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Detection and Sorting of Neural Spikes Using Wavelet Packets
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We propose a novel method for the detection and sorting of recorded neural spikes using wavelet
packets. We employ the best basis via the Shannon’s information cost function and local discriminant
basis using mutual information. We demonstrate the efficiency of the method on data recorded in vitro
from 2D neural networks. We show that our method is superior both in separation from noise and in
identifying superimposed spikes.

PACS numbers: 87.17.–d, 05.70.Ln, 82.40.Bj
Current technology enables simultaneous recording of
electronic signals from many neurons in a neural net-
work (cell cultures, hippocampal slices, and in vivo tis-
sues) [1–6]. It is expected to improve our understanding
of how real neural networks code, learn, and store informa-
tion. There are three main obstacles in analyzing and rec-
ognizing signals from such recordings: (i) The spikes from
neurons farther away from the electrode can be embedded
in the noise as is shown in Fig. 1. (ii) Signal recognition
may be complicated by a superposition of multiple action
potential spikes (Fig. 1). (iii) The volume of data which is
present from a simultaneous recording from a multielec-
trode at a resolution of an action potential is too great. In
a typical experiment �250 000 individual spikes can be
recorded.

Various signal processing techniques have been used to
detect and sort neural spikes (see Refs. [7,8] for reviews).
One popular method to detect and classify spikes is to filter
the data utilizing a series of templates of the spike wave-
form of each neuron [7]. Simple variants of this method
utilizing principal components analysis have been devel-
oped [7]. Here we propose a more efficient method based
on wavelet packets decomposition. Our method uses a few
packet coefficients for both detection and sorting of neu-
ral spikes. The same coefficients enabled good detection
and sorting of many different spike waveforms originat-
ing from different electrodes and experiments. A compari-
son between wavelet packets decomposition and principle
components analysis is presented below.

The neural spikes, being short voltage pulses, are
localized functions whose natural analysis is via the use of
wavelets transform [9,10], which is the Fourier transform
analog for localized functions. Important information of-
ten appears through a simultaneous analysis of the signal’s
time and frequency properties. The wavelet transform
which covers the time-frequency domain enables us to
visualize the specific properties of the signal at hand [11].
However, a disadvantage of using the wavelet basis is that
it divides the time-frequency domain into predetermined
frequency bands which are not optimized for neural spikes.
Spikes from different neurons can have distinct signatures.
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Yet, the signature of different neurons might be quite
similar. Thus, a simple wavelet transform will require
many components to distinguish between spikes of differ-
ent origins.

To overcome this difficulty, we have developed a novel
method using wavelet packets decomposition to detect and
sort neural spikes. The decomposition uses a family of
orthonormal bases from which one optimal basis can be
selected. We show how to determine one optimal basis
for spike detection and sorting by maximizing the Shan-
non information function and by using discriminant basis
techniques based on mutual information. We present a test
of our method by applying it to measurements of neural
spikes from cell cultures grown on a multielectrode array.
An important feature of our method is that nine coefficients
of the optimal basis can both discriminate well between
spikes and background noise and also distinguish among
spikes from different origins.
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FIG. 1. Recording from a single electrode which detects sig-
nals from three neurons marked. Note that in the presented time
we show only two of the spikes detected so we mark only spike
1 and spike 2. The spikes sometimes superimpose one another
as partially seen with the two “1’s” at the center.
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The wavelet transform of f [ V at scale a and time
b�a is defined [12]
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where c�t� is called the mother wavelet and
ca,b � c� t2b

a � is a scaled and translated wavelet.
Numerically, f is represented by a vector of length N .

For simplification we demand that N � 2L. It is conve-
nient to choose discrete values for a and b that are in
the base of 2 (a � 2i and b � 2i � j, where i, j are non-
negative integers). It can be proven that the set ca,b for
discrete a and b is an orthonormal basis [12].

It is intuitively useful to view the wavelet transformation
as filtering the function f [13,14]. In this case, the scale
parameter a represents the bandwidth of the filter. Suppose
that V represents the frequency domain of the function f.
The first level of the transform (a � 2) filters f into low
and high frequency (two halves of V labeled V1,0 and V1,1,
respectively. In the second level of the transform (a � 4)
only the low band of level 1 (V1,0) is filtered again into two
halves V2,0 and V2,1. This can be repeated L � log2�N�
times.

The result is a division of the frequency domain into a
sequence of bands, each of half the bandwidth of its former.
The division is finer as zero frequency is approached. A
complete orthonormal basis is derived during this division.
This basis covers V through a union of bands: V1,1 ©
V2,1 © · · · Vn,1 © Vn,0 � V.

Wavelet packets decomposition [12,14,15] is a more
flexible division of the frequency domain than the wavelet
transform. Unlike the wavelet transform, the wavelet pack-
ets decompose the frequency domain into finer regions at
all frequencies. Using the bands and filter view, each band
Vi,j is decomposed into two branches Vi11,2j , Vi11,2j11
(lower and higher halves of the bandwidth, respectively).
The packets that cover all those bands form an over-
redundant class of orthonormal bases. One can choose any
complete set of bands that cover V without overlapping.

The unique features of the neural spikes are located
around certain frequencies with related bandwidths. The
packet decomposition allows us to match the packets with
appropriate frequencies and bandwidths to the features of
the neural spikes. Our goal is to define a method to select
the basis that is optimal for the problem at hand.

The best basis algorithm is a method to select an or-
thonormal basis that compactly covers the energy distribu-
tion of a signal. We present here an intuitive understanding
of the algorithm. For a more detailed and mathematical de-
scription, see Refs. [14,16,17].

The principal idea of best basis is finding a basis with
as few significant coefficients as possible. In other words,
as opposed to a basis that distributes the signal’s energy
homogeneously, we wish to find a basis that concentrates
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the signal’s energy over a few basis members. Hence, the
basis underlines the features of the signal.

The fit of the basis to the signal’s features is evaluated
with a cost function M that will quantitatively favor either
Vi,j or its two branches as basis members. A common
measure fit for weighting the distribution of energy over
the basis members is the Shannon information function
which corresponds to minus the entropy:

M�q� �
mX

i�1

qi log�qi� , (2)

where qm
i�1 is the set of basis coefficients that spans Vi,j

[14,16,18].
There is an intuitive relation between the information cost

function and the physical entropy. Maximum entropy cor-
responds to a homogeneous distribution over microstates.
Thus, minimum entropy (maximum information) should
correspond to concentration of energy over a minimal num-
ber of basis members. The result is a basis (a complete
nonoverlapping set of subspaces that span V) that has an
overall maximum information.

Our goal is not to find an optimized basis to describe
a neural spike, but rather to efficiently distinguish among
different types of spikes. The technique local discrimi-
nant basis [18] is a best basis technique which isolates the
minimal number of basis members that best separates the
energy distributions of different types of signals. Given
two classes of signals, x�1� and x�2�, the discriminant basis
will isolate the packets’ coefficients that possess the most
different values for x�1� and x�2�. Accordingly, a new cost
function that maximizes the difference among packets’ co-
efficients values must be defined.

In direct relation to the information cost function de-
fined above, a discriminant measure of mutual information
(cross entropy) can be defined:

D�q, p� �
nX
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qi log
qi

pi
1
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pi log
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, (3)

where qm
i�1 is the set of basis coefficients that spans Vi,j

for the class of x�1� and pm
i�1 is accordingly the set of

coefficients originated from the class of x�2� [18]. This
cost function is used to quantitatively favor either Vi,j
or its two branches according to the power of separation
achieved using the corresponding basis members.

We now demonstrate our method on real measurements.
Extracellular recordings were made utilizing a multielec-
trode array (MEA) consisting of 60 substrate-integrated
thin film microelectrodes (MEA chip, Multi Channel Sys-
tems [6], for cell culture procedure; see [19]) of 10 mm
width and 200 mm between the electrodes. The electrode
impedance is 100 500 KV at 1 kHz and its bandwidth of
10 Hz to 3 kHz permits the recording of individual spikes.
Low-noise amplifiers are integrated on a single board
(B-MEA-1060, amplifier, gain 32000 with bandpass filter
200 Hz–5 kHz, Multi Channel Systems). The signals
collected from the microelectrodes are digitized and stored
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by a personal computer equipped with a 16-channel, 12-bit
data acquisition board (Microstar DAP , 770 K samples�s)
and a multiplexer that enables simultaneous 60 electrode
recording at rate of 12 K samples�s per electrode. The
data were acquired utilizing ALPHA-MAP data acquisition
software (Alpha Omega Engineering).

Data from each electrode array were recorded continu-
ously for 6 hours. A specific electrode which picked up
several neurons and exhibited overlapping of spikes was
selected. A threshold detector was used to mark voltage
amplitudes which exceeded the noise by 3.5 fold. A win-
dow of 256 samples around the event was isolated. Each
window (an example is given in Fig. 1) contains a number
of neural spikes. The first step is to determine the cen-
ter location of the suspected spikes. This was achieved
by imitating the shift-invariant wavelet packets decompo-
sition [11,21]. In this method we use the shifted version of
wavelet packets to decompose the signal and detect a peak
amplitude. Once a peak is detected we mark it for further
analysis by the best basis. We chose Coiflet of order 5 as
a mother wavelet. This mother wavelet is nearly symmet-
ric and has little overlapping both on time and frequency
domains. The nonoverlapping feature is important, as it
does not spread the signal’s energy into neighboring pack-
ets (see [14] for discussion).

For initial determination of the basis we separated manu-
ally a few dozen event windows into three groups of neural
spikes and one noise group. Then, the local discriminant
basis procedure was applied between pairs of groups and a
discriminative basis was obtained for each pair. For a num-
ber of groups larger than two (as in our case), we receive
six bases as the procedure is applied on two groups at a
time. It appeared that the union of those bases was only
slightly overcomplete as most bases had selected similar
packets. Thus, the union of bases acted as a discriminating
basis for all four groups. Among the basis members, the
most discriminative packets were used for the spike sorting.
In Fig. 2a we show the comparison between the decom-
position coefficients of principal components and wavelet
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FIG. 2. A comparison between the separation ability of the
wavelet packets (solid lines) and principle components (dashed
lines). (a) Distribution of energy percentage over the coeffi-
cients. Only the first two principal components have separation
ability as opposed to nine wavelet packets. (b) Distribution of
noise energy: the first principal components capture more noise
energy than the wavelet packets, thus reducing the ability to
separate spikes from noise.
packets applied on the manually separated spikes. A coef-
ficient possesses a separation ability if it captures a higher
portion of a spike’s energy than of noise energy. Thus, the
“twist” point in the energy distribution curve distinguishes
between the separating and nonseparating coefficients. We
find that only the first two principal components have sepa-
ration ability and they contain 76% of the signal’s energy.
On the other hand, there are nine separating wavelet pack-
ets that contain 74% of the signal’s energy. The energy
coverage of both methods is similar but the high separation
dimension of the wavelet packets enables better separation
ability.

Next, we compare the distribution of the noise energy
over the coefficients of principle components and wavelet
packets. We manually selected �200 time windows with
no spikes. As we show in Fig. 2b the principal components
contain more noise energy than the packets. This enables
the wavelet packets to better separate spikes from noise.

To evaluate the two spike sorting techniques we test the
result vs manual separation. We compare the two auto-
matic separation abilities in two stages: (i) the ability to
distinguish between single spike and noise and (ii) the abil-
ity to analyze a complex signal with a number of neural
sources that generate overlapping spikes. The automatic
separation of clusters is done using the simple k-means
classifier [22,23]. The k-means algorithm finds distinct
clusters in multidimensional space. For principal compo-
nents the dimension is 2 and 9 for wavelet packets.

A test case of 400 events was manually built from a
recording which contained overlapping spikes (see Fig. 1).
The test case was composed of 100 events of each spike
type and 100 events of transient noise. Each of the spike
types is roughly in a different amplitude range, but a simple
threshold detector failed to separate among them.

In Fig. 3 we present a comparison between our method
and principal components. The curves shown in the fig-
ure are the cluster means identified by the clustering al-
gorithm. As is seen using wavelet packets enables one
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FIG. 3. A comparison of our method (a) and principal com-
ponents (b). The curves are the cluster means identified by the
clustering algorithm. We manually selected 100 events for each
of the three spike types and the noise group. Our method can
sort all the three different spike types and separate them from
the noise group [bottom curve in (a)]. The resulting clusters are
�100 events each. The principal components can sort the maxi-
mum amplitude spike [top curve in (b)] but mixes the other two
spikes types and the noise group.
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TABLE I. Summary of sorting of the two methods on the test
data. The wavelet packets falsely detect 10% of the noise as
spikes and show satisfactory detection percentage for all the
spike types. On the other hand, the principal components fail to
distinguish between the noise and the two low amplitude spikes.

False Detection percentage of spikes
detection Type 1 Type 2 Type 3

Packets 10% 88% 93% 95%
Princomp No separation ability 95%

to sort the three different spikes from each other and the
noise group, while the principal components fail to do so.
As is clearly seen in Fig. 3a, the wavelet packets separate
the three spike types from each other and the noise class.
On the other hand, even though the principal components
detected the high amplitude spikes, it failed to distinguish
the two weaker classes from noise as is shown in Fig. 3b.
For the wavelet packets case, even in a low dimensional
subspace, the separability of the different clusters can be
visualized. All the results are summaries in Table I.

To conclude we have presented a new method for de-
tection and sorting of neural spikes. Testing our method
on real measurements demonstrates its advantage both in
detecting low amplitude spikes embedded in noise and in
separating overlapping spikes.
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