C2,E2 , and 0,2 for F .

First we observe the dependence of RPs on the
embedding dimension m. The structures of RPs for
ms1 are very different from those for ms2 and 3,
while those for ms2 are quite similar to those for

ms3. The similarity is due to the low-dimensional-
Žity and smallness of the data set i.e., a few hundred

.points used to compute those RPs. The difference is
due to false recurrences, as will be explained shortly.

Ž .We also note that Figs. 2 A1,E are quite similar to
w xthose of 15 . Thus, we are quite puzzled by the fact

that this dependence of RPs on the embedding di-
mension m was not observed by Iwanski and Bradley
w x15 .

Next we observe that RPs computed based on
different shells are also different, especially when the
embedding dimension is 1. This dependence was

w xalso observed by Iwanski and Bradley 15 . How-
ever, this dependence can be fairly easily explained.
Suppose one is to fold the lower right RPs of Figs.
Ž .2 A-E onto the upper left RPs, then one will ob-

serve that the lines of the resulting plots just become
thicker. This point should be easy to understand if

Ž .one performs such a procedure on Fig. 2 A , then
compares the result with Fig. 1. In fact, when a ball
is used instead of a shell to compute a RP, then one

Ž Ž ..only observes thick solid lines Fig. 1 and Fig. 2 F .
Put in another way, if one partitions a ball into a
series of shells, then the RP corresponding to the ball
splits into a series of RPs corresponding to different
shells. This splitting sometimes breaks a continuous
structure such as a continuous line. This may compli-

Žcate computation of some statistics for RPs for
example, if that statistic is based on the length of

.certain line segments. See below for more details .
Since the structures of RPs for ms1 are far

richer and fascinating, we shall basically focus on
explaining how those structures are formed. In the
process of this explanation, of course, the structures
of RPs for m)1 will automatically become clear.
For this purpose, we first note that the structures of

Ž .RPs for ms1 consist of four distinct features: i
Ž .Patterns along the main 458 diagonal. These corre-

spond to when X and X are close, then X andi j iqk
Ž .X are also close together for a series of k’s. iijqk

Patterns along the 1358 diagonal. These correspond
to when X and X are close, then X and Xi j iqk jyk

Ž .are also close together for a series of k’s. iii The
blocks corresponding to the crossings of the above

Ž .two patterns. iv Short vertical and horizontal lines.
These are the sojourn points, as will be explained in
Section 4. These sojourn points, combined with Pat-

Ž . Ž .terns i – iii , make the appearance of RPs wavy.
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Ž . Ž . Ž .Fig. 2. ‘Half’ RPs generated from i sine wave, ii torus, and iii Lorenz system. See the text for the details.

There are two different mechanisms for the for-
Ž .mation of the Patterns i . One mechanism is that

when two points on the same orbit keep close to-
Žgether for quite a while, such as pairs of points A1,

. Ž . Ž . Ž .A2 , B2, B1 , C1,C2 , and D2,D1 , as schemati-

Ž .cally shown in Figs. 3 a,b . Such closeness is termed
w xautocorrelation by Theiler 26 , and tangential mo-

w xtion by Gao and Zheng 18–20 . The term autocorre-
lation emphasizes averaging effect, while tangential
motion emphasizes locality and motion. However,
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Fig. 3. A schematic explaining how a RP is composed. The
direction of motion is assumed to be counterclockwise.

one needs to realize that spatial closeness does not
necessarily mean temporal closeness. Another mech-
anism is that pairs of points on different orbits keep
close together for quite a while, such as pairs of

Ž . Ž . Ž . Ž .points A1,C1 , A2,C2 , D2,B2 , and B1,D1 in
Ž .Fig. 3 b . For chaotic systems, such closeness breaks

down exponentially fast. Hence, the length of main
diagonal line segments due to this mechanism are
related to the largest positive Lyapunov exponent of
the chaotic system.

Ž .The formation of Patterns ii is because of false
recurrences due to insufficient embedding. Note that
X and X go in opposite directions: if one goesiqk jyk

to the forward direction of motion, then the other
Ž .goes backwards. Suppose A1,B1 are close together

Ž . Ž .as shown in Figs. 3 a,b , then this means that A2,B2
keep close together for a while. Typically this cannot
be true, as can be readily envisioned by monitoring

Žthe uniform motion of two points along a circle see
Ž ..also Fig. 3 a . However, if all the points are pro-

Ž .jected onto the x-axis dashed line in Fig. 3 , then
this becomes possible, and the two mechanisms for

Ž .the formation of Patterns i will apply to this case as
well.

Ž .Patterns iii , the blocks, are now easy to explain.
It is due to staggering motions around the turning
points, O1, O2, O3, and O4, as shown in Fig. 3.
Quite a bit portion of the orbits around those turning
points, when projected onto the x-axis, are all close
to those turning points. The forward motion then

gives the part of the blocks along the main diagonal,
while the backward motion gives the part along the
1358 diagonal. It should now be clear that the size of
a block is proportional to the time that a trajectory
stays close to a turning point in a 1-D embedding. If
the motion of the system is quite uniform, then the

Žblocks will be more or less of similar size Figs.
Ž ..2 A,C . If the motion is not uniform, then the

Ž Ž ..blocks may display quite different sizes Fig. 2 E .
Since the speed of motion along an orbit also de-
pends on the delay time L, we then see that RPs
generally also depend on L. A good embedding
would correspond to a more uniform and regular RP.

The above discussion should make it clear that
when the data set is small, most of the false recur-
rences will be gone if the embedding dimension
reaches 2. This can be clearly seen from Figs.
Ž .2 B1,D1,F1 . However, some false recurrences

around some points with very slow phase velocity
may persist even when ms2. This is indeed the

Ž .case, as can be seen from Fig. 2 F1 . Higher embed-
Ž .ding ms3 further removes some of the remaining

Ž Ž ..false recurrences Fig. 2 F2 .
We are now at a good standing to review the

w xstatistics for RPs introduced in 3;14 , and to under-
stand how each statistic depends on the embedding

Ž .parameters. There are five statistics: i the percent-
Ž .age of recurrent points, REC; ii the percentage of

determinism, DET, which measures the percentage
of recurrent points forming line segments which

Žparallel the main diagonal when the length of the
. Ž .lines exceed certain threshold ; iii the Shannon

entropy, ENT, of the distribution of those line seg-
Ž .ments which parallel the main diagonal; iv DIV,

the inverse of the longest line segment which paral-
Ž .lels the main diagonal; and v TREND, measures

the ‘paling’ of the patterns of RP away from the
Žmain diagonal used to detect drift and nonstationar-

.ity in a time series . Note that REC is simply what is
used to compute the correlation dimension of a data
set. Thus it is trivial to observe that this statistic
sensitively depends on the embedding parameters.
This is still true when this statistic is used to the
study of a bifurcation sequence, as can been seen

w xfrom Fig. 7 of Iwanski and Bradley 15 . We surmise
that what Iwanski and Brandley really mean by
embedding need not be done does not include this
statistic. What is remarkable is that three statistics
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are related to the patterns along the main diagonal.
w xThe most interesting result of 15 is that when these

statistics are used to detect a bifurcation sequence
Žwith carefully chosen threshold for the length of the

.lines , 1-D embedding has indeed already given a
very good identification of the bifurcation sequence.
How can this puzzling result be true?

It is indeed true. The reason is really quite simple.
All these statistics belong to what we have classified

Ž .as Patterns i . The definitions of these statistics have
automatically filtered out most of the false recur-

Ž .rences, as the latter belong to Patterns ii . Hence, in
a sense, these statistics are computed in an almost
2-D embedding. What we mean by almost is that
some consequence of 1-D embedding is still there.

Ž . Ž .That is, half of the Patterns iii i.e., blocks are still
there, and sensitively depend on the embedding pa-

Žrameters through the dependence of phase velocities
.on the latter . When the data is noisy, then the

influence of these remaining structures will be larger,
thus, embedding to a higher dimension will typically
give better results. This issue will be further dis-
cussed in Section 5.

Before ending this section, we note an interesting
w xfeature reported by Iwanski and Bradley 15 . That

Ž . Ž .is, the statistics ii - -iv sensitively depend on the
threshold for the length of the lines. We shall explain
the underlying mechanism for this in the next sec-
tion.

3. Distribution of diagonal line segments for
chaotic systems

It is remarkable that three of the five statistics
w xproposed in 3;14 , namely, DET, ENT, and DIV, are

related to the line segments which parallel the main
diagonal. To have a deeper understanding of those
statistics, we consider the distribution of those line
segments for chaotic systems. Note that by consider-
ing simple chaotic maps and assuming the delay time

w xL to be 1, Faure and Korn 27 found the diagonal
line segments to be exponentially distributed with

w xK entropy 28 as the only parameter,2

P kd tF t s1yeyK 2 t 2Ž . Ž .

where the integer k describes the length of the line
segments, and d t is the sampling time, which is 1
for maps. We shall present a different argument to
obtain a similar result. Our argument is based on a
dynamical evolution point of view, and the result
holds for arbitrary L.

Consider a diagonal line segment of length k,
5 5k)1. That is, X yX Fd, ls0, . . . ,k, andiq l jql

5 5X yX )d, where d is a prescribediqkq1 jqkq1
5 5small distance. Let d s X yX . On average, we0 i j

can write dsd elo kd t, or in logarithmic scale, we0

have

l kd tslndy lnd 3Ž .o 0

where l is related but not identical to l , theo 1
Žlargest positive Lyapunov exponent this will be

.further explained later . For chaotic signals, typically
we can assume d to follow a power law distribu-0

tion,

P d Fd ;d D1 4Ž . Ž .0

Note, D is not the correlation dimension, but the1

partial dimension corresponding to the most unstable
w xdirection, and typically assumes a value of 1 29 .

Ž . Ž .From Eqs. 3 , 4 , we can readily get the distribu-
tion for kd t,

P kd tF t s1yeyD 1lo t 5Ž . Ž .

Ž .Note that Eq. 5 expresses the cumulative proba-
bility distribution. The probability density function
Ž .pdf is simply its derivative,

p kd t sD l eyD 1lo t . 6Ž . Ž .1 o

It is an easy task to find that the mean and standard
Ž .deviation of kd t are both 1r D l .1 o

Ž .To verify Eq. 6 , we estimate the pdf from the
w x Ž . Ž . Ž .2Henon map 30 , x nq1 s1qy n y1.4 x n ,

Ž . Ž . Žy nq1 s0.3 x n ; the chaotic Lorenz attractor Eq.
Ž .. w x Ž1 ; and the Mackey–Glass system 31 , xs0.2 x t˙

. Ž Ž .10 . Ž .q G r 1 q x t q G y 0.1 x t , with G s 30.
The latter system has two positive Lyapunov expo-
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w xnents 32 . Fig. 4 shows the estimated pdf’s for these
systems. Clearly we observe that the pdf’s are expo-
nentially distributed. The slopes of these curves are
0.32, 1.21, and 0.0067, for Henon, Lorenz, and
Mackey–Glass systems, respectively. If we assume
D s1, then these are the values for l . Comparing1 o

with the values for l , which are 0.42, 1.37, and1
w x0.0071 32 , for Henon, Lorenz, and Mackey–Glass

systems, respectively, we see that typically l is ao

lower bound of l . The reason is quite obvious.1

Accurate estimation of l should take both the diag-1

onal line segments and the evolution of scattered
w xpairs of recurring points into account 18–20 . Com-

Ž . Ž .paring Eq. 2 with Eq. 5 , we find that K sD l .2 1 o

Indeed, the obtained l for the Henon map is veryo
w x Žclose to K of 28 but slightly smaller than that of2

w x.27 . This suggests that K is not only a lower2

bound for the Kolmogorov entropy, which is the sum
w xof the positive Lyapunov exponents 28 , but also a

lower bound for l .1

We can now understand DET, ENT and DIV
better. The fundamental difference between REC and
DET lies in the fact that the exponent D governing1

Ž . Žthe scaling law of Eq. 4 is 1 for DET correspond-
.ing to the most unstable direction of the motion ,

while it is simply the correlation dimension for REC.

Ž .Fig. 4. Probability density function pdf in logarithmic scale
versus time t. The parameters used are: ms2, Ls1, ns5K ,
ds2y4 , for the Henon system; ms4, Ls3, ns8 K , ds2y4 ,
d ts0.06, for the Lorenz system; and ms4, Ls6, ns8 K ,
ds2y3 , d ts1.5, for the Mackey–Glass system with G s30,
where n is the total number of points. Note the units for t is 0.5
for the Lorenz system, 1 for the Henon map, and 10 for the
Mackey–Glass system.

Now using the definition for the Shannon Entropy
w xENT 33 ,

`

ENTs p t ln p t dt , 7Ž . Ž . Ž .H
0

we can easily find the associated ENT for the pdf of
Ž .Eq. 6 ,

ENTsln D l y1. 8Ž . Ž .1 o

When the Lyapunov exponent only slowly varies
with the changes of dynamics, ENT would be an
insensitive indicator of those changes.

Now we consider DIV. Recall the mean and
Ž .standard deviation of kd t are both 1r D l . Hence,1 o

the longest diagonal line segment will roughly be
twice as long as the mean of k, or,

D l d t1 o
DIVf . 9Ž .

2

We thus see that this statistic has a more direct
relation with the Lyapunov exponent.

While DET, ENT and DIV are quite simple statis-
tics for characterizing the diagonal line segments,
mean and standard deviation of those line segments
give an even simpler characterization. For chaotic
systems, it is the latter two that are truly reciprocals
of the Lyapunov exponent.

Ž .In writing Eq. 3 , we have assumed that X andi

X have been aligned along the unstable manifold ofj

X or X . Typically this alignment needs time. Hence,i j

too short diagonal line segments may not follow an
exponential distribution. Observing Fig. 4 again, we
indeed see that for small t, the distribution is not

Žexponential especially for the Mackey–Glass sys-
.tem . It is this re-adjustment time that provides an

objective criterion for the selection of the threshold
for the diagonal line segments. In other words, when
the threshold is chosen at least as large as the
re-adjustment time, then one would not observe the
dependence of DET, ENT and DIV on the threshold,

w xas reported by Iwanski and Bradley 15 .
We mentioned that the concept of shell makes the

interpretation and computation of certain statistics
harder. Now we can see why this is so. On average,
we can say that the divergence between X and X isi j
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< < < <exponential. However, X yX , for positiveiqk jqk

k’s, may not monotonically increase with the evolu-
tion time k. Sometimes it can actually shrink, while
other times it can temporally fly apart. Either situa-
tion may induce the pair of points to escape a
specific shell, thus breaks a continuous diagonal line
segment. For this reason, we would not strongly
suggest to use shells instead of balls for the construc-
tion of RPs, even though shells are more beneficial
in the study of noisy time series.

4. Classification of recurrence points and detec-
tion of changes in dynamics

Recurrence points can be further divided into two
w xclasses 34 . This classification defines two types of

recurrence times, hence, enables us to design new
ways of quantifying a RP and detecting nonstationar-
ity.

Let us arbitrarily choose a reference point X onl
� 4the reconstructed trajectory, X ,is1,2, PPP , N , andi

consider recurrences to its neighborhood of radius d:
Ž . � 5 5 4B X s X: XyX Fd . Denote the subset ofd l l

Ž .the trajectory that belongs to B X by S sd l 1
� 4X , X , . . . , X . . . . These are the Poincare recur-´t t t1 2 i

Ž .rence points. When the ball 0,d is used to define a
Ž .RP, then dots will be placed at points l,t , isi

1,2, PPP . From set S , we can define the Poincaré1
� Ž . 4recurrence times by T i s t y t ,is1,2, . . . .1 iq1 i

� Ž .4For later convenience, we call T i the recurrence1

times of the first type.
Ž . ŽSometimes we may have T i s1 for continu-1

ous time systems, this means 1 unit of sampling
.time , for some i. This corresponds to both X andt i

X belonging to S . For continuous time systemst q1 1i

Ž .with fixed small sampling time, if the radius d of
Ž .B X is not too small, then we can have a sequenced l

such as X , X , . . . , X belonging to S , with kt t q1 t qk 1i i i

on the order of 10 or even larger. This is schemati-
cally shown in Fig. 5. We call the sequence

Ž .X , . . . , X excluding X sojourn points. Whent q1 t qk ti i i

k is on the order of 10, each such sequence of points
effectively represents a 1-D set. For maps or continu-
ous time systems with small d, sojourn points are

Ž .negligible, and form a 0-D empty or almost empty
set. Now remove these points from S and denote the1

Fig. 5. A schematic showing the recurrence points of the second
Ž . Ž . Ž .type solid circles and the sojourn points open circles in B X .d 0

� 4X X Xremaining points of S by S s X , X , . . . , X . . . ,1 2 t t t1 2 i

� Ž . X Xwhich defines a time sequence T i s t y t ,is2 iq1 i
41,2, . . . . We call S recurrence points of the second2

Ž .type, and T i the recurrence times of the second2
w xtype. For chaotic systems, we have shown 34 that

� Ž .4the distributions of T i is exponential, and the2
Ž . Ž .mean of T i and T i are both related to the1 2

information dimension of the attractor by simple
Ž .scaling laws. For a periodic signal, T i simply2

gives an estimation of the periodicity of the signal.
Note that the sojourn points trace out a vertical

Ž .by symmetry, also horizontal line segment in a RP.
It is these sojourn points that give the lines in Fig. 2
certain thickness, and make the structures of RPs

Ž .wavy especially for ms1 . Usually collection of
sojourn points gives rise to square-like textures in
RPs. Such square-like textures can be found in some

w xdynamical systems 35;36 . More interesting, such
textures are actually typical features of RPs con-

w xstructed from biological data 2–13 . The underlying
reason for the abundance of square-like textures in
biological data may be because of the following two

Ž .reasons: i in order that the data set is reasonably
Žlarge, a quite high sampling frequency i.e., a small

. Ž .sampling time is usually used; ii in order that there
are reasonably many points in a RP, a fairly large
radius d will be typically adopted for constructing a
RP.

Now we have a wealth of quantities to character-
ize a RP. Aside from the usual recurrence points, we
also have the recurrence points of the second type,
sojourn points, and two types of recurrence times.
While sojourn points and the recurrence time of the
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first type are not too useful for the study of a
w xstationary chaotic system 34 , they can also be very

useful in detecting nonstationarity and changes of
dynamics. Foe example, if one partitions a long time

Ž .series into overlapping or non-overlapping blocks
of data sets of short length, and computes RPs for
each data set, one may observe that the square-like
textures vary from block to block. This thus gives a
convenient way of detecting some changes in dy-
namics.

Sojourn points give a different way to quantify
certain deterministic features of a RP than the DET
statistic, since the latter is for characterizing the
diagonal line segments.

A possible third way to characterize certain other
deterministic features of a RP is to use the afore

Žmentioned tangential motion its average effect gives
.the autocorrelation . This tangential motion is con-

sidered very unpleasant in the computation of the
w xcorrelation dimension 26 and the Lyapunov expo-

w xnents 18–20 . Nevertheless, it may be very useful
and convenient in the study of changes in dynamics.
Tangential motion also gives main diagonal line
segments, as discussed earlier, and corresponds to a

w xLyapunov exponent of zero magnitude 37 . To ob-
tain main diagonal line segments corresponding to
the tangential motion, one needs only to do what is

w xrecommended not to do in 18–20;26 , i.e., one
simply tries to construct a truncated RP with a

< <constraint: 1F iy j -w, where w is a suitable
integer, on the order of the period of one round
orbital motion.

Before we end this section, we briefly discuss
what the statistic TREND means. TREND is really
an idea rather than a quantity. The feature that
certain structure in a RP pales away from the main
diagonal can be made more concrete by properly
indexing the sojourn points and the recurrence times

w xof the second type 34 . Also to detect certain changes
in dynamics, one does not have to consider certain
feature paling away from the main diagonal. Changes
also manifest themselves along the main diagonal.
After realizing this, then one can choose any quantity
identified above and discussed in Section 4 to study
the changes in dynamics such as a bifurcation se-
quence. Of course, depending on the concrete system
one is studying, some quantities may reveal more
information than other quantities. In the next section,

we illustrate how to use the recurrence time of the
second type to identify the bifurcation sequence of
the noisy transient Lorenz system.

5. Case study: detection of bifurcations in the
noisy transient Lorenz system

w xFollowing Iwanski and Bradley. 15 , we consider
a signal generated from the transient Lorenz system.

ŽThe signal is generated from the Lorenz system Eq.
Ž ..1 , with a fourth-order Runge–Kutta method and a
timestep of 0.01, by incrementing the parameter r
from 28.0 to 268.0 by 0.002 at each integration step.
The signal, of total length 120001, is shown simply

Ž .by dots in Fig. 6 a . Theoretically, there are three
periodic windows: 99.524-r-100.795, 145-r-

166, and r)214.4, as indicated by dashed vertical
Ž .lines in Fig. 6 a . However, we shall emphasize that

the whole data set is really a transient signal. It is
due to this transient nature of the signal that we do
not really see a distinct transition near the parameter
value around 214.4. In other words, the signals
corresponding to some small interval of r-214.4
look similar to those corresponding to r)214.4. We
shall also note that three small segments of the
signal, which are right below the capital letters A, B,

Ž .and C, as indicated in Fig. 6 a , look strange. Do
those segments of the signal correspond to some
periodic motion with very distinct periods? Careful
examination of those segments just reveals that there
is really no strangeness about those segments at all.
The visual effect is simply due to sampling: it just so

Ž .happens that the signal x t more or less takes on a
discrete set of values in those parameter intervals
Ž Ž .recall that Fig. 6 a is plotted as dots. If they are

.connected by lines, then this strangeness is gone . To
have a better feeling about what the signals look like,

Ž .we have also shown in Figs. 6 b,d two small seg-
Žments of the signal 1000 and 500 points, respec-

. Ž .tively , and in Figs. 6 c,e their corresponding phase
Ž .diagrams. Note the ‘attractor’ in Fig. 6 c looks like

Ž .the usual Lorenz attractor. We note from Fig. 6 d
that the segment of the time series contains approxi-
mately 10 waves. Hence, the ‘periodicity’ is roughly

Ž .50 sampling points. However, Fig. 6 e reminds us
of a period-doubled limit cycle, hence, in a finer
resolution, the periodicity should be around 100
sampling points.
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Ž . Ž . Ž .Fig. 6. a The transient Lorenz signal; b,d portions of the signal; and c,e their corresponding phase diagrams.

We choose the recurrence time of the second type
to study this signal. As before, we first normalize the

Ž .whole time series into the unit interval, 0,1 . We
Ž .then compute T r on time series data within2

episodic windows consisting of 1000 consecutive
points. Sequential windows are shifted by 10 points

Ž .thus overlapping by 990 points , giving a total of
Ž .11901 values for T r .2

Ž .First, we consider the clean signal. Figs. 7 a–d
Ž .show T r versus the parameter r for different2

embedding dimensions and scales d. The three theo-
retically known periodic windows are roughly indi-



( )J. Gao, H. CairPhysics Letters A 270 2000 75–87 85

Ž .Fig. 7. Variation of T r with the parameter r. The delay time L is always 10. See the text for other details.2

cated by three dashed arrows. We observe that ms1
Ž Ž ..Fig. 7 a does not give any indication of a bifurca-
tion sequence, though it does indicate that the time

Ž Ž .series is nonstationary T r would be more or less2
.a constant for a stationary signal . The basic feature

of the curve for ms1 persists even when different
Ž Ž ..scales d are used. The curve with ms2 Fig. 7 b

gives a much better result, as it indeed correctly

locates the two large periodic windows. It even
captures the rough scale ‘periodicity’ of the signal
Ž Ž ..about 50 sampling points, Fig. 6 d . The first small
periodic window is actually also identified, if one
blows up that portion of the curve. However, the
changes in the chaotic regions has not been clearly
indicated. Hence, overall, we shall consider that
ms2 is still too small. Indeed, the curve for ms3
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Ž Ž ..Fig. 7 c is a lot better. It correctly indicates every-
thing: chaotic and periodic regions, the rough-scale
periodicity for the periodic windows, and wild
changes inside the chaotic regions. If we use a

Ž .smaller scale to compute T r , then we obtain Fig.2
Ž . Ž .7 d . While the basic features of Fig. 7 d is similar

Ž .to those of Fig. 7 c , we do see some differences,
especially inside the third periodic window. In that

Ž .parameter region, most of the T r is around 100,2

corresponding to what we have observed from Fig.
Ž .6 e . However, we also observe three large dips.

Note those dips also show up in Fig. 7 of Iwanski et
w xal. 15 . Do they indicate fine bifurcations inside that

periodic window?
The answer is no. It is due to the fact that around

those specific small parameter intervals, the ampli-
tude of the signal hardly changes, giving a simple
limit cycle, as compared to the period-doubled limit

Ž .cycle of Fig. 6 e .
Next we add Gaussian white noise to the signal.

The amplitude of the noise is about 1r3 of that of
Žthe signal, giving an SNR of 10 dB i.e., the variance

.of the noise is 0.1 of that of the signal . Note this
noise is really quite large. We shall also note that the
amplitudes of the signals for small parameter values
of r are much smaller than those for large r values,
hence, those parts of the signals really have a higher
noise level.

Ž . Ž .Figs. 7 e–h show T r versus the parameter r2

for different embedding dimensions and scales d for
the noisy signal. First we observe that the signals
corresponding to smaller parameter values of r are
affected more by the noise. Next we observe that the

Ž .pleasing result of Fig. 7 c is now gone: only the
third periodic window is roughly identified with

Ž Ž ..ms3 Fig. 7 e . This should be understandable. A
noisy signal is really infinite-dimensional. This sug-
gests us to use a larger embedding dimension. In-

Ž Ž ..deed, with ms6 Fig. 7 f , we recover most of the
Ž .nice features of Fig. 7 c . Will the result be even

better with an even larger m? The answer is both yes
and no. With most of the scales we tried, the result is
actually worse, as can be seen by comparing between

Ž . Ž .Fig. 7 g and f . This can be understood if one
realizes that in a higher dimension, the effects of
noise would be stronger. This suggests that using a
larger scale d, one might be able to re-obtain, or

Ž .even improve the result of Fig. 7 f . This is indeed

Ž .so, as is shown in Fig. 7 h . The improvement of
Ž . Ž .Fig. 7 h over Fig. 7 f lies in the fact that the

periodicity for the third periodic window is more
Ž .close to 50 in Fig. 7 h . However, we should empha-

size that the good scales of d becomes much nar-
rower and more difficult to find for very large
embedding dimensions. Hence, we would suggest
that one stop at some reasonably large embedding
dimensions such as ms6, since anyway, the data

Ž . Ž .set used to compute T r or other statistics is quite2
Ž .small 1000 points here .

6. Conclusions

We have carefully studied the structures of a RP,
especially when the embedding dimension is 1. We
have identified four basic patterns of a RP, and
studied the mechanisms for the generation of those
patterns. These considerations enable us to under-
stand how the structures of and quantification statis-
tics for RPs vary with the embedding parameters. In
particular, these considerations have demystified the

w xparadoxical results of Iwanski and Bradley 15 . By
considering the distribution of the main diagonal line
segments for chaotic systems, we relate some of the
known statistics for the quantification of a RP to the
Lyapunov exponent. This consideration enables us to
introduce new statistics to quantify the diagonal line
segments. Those new statistics have a more direct
relation with the Lyapunov exponent. Furthermore,
we categorize recurrence points into two classes.
This classification enables us to identify a number of
new quantities which may be useful for the detection
of nonstationarity in a time series, especially for the
detection of a bifurcation sequence. A noisy transient
Lorenz system is studied, to demonstrate how to
identify a true bifurcation sequence, to interpret false
bifurcation points, and to choose the embedding
dimension.
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