
Using Blind Search and Formal Concepts
for Binary Factor Analysis

Aleš Keprt

Dept. of Computer Science, FEI, VSB Technical University Ostrava, Czech Republic
ales.keprt@vsb.cz

Abstract. Binary Factor Analysis (BFA, also known as Boolean Factor
Analysis) may help with understanding collections of binary data. Since
we can take collections of text documents as binary data too, the BFA
can be used to analyse such collections. Unfortunately, exact solving of
BFA is not easy. This article shows two BFA methods based on exact
computing, boolean algebra and the theory of formal concepts.

Keywords: Binary factor analysis, boolean algebra, formal concepts

1 Binary factor analysis

1.1 Problem definition

To describe the problem of Binary Factor Analysis (BFA) we can paraphrase
BMDP’s documentation (Bio-Medical Data Processing, see [1]).

BFA is a factor analysis of dichotomous (binary) data. This kind of analysis
differs from the classical factor analysis (see [16]) of binary valued data, even
though the goal and the model are symbolically similar. In other words, both
classical and binary analysis use symbolically the same notation, but their senses
are different.

The goal of BFA is to express p variables X = (x1, x2, . . . , xp) by m factors
(F = f1, f2, . . . , fm), where m � p (m is considerably smaller than p). The
model can be written as

X = F �A

where � is matrix multiplication. For n cases, data matrix X, factor scores F ,
and factor loadings A can be written asx1,1 . . .x1,p

...
. . .

...
xn,1. . .xn,p

 =

f1,1 . . .f1,m

...
. . .

...
fn,1. . .fn,m

�
a1,1 . . . a1,p

...
. . .

...
am,1. . .am,p


where elements of all matrices are valued 0 or 1 (i.e. binary).

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 128–140, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

Using Blind Search and Formal Concepts for Binary Factor Analysis 129

1.2 Difference to classical factor analysis

Binary factor analysis uses boolean algebra, so matrices of factor scores and
loadings are both binary. See the following example: The result is 2 in classical
algebra

[1 1 0 1] ·


1
1
0
0

 = 1 · 1 + 1 · 1 + 0 · 0 + 1 · 0 = 2

but it’s 1 when using boolean algebra.

[1 1 0 1] ·


1
1
0
0

 = 1 · 1⊕ 1 · 1⊕ 0 · 0⊕ 1 · 0 = 1

Sign ⊕ marks disjunction (logical sum), and sign · mars conjunction (logical
conjunction). Note that since we focus to binary values, the logical conjunction
is actually identical to the classic product.

In classical factor analysis, the score for each case, for a particular factor, is a
linear combination of all variables: variables with large loadings all contribute to
the score. In boolean factor analysis, a case has a score of one if it has a positive
response for any of the variables dominant in the factor (i.e. those not having
zero loadings) and zero otherwise.

1.3 Success and discrepancy

It is obvious, that not every X can be expressed as F �A. The success of BFA is
measured by comparing the observed binary responses (X) with those estimated
by multiplying the loadings and the scores (X̂ = F �A). We count both positive
and negative discrepancies. Positive discrepancy is when the observed value (in
X) is one and the analysis (in X̂) estimates it to be zero, and reversely negative
discrepancy is when the observed value is zero and the analysis estimates it to
be one. Total count of discrepancies d is a suitable measure of difference between
observed values xi,j and calculated values x̂i,j .

d =
n∑

i=1

p∑
j=1

|x̂i,j − xi,j |

1.4 Terminology notes

Let’s summarize the terminology we use. Data to be analyzed are in matrix X.
Its columns xj represent variables, whereas its rows xi represent cases. The

130 Aleš Keprt

factor analysis comes out from the generic thesis saying that variables, we can
observe, are just the effect of the factors, which are the real origin. (You can
find more details in [16].) So we focus on factors. We also try to keep number of
factors as low as possible, so we can say ”reducing variables to factors”.

The result is the pair of matrices. Matrix of factor scores F expresses the
input data by factors instead of variables. Matrix of factor loadings A defines
the relation between variables and factors, i.e. each row ai defines one particular
factor.

1.5 An example

As a basic example (see [1]) we consider a serological problem1, where p tests are
performed on the blood of each of n subjects (by adding p reagents). The outcome
is described as positive (a value of one is assigned for the test in data matrix),
or negative (zero is assigned). In medical terms, the scores can be interpreted as
antigens (for each subject), and the loading as antibodies (for each test reagent).
See [14] for more on these terms.

1.6 Application to text documents

BFA can be also used to analyse a collection of text documents. In that case the
data matrix X is built up of a collection of text documents D represented as p-
dimensional binary vectors di, i ∈ 1, 2, . . . , n. Columns of X represent particular
words. Particular cell xi,j equals to one when document i contains word j, and
zero otherwise. In other words, data matrix X is built in a very intuitive way.

It should be noted that some kind of smart (i.e. semantic) preprocessing
could be made in order to let the analysis make more sense. For example we
usually want to take world and worlds as the same word. Although the binary
factor analysis has no problems with finding this kind similarities itself, it is
computationally very expensive, so any kind of preprocessing which can decrease
the size of input data matrix X is very useful. We can also use WordNet, or
thesaurus to combine synonyms. For additional details see [5].

2 The goal of exact binary factor analysis

In classic factor analysis, we don’t even try to find 100% perfect solution, be-
cause it’s simply impossible. Fortunately, there are many techniques that give a
good suboptimal solution (see [16]). Unfortunately, these classic factor analysis
techniques are not directly applicable to our special binary conditions. While
classic techniques are based on the system of correlations and approximations,

1 Serologic test is a blood test to detect the presence of antibodies against microor-
ganism. See serology entry in [14].

Using Blind Search and Formal Concepts for Binary Factor Analysis 131

these terms can be hardly used in binary world. Although it is possible to apply
classic (i.e. non-boolean non-binary) factor analysis to binary data, if we really
focus to BFA with restriction to boolean arithmetic, we must advance another
way.

You can find the basic BFA solver in BMDP – Bio-Medical Data Processing
software package (see [1]). Unfortunately, BMDP became a commercial product,
so the source code of this software package isn’t available to the public, and even
the BFA solver itself isn’t available anymore. Yet worse, there are suspicions
saying that BMDP’s utility is useless, as it actually just guesses the F and
A matrices, and then only explores the similar matrices, so it only finds local
minimum of the vector error function.

One interesting suboptimal BFA method comes from Húsek, Frolov et al.
(see [15], [7], [6], [2], [8]). It is based on a Hopfield-like neural network, so it finds
a suboptimal solution. The main advantage of this method is that it can analyse
very large data sets, which can’t be simply processed by exact BFA methods.

Although the mentioned neural network based solver is promising, we actu-
ally didn’t have any one really exact method, which could be used to proof the
other (suboptimal) BFA solvers. So we started to work on it.

3 Blind search based solver

The very basic algorithm blindly searches among all possible combinations of F
and A. This is obviously 100% exact, but also extremely computational expen-
sive, which makes this kind of solver in its basic implementation simply unusable.

To be more exact, we can express the limits of blind search solver in units
of n, p and m. Since we need to express matrix X as the product of matrices
F � A, which are n ×m and m × p in size, we need to try on all combinations
of m · (n + p) bits. And this is very limiting, even when trying to find only
3 factors from 10 × 10 data set (m = 3, n = 10, p = 10), we end up with
computational complexity of 2m·(n+p) = 260, which is quite behind the scope of
current computers.

4 Revised blind search based solver

In order to make the blind search based solver more usable, we did several
changes to it.

4.1 Preprocessing

We must start with optimizing data matrix. The optimization consist of these
steps:

132 Aleš Keprt

Empty rows or columns All empty rows and empty columns are removed,
because they has no effect on the analysis. Similarly, the rows and columns full of
one’s can be removed too. Although removing rows and columns full of one’s can
lead to higher discrepancy (see sec. 1.3), it doesn’t actually have any negative
impact on the analysis.

Moreover, we can ignore both cases (rows) and variables (columns) with too
low or too high number of one’s, because they are usually not very important
for BFA. Doing this kind of optimization can significantly reduce the size of
data matrix (directly or indirectly, see below), but we must be very careful,
because it can lead to wrong results. Removing too many rows and/or columns
may completely degrade the benefit of exact BFA, because it leads to exact
computing with inexact data. In regard to this danger, we actually implemented
only support for removing columns with too low number of one’s.

Duplicate rows and columns With duplicate rows (and columns resp.) are
the ones which are the same to each other. Although this situation can hardly
appear in classic factor analysis (meaning that two measured cases are 100%
identical), it can happen in binary world much easier, and it really does. As for
duplicate rows, the main reason of their existence is usually in the preprocessing.
If we do some kind of semantic preprocessing, or even forcibly remove some
columns with low number of one’s, the same (i.e. duplicate) rows occur. We
can remove them without negative impact to the analysis, if we remember the
repeat-count of each row. We call it multiplicity.

Then we can update the discrepancy formulae (see sec. 1.3) to this form:

d =
n∑

i=1

p∑
j=1

(mR
i ·mC

j |x̂i,j − xi,j |)

where mR
i and mC

j are multiplicity values for row i and column j respectively.
We can also compute the multiplicity matrix M :

M =

m1,1 . . .m1,p

...
. . .

...
mn,1. . .mn,p


where mi,j = mR

i · mC
j . Although this leads to simpler and better readable

formulae

d =
n∑

i=1

p∑
j=1

(mi,j |x̂i,j − xi,j |)

it isn’t a good idea, since the implementation is actually inefficient, since it needs
a lot of additional memory (n · p numbers compared to n + p ones).

The most important note is, that the merging of duplicate rows and columns
lead to a significant reduction in computation time, and still doesn’t bring any
errors to the computation.

Using Blind Search and Formal Concepts for Binary Factor Analysis 133

4.2 Bit-coded matrices

Using standard matrices is simple, because it is based on classic two-dimensional
arrays and makes the source code well readable. In contrast, we also implemented
the whole algorithm using bit-coded matrices and bitwise (truly boolean) oper-
ations (like and, or, xor). That resulted in not so nice source code, and also
required some tricks, but also saved a lot of computation speed. We actually
sped up the code by 20% by using bit-coded matrices and bitwise (boolean)
operations.

4.3 The strategy

Although all the optimizations presented above lead to lower computation time,
it is still not enough. To save yet more computation time, we need a good
strategy.

The main problem is that we need to try too many bits in matrices F and
A. Fortunately there exist a way of computing one of these matrices from the
other one, thanks to knowing X. Since we are more concerned in A, we check
out all bits in that one, and then find the right F . In summary:

1. Build up one particular candidate for matrix A.
2. Find the best F for this particular A.
3. Multiply these matrices and compare the result with X. If the discrepancy

is smaller to the so far best one, remember this F,A pair.
4. Back to step 1.

After we go through all possible candidates for A, we’re done.

4.4 Computing F from A and X

Symbolically, we can express this problem as follows. We are trying to find F
and A, so X = F � A. Let we know X and A, so we only need to compute
F . If we take a parallel from numbers, we can write something like F = X/A.
Unfortunately, this operation isn’t possible with common binary matrices.

If we bit-code matrices X and A on row-by-row basis, so X = [x1, . . . , xn]T

and A = [a1, . . . ap]T , then

xi =
m∑

k=1

fi,k · aj

From this formulae we can compute F on row-by-row basis, which signif-
icantly speeds up whole algorithm. The basic idea still relies on checking out
all bit combinations for each row of F , which is 2m · m in total, but we can
possibly find a better algorithms in future. In our implementation we compute
discrepancy together with finding F , so we can abort the search whenever the

134 Aleš Keprt

partial discrepancy is higher than the so far best solution. This way we get some
speedup which could be made yet higher by pre-sorting rows of A by the dis-
crepancies caused by particular rows, etc. Exploration of these areas isn’t very
important, because the possible speedup is quite scanty.

Note that in this place we can also focus to positive or negative discrepancy
exclusively. It can be done using boolean algebra without any significant speed
penalties.

5 Parallel implementation

The bind-search algorithm (including the optimized version presented above)
can exploit the power of parallel computers (see [9]). We used PVM interface
(Parallel Virtual Machine, see [4]) which is based on sending messages. The BFA
blind search algorithm is very suitable for this kind of parallelism, because we
just need to find a smart way of splitting the space of possible solutions to be
checked out to a set of sub-spaces, and distribute them among available processor
in our parallel virtual machine.

We tested this method using 2 to 11 PC desktop computers on a LAN (local
area network). We managed to gain the absolute efficiency around 92%2, which
is very high compared to usual parallel programs. (The number 92% says that
it takes 92% of time to run 11 consecutive runs on the same data, compared to
a single run of the parallel version on the network of 11 computers).

6 Concept lattices

Another method of solving BFA problem is based on concept lattices. This sec-
tion gives minimum necessary introduction to concept lattices, and especially
concepts, which are the key part of the algorithm.

Definition 1 (Formal context, objects, attributes).
Triple (X, Y,R), where X and Y are sets, and R is a binary relation R ⊆ X×Y ,
is called formal context. Elements of X are called objects, and elements of
Y are called attributes. We say ”object A has attribute B”, just when A ⊆ X,
B ⊆ Y and (A,B) ∈ R. ut

Definition 2 (Derivation operators).
For subsets A ⊆ X and B ⊆ Y , we define

A↑ = {b ∈ B | ∀a ∈ A : (a, b) ∈ R}
B↓ = {a ∈ A | ∀b ∈ B : (a, b) ∈ R}

ut
2 It was measured in Linux, while Windows 2000 performed a bit worse and its per-

formance surprisingly fluctuated.

Using Blind Search and Formal Concepts for Binary Factor Analysis 135

In other words, A↑ is the set of attributes common to all objects of A, and
similarly B↓ is the set of all objects, which have all attributes of B.

Note: We just defined two operators ↑ and ↓:

↑ : P (X) → P (Y)
↓ : P (Y) → P (X)

where P (X) and P (Y) are sets of all subsets of X and Y respectively.

Definition 3 (Formal concept).
Let (X, Y,R) be a formal context. Then pair (A,B), where A ⊆ X, B ⊆ Y ,
A↑ = B and B↓ = A, is called formal concept of (X, Y,R).

Set A is called extent of (A,B), and set B is called intent of (A,B). ut

Definition 4 (Concept ordering).
Let (A1, B1) and (A2, B2) be formal concepts. Then (A1, B1) is called subconcept
of (A2, B2), just when A1 ⊆ A2 (which is equivalent to B1 ⊇ B1). We write
(A1, B1) ≤ (A2, B2). Reversely we say, that (A2, B2) is superconcept of (A1, B1).

ut

In this article we just need to know the basics of concepts and their meaning.
For more detailed, descriptive, and well understandable introduction to Formal
Concept Analysis and Concept Lattices, see [3], [11] or [13].

7 BFA using formal concepts

If we want to speed up the simple blind-search algorithm, we can try to find
some factor candidates, instead of checking out all possible bit-combinations.
The technique which can help us significantly is Formal Concept Analysis (FCA,
see [11]). FCA is based on concept lattices, but we actually work with formal
concepts only, so the theory we need is quite simple.

7.1 The strategy

We can still use some good parts of the blind-search program (matrix optimiza-
tions, optimized bitwise operations using boolean algebra, etc.), but instead of
checking out all possible bit combinations, we work with concepts as the factor
candidates. In addition, we can adopt some strategy optimizations (as discussed
above) to concepts, so the final algorithm is quite fast; its strength actually relies
on the concept-building algorithm we use.

136 Aleš Keprt

So the BFA algorithm is then as follows:

1. Compute all concepts of X. (We use a standalone program to do this.)
2. Import the list of concepts, and optimize it, so it correspond to our optimized

data matrix X. (This is simple. We just merge objects and attributes the
same way, as we merged duplicate rows and columns of X respectively.)

3. Remove all concepts with too many one’s. (The number of one’s per factor
is one of our starting constraints.)

4. Use the remaining concepts as the factor candidates, and find the best m-
element subset (according to discrepancy formulae).

This way we can find the BFA solution quite fast, compared to the blind
search algorithm. Although the algorithm described here looks quite simple3,
there is a couple of things, we must be aware of.

7.2 More details

The most important FCA consequence is that 100% correct BFA solution can
always be found among all subsets of concepts. This is very important, because
it is the main guarantee of the correctness of the concept based BFA solver.

Other important feature of FCA based concepts is that they never directly
generate any negative discrepancy. It is a direct consequence of FCA qualities,
and affects the semantic sense of the result. As we discussed above (and see also
[1]), negative discrepancy is a case when F �A gives 1 when it should be 0. From
semantic point of view, this (the negative discrepancy) is commonly unwanted
phenomenon. In consequence, the fact that there’s no negative discrepancy in
the concepts, may have negative impact on the result, but the reality is usually
right opposite. (Compare this to the quick sort phenomenon.)

The absence of negative discrepancies coming from concepts applies to A
matrix only. It doesn’t apply to F matrix, we still can use any suitable values
for it. In consequence, we always start with concepts not generating negative
discrepancy, which are semantically better, and end up with best suitable factor
scores F , which give the lowest discrepancy. So it seems to be quite good feature.

7.3 Implementation issues

It’s clear that the data matrix X is usually quite large, and makes the finding
of the formal concepts the main issue. Currently we use the standalone CL
(concept lattice) builder. It is optimized for finding concept lattices, but that’s
not right what we need. In the future, we should consider adopting some kind
of CL building algorithm directly into BFA solver. This will save a lot of time

3 Everything’s simple, when you know it.

Using Blind Search and Formal Concepts for Binary Factor Analysis 137

when working with large data sets, because we don’t need to know the concept
hierarchy.

We don’t even need to know all the formal concepts, because the starting
constraints limit the maximum number of one’s in a factor, which is directly
applicable to CL building.

8 Comparing the results and the computation times

The two algorithms presented in this article were tested on the test data suite
taken from the neural algorithm mentioned above (see [15], [7], [6], [2], [8]). We
focused to test data sets p2 and p3, which are both 100× 100 values in size, and
differs in the ones’ density. All three algorithms gave the same results, so they
all appear to be correct (from this point of view).

Table 1. Computation times

data set factors one’s time (m:s) discrepancy notes

p3.txt 5 2–4 61:36 0 375 combinations
p3.txt 5 3 0:12 0 120 combinations
p3.txt 5 1–10 0:00 0 8/10 concepts

p2.txt 2 6 11:44 743 54264 combinations
p2.txt 5 1–10 0:07 0 80/111 concepts
p2.txt 5 6–8 0:00 0 30/111 concepts

The results are shown in table 8. Data set p3 is rather simple, its factor load-
ings (particular rows of A) all have 3 one’s. The first row in the table shows that
it takes over 61 minutes to find these factors, when we search all combinations
with 2, 3 or 4 one’s per factor. If we knew that there are just 3 one’s per factor,
we can specify it as a constraint, and we get the result in just 12 seconds (see
table 1, row 2). Indeed we usually don’t know it in real situations.

Third row shows that when using formal concepts, we can find all factors in
just 0 seconds, even when we search all possible combinations with 1 to 10 one’s
per factor. You can see the concept lattice in picture 1, with factors expressively
circled.

Data set p2 is much more complex, because it is created from factors con-
taining 6 one’s each. In this case the blind-search algorithm was able to find just
2 factors. It took almost 12 minutes, and discrepancy was 743. In addition, the
two found factors are wrong, which is not a surprise according to the fact that
there are actually 5 factors, and they can’t be searched individually. It was not
possible to find more factors using blind-search algorithm. Estimated times for
computing 3 to 5 factors with the same constraints (limiting number of one’s
per factor to 6) are shown in table 8. It shows that it would take up to 3.5×109

years to find all factors. Unfortunately, we can’t afford to wait so long. . .

138 Aleš Keprt

0a

0

100o

1a

77

77o

2a

84

42o

1a

36

36o

3a

69

23o

3a

69

23o

3a

66

22o

3a

57

19o

3a

39

13o

30a

0

0o

Fig. 1. Concept lattice of p3 data set.

Table 2. Estimated computation times

data set factors one’s estimated time

p2.txt 3 6 440 days
p2.txt 4 6 65700 years
p2.txt 5 6 3.5×109 years

As you can see at the bottom of table 1, we can find all 5 factors of p2 easily
in just 7 seconds, searching among candidates containing 1 to 10 one’s. The time
can be reduced to 0 seconds once again, if we reduce searching to the range of 6
to 8 one’s per factor. You can see the concept lattice in picture 1, with factors
marked as well. As you can see, the factors are non-overlapping, i.e. they are
not connected to each other. Note that this is not a generic nature. Generally,
factors can arbitrarily overlap.

9 Conclusion

This article presented two possible algorithms for exact solving of Binary Factor
Analysis. The work on them originally started as a simple blind search algorithm
in order to check out the results of P8M of BMDP (see [1]), and the promising
neural network solver (see [15], [7], [6], [2], [8]). As the work progressed, the
theory of Concept Lattices and Concept Analysis was partially adopted into it,
and it was with an inexpectably good results. For sure, the future work will more

Using Blind Search and Formal Concepts for Binary Factor Analysis 139

2a
200

100o
3a

282

94o

3a

279

93o

3a

264

88o
4a
348

87o

3a

258

86o

3a

258

86o
4a
328

82o

4a
324

81o

4a
320

80o

4a
320

80o

4a
316

79o

4a
316

79o
5a

375

75o

4a
296

74o

4a
296

74o
5a

365

73o

5a

365

73o

4a
288

72o
5a

340

68o

5a

340

68o

7a

469

67o

5a

335

67o

5a

335

67o

5a

330

66o

5a

325

65o

6a
372

62o
8a

496

62o

6a

366

61o

6a

366

61o

5a

300

60o
6a

354

59o

7a

392

56o

8a

440
55o

6a

330
55o

9a

495

55o

7a

385
55o

7a

378

54o
6a

324

54o

8a

424
53o

6a

318

53o

8a

424
53o

7a

350

50o
7a

343

49o

8a

392

49o

9a

432

48o

8a

384

48o
9a

432

48o

7a

336

48o
7a

329

47o

8a

376

47o
8a

352

44o

7a

301

43o

8a

344

43o

8a

336

42o
10a
410

41o

9a

369

41o

9a

369

41o

8a

328

41o

9a

369

41o
10a
410

41o

8a

320

40o
9a

351

39o
9a
333

37o

8a
296

37o

11a
396

36o

8a

288

36o
9a
315

35o

12a
420

35o

12a
408

34o

9a

306

34o
12a
408

34o

10a
340

34o

9a

297

33o
9a
279

31o

9a
270

30o

10a
290

29o

9a
261

29o

12a
336

28o

10a
270

27o
12a

324

27o

13a

351

27o

10a
270

27o
10a

250
25o

12a

288

24o

10a

230
23o

11a
253

23o

10a
230

23o
12a

264

22o

13a

273

21o

13a

273

21o

13a

273

21o

13a

260
20o

13a

260
20o

10a

190
19o

11a

187

17o

11a

187

17o

12a

204

17o

12a

192
16o

16a

224
14o

13a

182

14o
16a

224
14o

15a
195

13o

13a
156

12o

16a
160

10o

14a
140

10o

15a
105

7o

15a
105

7o

16a

112
7o

13a
78

6o
30a

0
0o

Fig. 2. Concept lattice of p2 data set.

focus on the possibilities of exploiting formal concepts and concept lattices for
BFA.

References

1. BMDP (Bio-Medical Data Processing). A statistical software package. SPSS.
http://www.spss.com/

2. A.A.Frolov, A.M.Sirota, D.Húsek, I.P.Muraviev, P.A.Polyakov: Binary factoriza-
tion in Hopfield-like neural networks: Single-step approximation and computer sim-
ulations. 2003.

3. Bernhard Ganter, Rudolf Wille: Formal Concept Analysis: Mathematical Founda-
tions. Springer–Verlag, Berlin–Heidelberg–New York, 1999.

4. Al Geist et al.: PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for
Networked Parallel Computing. MIT Press, Cambridge, Massachusetts, USA, 1994.

5. Andreas Hotho, Gerd Stumme: Conceptual Clustering of Text Clusters. In Proceed-
ings of FGML Workshop, pp. 37–45. Special Interest Group of German Informatics
Society, 2002.

6. D.Húsek, A.A.Frolov, I.Muraviev, H.Řezanková, V.Snášel, P.Polyakov: Binary Fac-
torization by Neural Autoassociator. AIA Artifical Intelligence and Applications -
IASTED International Conference, Benalmádena, Málaga, Spain, 2003.

7. D.Húsek, A.A.Frolov, H.Řezanková, V.Snášel: Application of Hopfield-like Neu-
ral Networks to Nonlinear Factorization. Proceedings in Computational Statistics
Compstat 2002, Humboldt-Universitt, Berlin, Germany, 2002.

140 Aleš Keprt

8. D.Húsek, A.A.Frolov, H.Řezanková, V.Snášel, A.Keprt: O jednom neuronovém
př́ıstupu k redukci dimenze. In proceedings of Znalosti 2004, Brno, CZ, 2004. ISBN
80-248-0456-5.

9. Aleš Keprt: Paralelńı řešeńı nelineárńı booleovské faktorizace. VŠB Technical Uni-
versity, Ostrava (unpublished paper), 2003.

10. Aleš Keprt: Binary Factor Analysis and Image Compression Using Neural Net-
works. In proceedings of WOFEX 2003, Ostrava, 2003. ISBN 80-248-0106-X.

11. Christian Lindig: Introduction to Concept Analysis. Hardvard University, Cam-
bridge, Massachusetts, USA.

12. Christian Lindig: Fast Concept Analysis. Harvard University, Cambridge, Mas-
sachusetts, USA.
http://www.st.cs.uni-sb.de/~lindig/papers/fast-ca/iccs-lindig.pdf

13. Christoph Schwarzweller: Introduction to Concept Lattices. Journal Of Formalized
Mathematics, volume 10, 1998. Inst. of Computer Science, University of Bialystok.

14. Medical encyclopedia Medline Plus. A service of the U.S. National Library of
Medicine and the National Institutes of Health.
http://www.nlm.nih.gov/medlineplus/

15. A.M.Sirota, A.A.Frolov, D.Húsek: Nonlinear Factorization in Sparsely Encoded
Hopfield-like Neural Networks. ESANN European Symposium on Artifical Neural
Networks, Bruges, Belgium, 1999.

16. Karl Ueberla: Faktorenanalyse (2nd edition). Springer–Verlag, Berlin–Heidelberg–
New York, 1971. ISBN 3-540-04368-3, 0-387-04368-3.
(slovenský překlad: Alfa, Bratislava, 1974)

