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Chapter �

Statistics

��� Introduction

This lecture is a quick review of basic statistical concepts� probabilities� mean� vari�
ance� covariance� correlation� linear regression� probability density functions and sig�
ni�cance testing�

��� Probabilities

����� Discrete Variables

The table below shows the probability of occurrence p�x � xi� of selected letters
xi in the English alphabet� Table � shows the probability of occurence of selected

xi p�xi�
a 
�
�
e 
�
�
j 
�


q 
�
�
t 
�
�
z 
�



Table ���
 Probability of letters

pairs of letters xi and yj where xi is followed by yj� This is called the joint probability
p�x � xi� y � yi�� If we �x x to� say xi then the probability of y taking on a particular
value� say yj� is given by the conditional probability

p�y � yjjx � xi� �
p�x � xi� y � yj�

p�x � xi�
�����

��
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xi yj p�xi� yj�
t h 
�
��
t s 
�



t r 
�
��

Table ���
 Probability of pairs of letters

For example� if xi � t and yj � h then the joint probability p�x � xi� y � yj� is
just the probability of occurence of the pair �which table � tells us is 
�
���� The
conditional probability p�y � yjjx � xi�� however� says that� given we�ve seen the
letter t� what�s the probability that the next letter will be h �which is� from tables �
and �� 
�
���
�
� � 
����� Re�arranging the above relationship gives

p�x � xi� y � yj� � p�y � yjjx � xi�p�x � xi� �����

Now if y does not depend on x then p�y � yjjx � xi� � p�y � yj�� Hence� for
independent variables� we have

p�x � xi� y � yj� � p�y � yj�p�x � xi� �����

The marginal probability is given by

p�x � xi� �
X
fyjg

p�y � yj� x � xi� �����

This is the same probability that we started with�

����� Continuous Variables

The probability of a continuous variable� x� assuming a particular value or range
of values is de�ned by a Probability Density Funcion �PDF�� p�x�� Probability is
measured by the area under the PDF� the total area under a PDF is therefore unity

Z
p�x�dx � � �����

The probability of x assuming a value between a and b is given by

p�a � x � b� �
Z b

a
p�x�dx �����

which is the area under the PDF between a and b� The probability of x taking on a
single value is therefore zero� This makes sense because we are dealing with continuous
values� as your value becomes more precise the probability for it decreases� It only
makes sense� therefore to talk about the probability of a value being within a certain
precision or being above or below a certain value�
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Figure ���
 �a� The Gaussian Probability Density Function with mean � � � and
standard deviation � � �� �b� The standard Gaussian density� p�z�� This has zero
mean and unit variance�

To calculate such probabilities we need to calculate integrals like the one above� This
process is simpli�ed by the use of Cumulative Density Functions �CDF� which are
de�ned as

CDF �a� � p�x � a� �
Z a

��
p�x�dx �����

Hence
p�a � x � b� � CDF �b�� CDF �a� ���	�

����� The Gaussian Density

The Normal or Gaussian probability density function� for the case of a single variable�
is

p�x� � N�x��� ��� �
�

���������
exp

�
��x� ���

���

�
�����

where � and �� are known as the mean and variance� and � �the square root of the
variance� is called the standard deviation� The quantity in front of the exponential
ensures that

R
p�x�dx � �� The above formula is often abbreviated to the shorthand

p�x� � N�x��� ��� The terms Normal and Gaussian are used interchangeably�

If we subtract the mean from a Gaussian variable and then divide by that variables
standard deviation the resulting variable� z � �x������ will be distributed according
the standard normal distribution� p�z� � N�z� 
� �� which can be written

p�z� �
�

�������
exp

�
�z

�

�

�
����
�

The probability of z being above 
�� is given by the area to the right of 
��� We can
calculate it as

p�z� � 
�� �
Z �

���
p�z�dz ������

� �� CDFGauss�
���

where CDFGauss is the cumulative density function for a Gaussian�
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����� Probability relations

The same probability relations hold for continuous variables as for discrete variables
ie� the conditional probability is

p�yjx� � p�x� y�

p�x�
������

Re�arranging gives the joint probability

p�x� y� � p�yjx�p�x� ������

which� if y does not depend on x �ie� x and y are independent� means that

p�x� y� � p�y�p�x� ������

��� Expectation and Moments

The expected value of a function f�x� is de�ned as

E�f�x�� �� f�x� 	�
Z
p�x�f�x�dx ������

and E�� is referred to as the expectation operator� which is also sometimes written
using the angled brackets �	� The kth moment of a distribution is given by

E�xk� �
Z
p�x�xkdx ������

The mean is therefore the �rst moment of a distribution�

E�x� �
Z
p�x�xdx � � ������

The kth central moment of a distribution is given by

E��x� ��k� �
Z
p�x��x� ��kdx ����	�

The variance is therefore the second central moment

E��x� ���� �
Z
p�x��x� ���dx � �� ������

Sometimes we will use the notation

V ar�x� � E��x� ���� ����
�

The third central moment is skewness and the fourth central moment is kurtosis �see
later�� In the appendix we give examples of various distributions and of skewness and
kurtosis�
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��� Maximum Likelihood Estimation

We can learn the mean and variance of a Gaussian distribution using the Maximum
Likelihood �ML� framework as follows� A Gaussian variable xn has the PDF

p�xn� �
�

���������
exp

�
��x� ���

���

�
������

which is also called the likelihood of the data point� Given N Independent and
Identically Distributed �IID� �it is often assumed that the data points� or errors� are
independent and come from the same distribution� samples y � �y�� y�� ��� yN � we have

p�y� �
NY
n��

p�yn� ������

which is the likelihood of the data set� We now wish to set � and �� so as to maximise
this likelihood� For numerical reasons �taking logs gives us bigger numbers� this is
more conveniently achieved by maximising the log�likelihood �note
 the maximum is
given by the same values of � and ��

L � log p�y� � �N
�
log �� � N

�
log�� �

NX
n�

�yn � ���

���
������

The optimal values of � and � are found by setting the derivatives dL
d�
and dL

d�
to zero�

This gives

� �
�

N

NX
n��

yn ������

and

�� �
�

N

NX
n��

�yn � ��� ������

We note that the last formula is di�erent to the usual formula for estimating variance

�� �
�

N � �
NX
n��

�xn � ��� ������

because of the di�erence in normalisation� The last estimator of variance is preferred
as it is an unbiased estimator �see later section on bias and variance��

If we had an input�dependent mean� �n � wxn� then the optimal value for w can be
found by maximising L� As only the last term in equation ���� depends on w this
therefore corresponds to minimisation of the squared errors between �n and yn� This
provides the connection between ML estimation and Least Squares �LS� estimation�
ML reduces to LS for the case of Gaussian noise�
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Figure ���
 �a� Positive correlation� r � 
�� and �b� Negative correlation� r � �
���
The dotted horizontal and vertical lines mark �x and �y�

��� Correlation and Regression

����� Correlation

The covariance between two variables x and y is measured as

�xy �
�

N � �
NX
n��

�xi � �x��yi � �y� ������

where �x and �y are the means of each variable� Note that �yx � �xy� Sometimes we
will use the notation

V ar�x� y� � �xy ����	�

If x tends to be above its mean when y is above its mean then �xy will be positive� If
they tend to be on opposite sides of their means �xy will be negative� The correlation
or Pearson�s correlation coe�cient is a normalised covariance

r �
�xy
�x�y

������

such that�� � r � �� a value of�� indicating perfect negative correlation and a value
of �� indicating perfect positive correlation� see Figure ���� A value of 
 indicates
no correlation� The strength of a correlation is best measured by r� which takes on
values between 
 and �� a value near to � indicating strong correlation �regardless of
the sign� and a value near to zero indicating a very weak correlation�

����� Linear regression

We now look at modelling the relationship between two variables x and y as a linear
function� given a collection of N data points fxi� yig� we aim to estimate yi from xi
using a linear model

�yi � axi � b ����
�
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Figure ���
 The linear regression line is �tted by minimising the vertical distance
between itself and each data point� The estimated lines are �a� �y � 
��

�x� 
���
�
and �b� �y � �
�����x� ���	
��

where we have written �y to denote our estimated value� Regression with one input
variable is often called univariate linear regression to distinguish it from multivariate
linear regression where we have lots of inputs� The goodness of �t of the model to
the data may be measured by the least squares cost function

E �
NX
i��

�yi � �yi�
� ������

The values of a and b that minimize the above cost function can be calculated by
setting the �rst derivatives of the cost function to zero and solving the resulting si�
multaneous equations �derivatives are used to �nd maxima and minima of functions��
The result is derived in the Appendix� The solutions are

a �
�xy
��
x

������

and
b � �y � a�x ������

where �x and �y are the mean observed values of the data and ��
x and �xy are the

input variance and input�output covariance� This enables least squares �tting of a
regression line to a data set as shown in Figure ����

The model will �t some data points better than others� those that it �ts well constitute
the signal and those that it does�nt �t well constitute the noise� The strength of the
noise is measured by the noise variance

��
e �

�

N � �
NX
i��

�yi � �yi�
� ������

and the strenth of the signal is given by ��
y���

e � The signal	to	noise ratio is therefore
���

y � ��
e���

�
e �

Splitting data up into signal and noise components in this manner �ie� breaking down
the variance into what the model explains and what it does not� is at the heart of
statistical procedures such as analysis of variance �ANOVA� �����
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Relation to correlation

The correlation measure r is intimately related to the linear regression model� Indeed
�by substituting �xy from equation ���� into equation ����� r may be expressed as

r �
�x
�y
a ������

where a is the slope of the linear regression model� Thus� for example� the sign of
the slope of the regression line de�nes the sign of the correlation� The correlation
is� however� also a function of the standard deviation of the x and y variables� for
example� if �x is very large� it is possible to have a strong correlation even though
the slope may be very small�

The relation between r and linear regression emphasises the fact that r is only a
measure of linear correlation� It is quite possible that two variables have a strong
nonlinear relationship �ie� are nonlinearly correlated� but that r � 
� Measures of
nonlinear correlation will be discussed in a later lecture�

The strenth of correlation can also be expressed in terms of quantites from the linear
regresssion model

r� �
��
y � ��

e

��
y

������

where ��
e is the noise variance and �

�
y is the variance of the variable we are trying to

predict� Thus r� is seen to measure the proportion of variance explained by a linear
model� a value of � indicating that a linear model perfectly describes the relationship
between x and y�

��� Bias and Variance

Given any estimation process� if we repeat it many times we can look at the expected
�or average� errors �the di�erence between true and estimated values�� This is com�
prised of a systematic error �the �bias�� and an error due to the variability of the
�tting process �the �variance��� We can show this as follows�

Let w be the true value of a parameter and �w be an estimate from a given sample�
The expected squared error of the estimate can be decomposed as follows

E � E�� �w � w��� ������

� E�� �w � E� �w� � E� �w�� w���

where the expectation is wrt� the distribution over �w and we have introduced E� �w��
the mean value of the estimate� Expanding the square gives

E � E�� �w � E� �w��� � �E� �w�� w�� � �� �w � E� �w���E� �w�� w�� ����	�

� E�� �w � E� �w���� � �E� �w�� w��

� V �B�
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Figure ���
 Fitting a linear regression model �dotted line� to data points �circles� which
are generated from a quadratic function �solid line� with additive noise �of variance

�
���

where the third term has dropped out because E� �w� � E� �w� � 
� The error thus
consists of two terms �i� a variance term V and �ii� a bias term� the square of the
bias� B��

Estimates of parameters are often chosen to be unbiased ie� to have zero bias� This
is why we see the ���N � �� term in an estimate of variance� for example�

Simple models �eg� linear models� have a high bias but low variance whereas more
complex models �eg� polynomial models� have a low bias but a high variance� To
select the optimal model complexity� or model order� we must solve this bias	variance
dilemma ��
��

��� Minimum variance estimation

There is a lower bound to the variance of any unbiased estimate which is given by

V ar��
� � �

E��L�D� 
���
��
������

where L�D� 
� � log p�D� 
� is the log�likelihood of the data and the expectation is
taken wrt� p�D� 
�� This is known as the Cramer	Rao bound� Any estimator that
attains this variance is called the Minimum Variance Unbiased Estimator �MVUE��

The denominator� being an inverse variance� therefore measures the maximum preci�
sion with which we can estimate 
� It is known as the Fisher Information

I�
� � E��L�D� 
���
�� ����
�
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Figure ���
 �a� Bias component B and �b� Variance component V � The bias represents
a systematic error in our modelling procedure �ie� �tting a quadratic function with
a linear function�� the linear model systematically underpredicts at the edges and
overpredicts in the middle� The variance represents the variability of the model �tting
process� linear models lock on to the middle of a data set and then set their slope
as necessary� The variance is therefore less in the middle than at the edges� in the
middle this variance is simply the variance of the additive noise �
�
��� The expected
prediction error at any point is the sum of the variance plus the bias squared�

For unbiased estimates ���� it can also be expressed as

I�
� � �E���L�D� 
���
�� ������

��	 Statistical Inference

When we estimate the mean and variance from small samples of data our estimates
may not be very accurate� But as the number of samples increases our estimates get
more and more accurate and as this number approaches in�nity the sample mean
approaches the true mean or population mean� In what follows we refer to the sample
means and variances as m and s and the population means and standard deviations
as � and ��

Hypothesis Testing
 Say we have a hypothesis H which is The mean value of my
signal is 
�� This is often referred to as the null hypothesis or H�� We then get some
data and testH which is then either accepted or rejected with a certain probability or
signi�cance level� p� Very often we choose p � 
�
� �a value used throughout science��

We can do a one	sided or a two	sided statistical test depending on exactly what the
null hypothesis is� In a one�sided test our hypothesis may be �i� our parameter is less
than x or �ii� our parameter is greater than x� For two�sided tests our hypothesis is
of the form �iii� our parameter is x� This last hypothesis can be rejected if the sample
statistic is either much smaller or much greater than it should be if the parameter
truly equals x�
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����� Means

To �nd out if your mean is signi�cantly di�erent from a hypothesized value � there
are basically two methods� The �rst assumes you know the population�true variance
and the second allows you to use the sample variance�

Known variance

If we estimate the mean from a sample of data� then this estimate itself has a mean and
a standard deviation� The standard deviation of the sample mean is �see appendix�

�m � ��
p
N ������

where � is the known true standard deviation� The probability of getting a particular
sample mean from N samples is given by p�z� where

z �
m� �

��
p
N

������

For example� suppose we are given �
 data points from a normal population with
hypothesized mean � � �� and standard deviation � � � and we get a sample mean
of �������� as shown in Figure ���� The probability of getting a sample mean at least
this big is

p�m 	 �������� � �� CDFGauss�z� ������

where z � �������� � �������
p
�
� � ���	�� which is �from tables or computer

evaluation� 
�
	�� ie� reasonably likely� we would accept the hypothesis at the p �

�
� level �because we are doing a two�sided test we would accept H� unless the
probability was less than p � 
�
����

Unknown variance

If we don�t know the true variance we can use the sample variance instead� We can
then calculate the statistic

t �
m� �

s�
p
N

������

which is distributed according the t�distribution �see appendix�� Now� the t�distribution
has a parameter v� called the degrees of freedom �DF�� It is plotted in Figure ��� with
v � � and v � �� degrees of freedom� smaller v gives a wider distribution�

Now� from our N � �
 data points we calculated the sample variance ie� given�
originally� �
 DF we have used up one DF leaving N � � � �� DF� Hence� our
t�statistic has v � �� degrees of freedom�

Assume we observed s � � and m � ������� �as before� and our hypothesized mean
is ��� We can calculate the associated probability from

p�m 	 �������� � �� CDFt�t� ������
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 N��
 data points� The hypthosized mean value of 
� is shown as a dotted
line and the sample mean as a solid line�
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Figure ���
 The t	distribution with �a� v � � and �b� v � �� degrees of freedom�

where t � �������� � ������p�
� � ���	��� From tables this gives 
�
	�� ie� rea�
sonably likely �again� because we are doing a two�sided test� we would accept H�

unless the probability was less than p � 
�
���� Notice� however� that the probability
is higher than when we knew the standard deviation to be �� This shows that a t�
distribution has heavier tails than a Normal distribution ie� extreme events are more
likely�

����� Regression

In a linear regression model we are often interested in whether or not the gradient is
signi�cantly di�erent from zero or other value of interest�

To answer the question we �rst estimate the variance of the slope and then perform
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a t�test� In the appendix we show that the variance of the slope is given by �

��
a �

��
e

�N � ����
x

������

We then calculate the t�statistic

t �
a� ah
�a

����	�

where ah is our hypothesized slope value �eg� ah may be zero� and look up p�t�
with N � � DF �we have used up �DF to estimate the input variance and �DF to
estimate the noise variance�� In the data plotted in Figure ����b� the estimated
slope is a � �
������ From the data we also calculate that �a � 
�
��� Hence�
to �nd out if the slope is signi�cantly non�zero we compute CDFt�t� where t �
�
������
�
�� � �	��� This has a p�value of �
��� ie� a very signi�cant value�
To �nd out if the slope is signi�cantly di�erent from �
�� we calculate CDFt�t� for
t � ��
������
����
�
�� � 
����� which gives a p�value of 
����� ie� not signi�cantly
di�erent �again� we must bear in mind that we need to do a two�sided test� see earlier��

����� Correlation

Because of the relationship between correlation and linear regression we can �nd
out if correlations are signi�cantly non�zero by using exactly the same method as
in the previous section� if the slope is signi�cantly non�zero then the corresponding
correlation is also signi�cantly non�zero�

By substituting a � ��y��x�r �this follows from equation ���� and equation ����� and
��
e � ���r����

y �from equation ����� into equation ���� and then �a into equation ���	
we get the test statistic �

t �
r
p
N � �p
�� r�

������

which has N � � DF�
For example� the two signals in Figure ��	�a� have� over the N � �
 given samples� a
correlation of r � 
�	
�� which gives t � ����	� and a p�value of �
���� We therefore
reject the hypothesis that the signals are not correlated� they clearly are� The signals
in Figure ��	�b� have a correlation of r � 
����	 over the N � �
 given samples which
gives t � 
����� and a p�value of p � 
������ We therefore accept the null hypothesis
that the signals are not correlated�

�When estimating ��x we should divide by N � � and when estimating ��e we should divide by
N � ��

�Strictly� we should use ��e �
N��
N��

��� r����y to allow for using N � � in the denominator of ��e �
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Figure ��	
 Two signals �a� sample correlation r � 
�	
�� and �b� sample correlation�
r�
����	� Strong correlation� by shifting and scaling one of the time series �ie� taking
a linear function� we can make it look like the other time series�

��
 Discussion

For a more comprehensive introduction to basic statistics� linear regression and signif�
icance testing see Grimmett and Welsh ���� or Kleinbaum et al� ����� Also� Numerical
Recipes ���� has very good sections on Are two means di�erent � and Are two vari	
ances di�erent �� See Priestley for a more comprehensive introduction to statistical
estimation in time series models ���
�� chapter ���



Chapter �

Linear Algebra

��� Introduction

We discuss vectors� matrices� transposes� covariance� correlation� diagonal and inverse
matrices� orthogonality� subspaces and eigenanalysis� An alterntive source for much
of this material is the excellent book by Strang ��	��

��� Transposes and Inner Products

A collection of variables may be treated as a single entity by writing them as a vector�
For example� the three variables x�� x� and x� may be written as the vector

x �

�
��
x�
x�
x�

�
�	 �����

Bold face type is often used to denote vectors �scalars � single variables � are written
with normal type�� Vectors can be written as column vectors where the variables go
down the page or as row vectors where the variables go across the page �it needs to
be made clear when using vectors whether x means a row vector or a column vector �
most often it will mean a column vector and in our text it will always mean a column
vector� unless we say otherwise�� To turn a column vector into a row vector we use
the transpose operator

xT � �x�� x�� x�� �����

The transpose operator also turns row vectors into column vectors� We now de�ne
the inner product of two vectors

xTy � �x�� x�� x��

�
��
y�
y�
y�

�
�	 �����

� x�y� � x�y� � x�y�

��
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�
�X
i��

xiyi

which is seen to be a scalar� The outer product of two vectors produces a matrix

xyT �

�
�� x�
x�
x�

�
�	 �y�� y�� y�� �����

�

�
��
x�y� x�y� x�y�
x�y� x�y� x�y�
x�y� x�y� x�y�

�
�	

An N �M matrix has N rows and M columns� The ijth entry of a matrix is the
entry on the jth column of the ith row� Given a matrix A �matrices are also often
written in bold type� the ijth entry is written as Aij� When applying the transpose
operator to a matrix the ith row becomes the ith column� That is� if

A �

�
�� a�� a�� a��
a�� a�� a��
a�� a�� a��

�
�	 �����

then

AT �

�
�� a�� a�� a��
a�� a�� a��
a�� a�� a��

�
�	 �����

A matrix is symmetric if Aij � Aji� Another way to say this is that� for symmetric
matrices� A � AT �

Two matrices can be multiplied if the number of columns in the �rst matrix equals
the number of rows in the second� MultiplyingA� an N�M matrix� by B� anM�K
matrix� results in C� an N � K matrix� The ijth entry in C is the inner product
between the ith row in A and the jth column in B� As an example



� � �
� � �

� ��� � � � �
� � � �
� � � �

�
�	 �



�� �� �� ��
�� �� 	� �


�
�����

Given two matrices A and B we note that

�AB�T � BTAT ���	�

����� Properties of matrix multiplication

Matrix multiplication is associative

�AB�C � A�BC� �����

distributive
A�B �C� � AB �AC ����
�

but not commutative
AB �� BA ������
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��� Types of matrices

����� Covariance matrices

In the previous chapter the covariance� �xy� between two variables x and y was de�
�ned� Given p variables there are p � p covariances to take account of� If we write
the covariances between variables xi and xj as �ij then all the covariances can be
summarised in a covariance matrix which we write below for p � �

C �

�
��
��
� ��� ���
��� ��

� ���
��� ��� ��

�

�
�	 ������

The ith diagonal element is the covariance between the ith variable and itself which
is simply the variance of that variable� we therefore write ��

i instead of �ii� Also� note
that because �ij � �ji covariance matrices are symmetric�

We now look at computing a covariance matrix from a given data set� Suppose we
have p variables and that a single observation xi �a row vector� consists of measuring
these variables and suppose there are N such observations� We now make a matrix
X by putting each xi into the ith row� The matrix X is therefore an N � p matrix
whose rows are made up of di�erent observation vectors� If all the variables have zero
mean then the covariance matrix can then be evaluated as

C �
�

N � �X
TX ������

This is a multiplication of a p�N matrix�XT � by a N�p matrix�X� which results in
a p� p matrix� To illustrate the use of covariance matrices for time series� �gure ���
shows � time series which have the following covariance relation

C� �

�
�� � 
�� ���

�� � 
��
��� 
�� ��


�
�	 ������

and mean vector

m� � ���� ��� ���
T ������

����� Diagonal matrices

A diagonal matrix is a square matrix �M � N� where all the entries are zero except
along the diagonal� For example

D �

�
�� � 
 


 � 


 
 �

�
�	 ������
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Figure ���
 Three time series having the covariance matrix C� and mean vector m�

shown in the text� The top and bottom series have high covariance but none of the
other pairings do�

There is also a more compact notation for the same matrix

D � diag���� �� ��� ������

If a covariance matrix is diagonal it means that the covariances between variables are
zero� that is� the variables are all uncorrelated� Non�diagonal covariance matrices are
known as full covariance matrices� If V is a vector of variances V � ���

�� �
�
�� �

�
� �
T then

the corresponding diagonal covariance matrix is V d � diag�V ��

����� The correlation matrix

The correlation matrix�R� can be derived from the covariance matrix by the equation

R � BCB ����	�

where B is a diagonal matrix of inverse standard deviations

B � diag������� ����� ������ ������

����� The identity matrix

The identity matrix is a diagonal matrix with ones along the diagonal� Multiplication
of any matrix� X by the identity matrix results in X� That is

IX �X ����
�

The identity matrix is the matrix equivalent of multiplying by � for scalars�
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��� The Matrix Inverse

Given a matrix X its inverse X�� is de�ned by the properties

X��X � I ������

XX�� � I

where I is the identity matrix� The inverse of a diagonal matrix with entries dii is
another diagonal matrix with entries ��dii� This satis�es the de�nition of an inverse�
eg� �

�� � 
 


 � 


 
 �

�
�	
�
�� ��� 
 


 � 


 
 ���

�
�	 �

�
�� � 
 


 � 


 
 �

�
�	 ������

More generally� the calculation of inverses involves a lot more computation� Before
looking at the general case we �rst consider the problem of solving simultaneous
equations� These constitute relations between a set of input or independent variables
xi and a set of output or dependent variables yi� Each input�output pair constitutes
an observation� In the following example we consider just N � � observations and
p � � dimensions per observation

�w� �w� � w� � �
�w� ��w� � ��
��w� ��w� � �w� � �

which can be written in matrix form�
�� � � �
� �� 

�� � �

�
�	
�
�� w�

w�

w�

�
�	 �

�
�� ���
�

�
�	 ������

or in matrix form
Xw � y ������

This system of equations can be solved in a systematic way by subtracting multiples
of the �rst equation from the second and third equations and then subtracting mul�
tiples of the second equation from the third� For example� subtracting twice the �rst
equation from the second and �� times the �rst from the third gives�

��
� � �

 �	 ��

 	 �

�
�	
�
��
w�

w�

w�

�
�	 �

�
��
�
���
�

�
�	 ������

Then� subtracting �� times the second from the third gives�
��
� � �

 �	 ��

 
 �

�
�	
�
��
w�

w�

w�

�
�	 �

�
��
�
���
�

�
�	 ������

This process is known as forward elimination� We can then substitute the value for
w� from the third equation into the second etc� This process is back	substitution� The
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two processes are together known as Gaussian elimination� Following this through
for our example we get w � ��� �� ��T �

When we come to invert a matrix �as opposed to solve a system of equations as in
the previous example� we start with the equation

AA�� � I ������

and just write down all the entries in the A and I matrices in one big matrix

�
�� � � � � 
 

� �� 
 
 � 

�� � � 
 
 �

�
�	 ����	�

We then perform forward elimination � until the part of the matrix corresponding to
A equals the identity matrix� the matrix on the right is then A�� �this is because in
equation ���� if A becomes I then the left hand side is A�� and the right side must
equal the left side�� We get

�
�� � 
 
 ��

��
��
��

��
��


 � 
 �
	

��
	

��
	


 
 � �� � �

�
�	 ������

This process is known as the Gauss	Jordan method� For more details see Strang�s
excellent book on Linear Algebra ��	� where this example was taken from�

Inverses can be used to solve equations of the form Xw � y� This is achieved by
multiplying both sides by X�� giving

w �X��y ����
�

Hence�

�
��
w�

w�

w�

�
�	 �

�
��

��
��

��
��

��
��

�
	

��
	

��
	

�� � �

�
�	
�
��
�
��
�

�
�	 ������

which also gives w � ��� �� ��T �

The inverse of a product of matrices is given by

�AB��� � B��A�� ������

Only square matrices are invertible because� for y � Ax� if y and x are of di�erent
dimension then we will not necessarily have a one�to�one mapping between them�

�We do not perform back	substitution but instead continue with forward elimination until we get
a diagonal matrix�
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��� Orthogonality

The length of a d�element vector x is written as jjxjj where

jjxjj� �
dX
i��

x�i ������

� xTx

Two vectors x and y are orthogonal if

x

x-y

y

Figure ���
 Two vectors x and y� These vectors will be orthogonal if they obey
Pythagoras� relation ie� that the sum of the squares of the sides equals the square of
the hypoteneuse�

jjxjj� � jjyjj� � jjx� yjj� ������

That is� if

x�� � ���� x�d � y�� � ��� � y�d � �x� � y��
� � ���� �xd � yd�

� ������

Expanding the terms on the right and re�arranging leaves only the cross�terms

x�y� � ����� � xdyd � 
 ������

xTy � 


That is� two vectors are orthogonal if their inner product is zero�

����� Angles between vectors

Given a vector b � �b�� b��
T and a vector a � �a�� a��

T we can work out that
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δ α
β

||b||

||a||

||b-a||

a

b

Figure ���
 Working out the angle between two vectors�

cos� �
a�
jjajj ������

sin� �
a�
jjajj

cos 
 �
b�
jjbjj

sin
 �
b�
jjbjj

����	�

Now� cos� � cos�
 � �� which we can expand using the trig identity

cos�
 � �� � cos 
 cos� � sin
 sin� ������

Hence

cos��� �
a�b� � a�b�
jjajjjjbjj ����
�

More generally� we have

cos��� �
aTb

jjajjjjbjj ������

Because� cos ��� � 
� this again shows that vectors are orthogonal for aTb � 
� Also�
because j cos �j � � where jxj denotes the absolute value of x we have

jaTbj � jjajjjjbjj ������

which is known as the Schwarz Inequality�

����� Projections

The projection of a vector b onto a vector a results in a projection vector p which is
the point on the line a which is closest to the point b� Because p is a point on a it
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Figure ���
 The projection of b onto a is the point on a which is closest to b�

must be some scalar multiple of it� That is

p � wa ������

where w is some coe�cient� Because p is the point on a closest to b this means that
the vector b� p is orthogonal to a� Therefore

aT �b� p� � 
 ������

aT �b� wa� � 


Re�arranging gives

w �
aTb

aTa
������

and

p �
aTb

aTa
a ������

We refer to p as the projection vector and to w as the projection�

����� Orthogonal Matrices

The set of vectors q���qk are orthogonal if

qTj qk �

 j �� k
djk j � k

������

If these vectors are placed in columns of the matrix Q then

QTQ � QQT � D ����	�
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����� Orthonormal Matrices

The set of vectors q���qk are orthonormal if

qTj qk �

 j �� k
� j � k

������

If these vectors are placed in columns of the matrix Q then

QTQ � QQT � I ����
�

Hence� the transpose equals the inverse

QT � Q�� ������

The vectors q���qk are said to provide an orthonormal basis� This means that any
vector can be written as a linear combination of the basis vectors� A trivial example
is the two�dimensional cartesian coordinate system where q� � ��� 
�T �the x�axis�
and q� � �
� ��

T �the y�axis�� More generally� to represent the vector x we can write

x � �x�q� � �x�q� � ���� �xdqd ������

To �nd the appropriate coe�cients �xk�the co�ordinates in the new basis�� multiply
both sides by qTk � Due to the orthonormality property all terms on the right disappear
except one leaving

�xk � q
T
kx ������

The new coordinates are the projections of the data onto the basis functions �re�
equation ����� there is no denominator since qTk qk � ��� In matrix form� equation ����
can be written as x � Q�x which therefore has the solution �x � Q��x� But given
that Q�� � QT we have

�x � QTx ������

Transformation to an orthonormal basis preserves lengths� This is because �

jj�xjj � jjQTxjj ������

� �QTx�TQTx

� xTQQTx

� xTx

� jjxjj
Similarly� inner products and therefore angles between vectors are preserved� That is

�xT �y � �QTx�TQTy ������

� xTQQTy

� xTy

Therefore� transformation by an orthonormal matrix constitutes a rotation of the
co�ordinate system�

�Throughout this chapter we will make extensive use of the matrix identities �AB�T � BTAT

and �AB�C � A�BC�� We will also use �AB��� � B��A���
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��� Subspaces

A space is� for example� a set of real numbers� A subspace S is a set of points fxg
such that �i� if we take two vectors from S and add them we remain in S and �ii� if
we take a vector from S and multiply by a scalar we also remain in S �S is said to be
closed under addition and multiplication�� An example is a ��D plane in a ��D space�
A subspace can be de�ned by a basis�

��� Determinants

The determinant of a two�by�two matrix

A �



a b
c d

�
������

is given by
det�A� � ad� bc ����	�

The determinant of a three�by�three matrix

A �

�
�� a b c
d e f
g h i

�
�	 ������

is given by

det�A� � a det

�

e f
h i

��
� b det

�

d f
g i

��
� c det

�

d e
g h

��
����
�

Determinants are important because of their properties� In particular� if two rows of
a matrix are equal then the determinant is zero eg� if

A �



a b
a b

�
������

then
det�A� � ab� ba � 
 ������

In this case the transformation from x � �x�� x��
T to y � �y�� y��

T given by

Ax � y ������

reduces two pieces of information �x� and x�� to one piece of information

y � y� � y� � ax� � bx� ������

In this case it is not possible to reconstruct x from y� the transformation is not
invertible � the matrix A does not have an inverse and the value of the determinant
provides a test for this
 If det�A� � 
 the matrix A is not invertible� it is singular�
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1x 2x y

Figure ���
 A singular �non	invertible� transformation�

Conversely� if det�A� �� 
 then A is invertible� Other properties of the determinant
are

det�AT � � det�A� ������

det�AB� � det�A� det�B�

det�A��� � �� det�A�

det�A� �
Y
k

akk

Another important property of determinants is that they measure the �volume� of a
matrix� For a ��by�� matrix the three rows of the matrix form the edges of a cube�
The determinant is the volume of this cube� For a d�by�d matrix the rows form the
edges of a �parallepiped�� Again� the determinant is the volume�

��	 Eigenanalysis

The square matrix A has eigenvalues � and eigenvectors q if

Aq � �q ������

Therefore
�A� �I�q � 
 ������

To satisfy this equation either q � 
� which is uninteresting� or the matrix A � �I
must reduce q to the null vector �a single point�� For this to happen A � �I must
be singular� Hence

det�A� �I� � 
 ����	�

Eigenanalysis therefore proceeds by �i� solving the above equation to �nd the eigen�
values �i and then �ii� substituting them into equation ���� to �nd the eigenvectors�
For example� if

A �



� ��
� ��

�
������

then
det�A� �I� � ��� ������ ��� ������� � 
 ����
�
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which can be rearranged as

�� � �� � � 
 ������

��� ����� �� � 


Hence the eigenvalues are � � �� and � � �� Substituting back into equation ����
gives an eigenvector q� which is any multiple of ��� ��

T � Similarly� eigenvector q� is
any multiple of ��� ��T �

We now note that the determinant of a matrix is also equal to the product of its
eigenvalues

det�A� �
Y
k

�k ������

We also de�ne the Trace of a matrix as the sum of its diagonal elements

Tr�A� �
X
k

akk ������

and note that it is also equal to the sum of the eigenvalues

Tr�A� �
X
k

�k ������

Eigenanalysis applies only to square matrices�

��
 Gram�Schmidt

A general class of procedures for �nding eigenvectors are the de�ation methods of
which QR�decomposition and Gram�Schmidt orthogonalization are examples�

In Gram�Schmidt� we are given a set of vectors� say a�b and c and we wish to �nd a
set of corresponding orthonormal vectors which we�ll call q��q� and q�� To start with
we let

q� �
a

jjajj ������

We then compute b� which is the original vector b minus the projection vector �see
equation ����� of b onto q�

b� � b� qT� bq� ������

The second orthogonal vector is then a unit length version of b�

q� �
b�

jjb�jj ������

Finally� the third orthonormal vector is given by

q� �
c�

jjc�jj ����	�

where
c� � c� qT� cq� � qT� cq� ������

In QR�decomposition the Q terms are given by qi and the R terms by qTi c�
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����� Diagonalization

If we put the eigenvectors into the columns of a matrix

Q �

�
�������

j j � j
j j � j
q� q� � qd
j j � j
j j � j

�
������	

���	
�

then� because� Aqk � �kqk� we have

AQ �

�
�������

j j � j
j j � j
��q� ��q� � �dqd
j j � j
j j � j

�
������	

���	��

If we put the eigenvalues into the matrix � then the above matrix can also be written
as Q�� Therefore�

AQ � Q� ���	��

Pre�multiplying both sides by Q�� gives

Q��AQ � � ���	��

This shows that any square matrix can be converted into a diagonal form �provided
it has distinct eigenvalues� see eg� ��	� p� ����� Sometimes there won�t be d distinct
eigenvalues and sometimes they�ll be complex�

����� Spectral Theorem

For any real symmetric matrix all the eigenvalues will be real and there will be d dis�
tinct eigenvalues and eigenvectors� The eigenvectors will be orthogonal �if the matrix
is not symmetric the eigenvectors won�t be orthogonal�� They can be normalised and
placed into the matrix Q� Since Q is now orthonormal we have Q�� � QT � Hence

QTAQ � � ���	��

Pre�multiplying by Q and post�multiplying by QT gives

A � Q�QT ���	��

which is known as the spectral theorem� It says that any real� symmetric matrix can
be represented as above where the columns of Q contain the eigenvectors and � is a
diagonal matrix containing the eigenvalues� �i� Equivalently�

A �

�
�������

j j � j
j j � j
q� q� � qd
j j � j
j j � j

�
������	

�
�������

��
��

�d

�
������	

�
����
� � q� � �
� � q� � �
� � � �
� � qd � �

�
���	 ���	��
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This can also be written as a summation

A �
dX

k��

�kqkq
T
k ���	��

���� Complex Matrices

If

A �



� � �i � � � �i
�� � i � � �i � � �i

�
���		�

then the complex transpose or Hermitian transpose is given by

AH �

�
��
�� �i ��� i
� �� �i
�� �i �� �i

�
�	 ���	��

ie� each entry changes into its complex conjugate �see appendix� and we then trans�
pose the result� Just as A�T denotes the transpose of the inverse so A�H denotes
the Hermitian transpose of the inverse�

If AHA is a diagonal matrix then A is said to be a unitary matrix� It is the complex
equivalent of an orthogonal matrix�

���� Quadratic Forms

The quadratic function

f�x� � a��x
�
� � a��x�x� � a��x�x� � ��� � addx

�
d ����
�

can be written in matrix form as

f�x� � �x�� x�� ���� xd�

�
�������

a�� a�� a�d
a�� a�� a�d

ad� ad� add

�
������	

�
����
x�
x�
�
xd

�
���	 ������

which is written compactly as
f�x� � xTAx ������

If f�x� 	 
 for any non�zero x then A is said to be positive�de�nite� Similarly� if
f�x� � 
 then A is positive�semi�de�nite�

If we substitute A � Q�QT and x � Qy where y are the projections onto the
eigenvectors� then we can write

f�x� � yT�y ������

�
X
i

y�i �i
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Hence� for positive�de�niteness we must therefore have �i 	 
 for all i �ie� positive
eigenvalues��

������ Ellipses

For ��by�� matrices if A � I then we have

f � x�� � x�� ������

which is the equation of a circle with radius
p
f � If A � kI we have

f

k
� x�� � x�� ������

The radius is now
q
f�k� If A � diag��k�� k��� we have

f � k�x
�
� � k�x

�
� ������

which is the equation of an ellipse� For k� 	 k� the major axis has length
q
f�k� and

the minor axis has length
q
f�k��

For a non�diagonal A we can diagonalise it using A � Q�QT � This gives

f � ���x
�
� � ���x

�
� ������

where the ellipse now lives in a new co�ordinate system given by the rotation �x �

xTQ� The major and minor axes have lengths
q
f��� and

q
f����



Chapter �

Multivariate Statistics

��� Introduction

We discuss covariance matrices� multivariate linear regression� feature selection� prin�
cipal component analysis and singular value decomposition� See Chat�eld�s book on
multivariate analysis for more details ��
�� Also� a good practical introduction to the
material on regression is presented by Kleinbaum et al� ����� More details of matrix
manipulations are available in Weisberg ���� and Strang has a great in�depth intro to
linear algebra ��	�� See also relevant material in Numerical Recipes �����

��� Multivariate Linear Regression

For a multivariate linear data set� the dependent variable yi is modelled as a linear
combination of the input variables xi and an error term

�

yi � xiw � ei �����

where xi is a row vector� w is a column vector and ei is an error� The overall goodness
of �t can be assessed by the least squares cost function

E �
NX
i��

�yi � �yi�
� �����

where 
y � xiw�

�The error term is introduced because� very often� given a particular data set it will not be
possible to 
nd an exact linear relationship between xi and yi for every i� We therefore cannot
directly estimate the weights as X��y�

��
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����� Estimating the weights

The least squares cost function can be written in matrix notation as

E � �y �Xw�T �y �Xw� �����

where X is an N�by�p matrix whose rows are made up of di�erent input vectors and
y is a vector of targets� The weight vector that minimises this cost function can be
calculated by setting the �rst derivative of the cost function to zero and solving the
resulting equation�

By expanding the brackets and collecting terms �using the matrix identity �AB�T �
BTAT we get

E � yTy � �wXTy �wTXTXw �����

The derivative with respect to w is �

�E

�w
� ��XTy � �XTXw �����

Equating this derivative to zero gives

�XTX�w �XTy �����

which� in regression analysis� is known as the �normal equation�� Hence�


w � �XTX���XTy �����

This is the general solution for multivariate linear regression �� It is a unique minimum
of the least squares error function �ie� this is the only solution��

Once the weights have been estimated we can then estimate the error or noise variance
from

��
e �

�

N � �
NX
i��

�yi � �yi�
� ���	�

����� Understanding the solution

If the inputs are zero mean then the input covariance matrix multiplied by N�� is

Cx �X
TX �����

The weights can therefore be written as


w � C��
x X

Ty ����
�

ie� the inverse covariance matrix times the inner products of the inputs with the
output �the ith weight will involve the inner product of the ith input with the output��

�From matrix calculus ��
� we know that the derivative of cTBc with respect to c is �BT �B�c�
Also we note that XTX is symmetric�

�In practice we can use the equivalent expression �w � X��y where X�� is the pseudo	inverse
����� This method is related to Singular Value Decomposition and is discussed later�
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Single input

For a single input C��
x � ���N � ����

x� and X
Ty � �N � ���x�y� Hence

�w� �
�x�y
��
x�

������

This is exactly the same as the estimate for the slope in linear regression ��rst lecture��
This is re�assuring�

Uncorrelated inputs

For two uncorrelated inputs

C��
x �

�
� �


N�����x�




 �

N�����x�

�
	 ������

We also have

XTy �



�N � ���x��y
�N � ���x��y

�
������

The two weights are therefore

�w� �
�x�y
��
x�

������

�w� �
�x�y
��
x�

Again� these solutions are the same as for the univariate linear regression case�

General case

If the inputs are correlated then a coupling is introduced in the estimates of the
weights� weight � becomes a function of �x�y as well as �x�y


w �



��
x�

�x�x�
�x�x� ��

x�

��� 

�x��y
�x��y

�
������

����� Feature selection

Some of the inputs in a linear regression model may be very useful in predicting the
output� Others� not so� So how do we �nd which inputs or features are useful � This
problem is known as feature selection�
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The problem is tackled by looking at the coe�cients of each input �ie� the weights� and
seeing if they are signi�cantly non�zero� The procedure is identical to that described
for univariate linear regression�

The only added di�culty is that we have more inputs and more weights� but the
procedure is basically the same� Firstly� we have to estimate the variance on each
weight� This is done in the next section� We then compare each weight to zero using
a t�test�

The weight covariance matrix

Di�erent instantiations of target noise will generate di�erent estimated weight vectors
according to equation ���� For the case of Gaussian noise we do not actually have
to compute the weights on many instantiations of the target noise and then compute
the sample covariance �� the corresponding weight covariance matrix is given by the
equation

� � V ar��XTX���XTy� ������

In the appendix we show that this can be evaluated as

� � ��
e�X

TX��� ������

The correlation in the inputs introduces a correlation in the weights� for uncorrelated
inputs the weights will be uncorrelated� The variance of the jth weight� wj� is then
given by the jth diagonal entry in the covariance matrix

��
wj
� �jj ����	�

To see if a weight is signi�cantly non�zero we then compute CDFt�t� �the cumula�
tive density function� see earlier lecture� where t � wj��wj

and if it is above some
threshold� say p � 
�
�� the corresponding feature is removed�

Note that this procedure� which is based on a t�test� is exactly equivalent to a similar
procedure based on a partial F�test �see� for example� ���� page ��	��

If we do remove a weight then we must recompute all the other weights �and variances�
before deciding whether or not the other weights are signi�cantly non�zero� This
usually proceeds in a stepwise manner where we start with a large number of features
and reduce them as necessary �stepwise backward selection� or gradually build up the
number of features �stepwise forward selection� �����

Note that� if the weights were uncorrelated we could do feature selection in a single
step� we would not have to recompute weight values after each weight removal� This
provides one motivation for the use of orthogonal transforms in which the weights are
uncorrelated� Such transforms include Fourier and Wavelet transforms as we shall
see in later lectures�

�But this type of procedure is the basis of bootstrap estimates of parameter variances� See ��
��
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����� Example

Suppose we wish to predict a time series x� from two other time series x� and x�� We
can do this with the following regression model �

x� � w� � w�x� � w�x� ������

and the weights can be found using the previous formulae� To cope with the constant�
w�� we augment the X vector with an additional column of ��s�

We analyse data having covariance matrixC� and mean vectorm� �see equations ����
and ���� in an earlier lecture�� N � �
 data points were generated and are shown in
Figure ���� The weights were then estimated from equation ��� as


w � �w�� w�� w��
T ����
�

� �����
���
�
���� 
������T

Note that w� is much bigger than w�� The weight covariance matrix was estimated
from equation B��� as

� �

�
�� 
�
��� 
�

�� �
�����

�

�� 
�
�
� �
�����
�
����� �
����� ����
��

�
�	 ������

giving �w�
� 
����� and �w�

� 
������ The corresponding t�statistics are t� � �
���
and t� � �
����� giving p�values of �
��� and 
��
��� This indicates that the �rst
weight is signi�cantly di�erent from zero but the second weight is not ie� x� is a good
predictor of x� but x� is not� We can therefore remove x� from our regression model�

Question
 But what does linear regression tell us about the data that the correla�
tion�covariance matrix does�nt � Answer� Partial correlations�

����� Partial Correlation

Remember �see eg� equation ���� from lecture ��� the square of the correlation coef�
�cient between two variables x� and y is given by

r�x�y �
��
y � ��

e�x��

��
y

������

where ��
e�x�� is the variance of the errors from using a linear regression model based

on x� to predict y� Writing �
�
y � ��

e�
�� ie� the error with no predictive variables

r�x�y �
��
e�
�� ��

e�x��

��
e�
�

������

�Strictly� we can only apply this model if the samples within each time series are independent �see
later�� To make them independent we can randomize the time index thus removing any correlation
between lagged samples� We therefore end up with a random variables rather than time series�
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Figure ���
 Three time series having the correlation matrix C� and mean vector m�

shown in the text� The dotted line shows the value of the third time series as predicted
from the other two using a regression model�

When we have a second predictive variable x�� the square of the partial correlation
between x� and y is de�ned as

r�x�yjx� �
��
e�x��� ��

e�x�� x��

��
e�x��

������

where ��
e�x�� x�� is the variance of the errors from the regression model based on x�

and x�� It�s the extra proportion of variance in y explained by x�� It�s di�erent to
r�x�y because x� may be correlated to x� which itself explains some of the variance in
y� After controlling for this� the resulting proportionate reduction in variance is given
by r�x�yjx�� More generally� we can de�ne pth order partial correlations which are the
correlations between two variables after controlling for p variables�

The sign of the partial correlation is given by the sign of the corresponding regression
coe�cient�

Relation to regression coe�cients

Partial correlations are to regression coe�cients what the correlation is to the slope
in univariate linear regression� If the partial correlation is signi�cantly non�zero then
the corresponding regression coe�cient will also be� And vice�versa�
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��� Principal Component Analysis

Given a set of data vectors fxng we can construct a covariance matrix

C �
�

N

X
n

�xn � �x��xn � �x�T ������

or� if we construct a matrix X with rows equal to xn � �x then

C �
�

N
XTX ������

Because covariance matrices are real and symmetric we can apply the spectral theorem

C � Q�QT ������

If the eigenvectors �columns of Q� are normalised to unit length� they constitute
an orthonormal basis� If the eigenvalues are then ordered in magnitude such that
�� � �� � ��� � �d then the decomposition is known as Principal Component Analysis
�PCA�� The projection of a data point xn onto the principal components is

yn � Q
Txn ����	�

The mean projection is
�y � QT �x ������

The covariance of the projections is given by the matrix

Cy �
�

N

X
n

�yn � �y��yn � �y�T ����
�

Substituting in the previous two expressions gives

Cy �
�

N

X
n

QT �xn � �x��xn � �x�TQ ������

� QTCQ

� �

where � is the diagonal eigenvalue matrix with entries �k ��
�
k � �k�� This shows

that the variance of the kth projection is given by the kth eigenvalue� Moreover� it
says that the projections are uncorrelated� PCA may therefore be viewed as a linear
transform

y � QTx ������

which produces uncorrelated data�

����� The Multivariate Gaussian Density

In d dimensions the general multivariate normal probability density can be written

p�x� �
�

����d��jCj��� exp
�
��
�
�x� �x�TC���x� �x�



������
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where the mean �x is a d�dimensional vector� C is a d� d covariance matrix� and jCj
denotes the determinant of C� Because the determinant of a matrix is the product
of its eigenvalues then for covariance matrices� where the eigenvalues correspond to
variances� the determinant is a single number which represents the total volume of
variance� The quantity

M�x� � �x� �x�TC���x� �x� ������

which appears in the exponent is called the Mahalanobis distance from x to �x� This
is the equation for an ellipse �see earlier�� The directions of the axes are given by the
principal components and the lengths are given by �iM�x� where �i is the standard
deviation of the data in the ith direction �see earlier section on quadratic forms and
note that �i � ��

i �� We can therefore map a given probability p�x� to a Mahalanobis
distance �using equation E��� and from that plot the ellipse axes� See the �gure in
the appendix�

����� Dimensionality Reduction

Given that the eigenvalues in PCA are ordered and that they correspond to the vari�
ance of the data in orthogonal directions then it would seem plausible that a reason�
able data reconstruction could be obtained from just a few of the larger components
and this is indeed the case�

If we retain only a subset M � d of the basis vectors then a data point can be
reconstructed as


xn �
MX
k��

wn
kqk �

dX
k�M��

bkqk ������

where the bk are constants �they don�t depend on n� and� as we have seen� w
n
k � q

T
kxn�

If we keep only the projections wn
k and the associated eigenvectors qk we have reduced

the dimension of our data set from d to M � Now� given that the actual data point
can be written as

xn �
dX

k��

wn
kqk ������

where the sum is over all d components �not just M� then the reconstruction error is

xn � 
xn �
dX

k�M��

�wn
k � bk�qk ������

It is the cost of replacing the variable wn
k by a constant bk� The reconstruction error

averaged over the whole data set is

EM �
�

N

NX
n��

jjxn � 
xnjj ����	�

�
�

N

NX
n��

dX
k�M��

�wn
k � bk�

�
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where the qk�s disappear because q
T
k qk � �� We can minimise EM by setting

bk �
�

N

NX
n��

wn
k ������

� qTk �x

which is the mean projection in direction qk� The error is therefore

EM �
�

N

NX
n��

dX
k�M��

h
qTk �xn � �x�

i�
����
�

�
N

N

dX
k�M��

qTkCqk

�
dX

k�M��

�k

The reconstruction error is therefore minimised� for a given M � by throwing away the
d �M smallest components� as you would expect� The corresponding error is just
the sum of the corresponding eigenvalues�

����� Singular Value Decomposition

The eigenvalue�eigenvector factorisation �see equation ��	��

A � Q�QT ������

applies to square symmetric matrices only� There is an equivalent factorisation for
rectangular matrices� having N rows and d columns� called Singular Value Decompo�
sition �SVD�

A � Q�DQ
T
� ������

where Q� is an orthonormal N �by�N matrix� Q� is an orthonormal d�by�d matrix�D
is a diagonal matrix of dimension N �by�d and the kth diagonal entry in D is known
as the kth singular value� �k�

If we substitute the SVD of A into ATA� after some rearranging� we get

ATA � Q�D
TDQT

� ������

which is of the form A � Q�QT where Q � Q� and � � DTD� This shows that
the columns of Q� contain the eigenvectors of A

TA and that D contains the square
roots of the corresponding eigenvalues� Similarly� by substituting the SVD of A into
AAT we can show that the columns of Q� are the eigenvectors of AA

T �
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Relation to PCA

Given a data matrix X constructed as before �see PCA section�� except that the

matrix is scaled by a normalisation factor
q
��N � then XTX is equivalent to the

covariance matrix C� If we therefore decompose X using SVD� the principal com�
ponents will apear in Q� and the square roots of the corresponding eigenvalues will
appear in D�

Therefore we can implement PCA in one of two ways �i� compute the covariance ma�
trix and perform an eigendecomposition or �ii� use SVD directly on the �normalised�
data matrix�

The Pseudo�Inverse

Given the SVD of a matrix
A � Q�DQ

T
� ������

the Pseudo	Inverse of A is de�ned as

A� � Q�D
�QT

� ������

where D� is a d�by�N matrix with diagonal entries ����� ����� ���� ���d� The matrix
D� can be computed as

D� � �DTD���DT ������

The Pseudo�Inverse is used in the solution of the multivariate linear regression prob�
lem �see equation ����


w � �XTX���XTy ������

We can substitute the SVD for X into the above expression in a series of steps to
give

XTX � Q�D
TDQT

� ����	�

The inverse is
�XTX��� � Q��D

TD���QT
� ������

Hence
�XTX���XT � Q��D

TD���DTQT
� ����
�

Substituting for D� gives

�XTX���XT � Q�D
�QT

� ������

� X�

Therefore� the linear regression weights can be computed by projecting the targets
onto the Pseudo�Inverse of the input data matrix


w �X�y ������



Chapter �

Information Theory

��� Introduction

This lecture covers entropy� joint entropy� mutual information and minimum descrip�
tion length� See the texts by Cover ���� and Mackay ���� for a more comprehensive
treatment�

��� Measures of Information

Information on a computer is represented by binary bit strings� Decimal numbers
can be represented using the following encoding� The position of the binary digit

Bit � ��� � 	� Bit � ��� � �� Bit � ��� � �� Bit � ��� � �� Decimal

 
 
 
 


 
 
 � �

 
 � 
 �

 
 � � �

 � 
 
 �
� � � � �
� � � � �

 � � � ��
� � � � ��

Table ���
 Binary encoding

indicates its decimal equivalent such that if there are N bits the ith bit represents
the decimal number �N�i� Bit � is referred to as the most signi�cant bit and bit N
as the least signi�cant bit� To encode M di�erent messages requires log�M bits�

��
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��� Entropy

The table below shows the probability of occurrence p�xi� �to two decimal places� of
selected letters xi in the English alphabet� These statistics were taken from Mackay�s
book on Information Theory ����� The table also shows the information content of a

xi p�xi� h�xi�
a 
�
� ���
e 
�
� ���
j 
�

 �
��
q 
�
� �
��
t 
�
� ��	
z 
�

 �
��

Table ���
 Probability and Information content of letters

letter

h�xi� � log
�

p�xi�
�����

which is a measure of surprise� if we had to guess what a randomly chosen letter of
the English alphabet was going to be� we�d say it was an A� E� T or other frequently
occuring letter� If it turned out to be a Z we�d be surprised� The letter E is so
common that it is unusual to �nd a sentence without one� An exception is the ���
page novel �Gadsby� by Ernest Vincent Wright in which the author deliberately makes
no use of the letter E �from Cover�s book on Information Theory ������ The entropy
is the average information content

H�x� �
MX
i��

p�xi�h�xi� �����

where M is the number of discrete values that xi can take� It is usually written as

H�x� � �
MX
i��

p�xi� log p�xi� �����

with the convention that 
 log ��
 � 
� Entropy measures uncertainty�

Entropy is maximised for a uniform distribution p�xi� � ��M � The resulting entropy
is H�x� � log�M which is the number of binary bits required to represent M di�erent
messages ��rst section�� For M � �� for example� the maximum entropy distribution
is given by p�x�� � p�x�� � 
�� �eg� an unbiased coin� biased coins have lower
entropy��

The entropy of letters in the English language is ���� bits ���� �which is less than
log��� � ��� bits�� This is however� the information content due to considering just
the probability of occurence of letters� But� in language� our expectation of what
the next letter will be is determined by what the previous letters have been� To
measure this we need the concept of joint entropy� Because H�x� is the entropy of
a ��dimensional variable it is sometimes called the scalar entropy� to di�erentiate it
from the joint entropy�
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��� Joint Entropy

Table � shows the probability of occurence �to three decimal places� of selected pairs
of letters xi and yi where xi is followed by yi� This is called the joint probability
p�xi� yi�� The table also shows the joint information content

xi yj p�xi� yj� h�xi� yj�
t h 
�
�� ����
t s 
�


 �����
t r 
�
�� ���	

Table ���
 Probability and Information content of pairs of letters

h�xi� yj� � log
�

p�xi� yj�
�����

The average joint information content is given by the joint entropy

H�x� y� � �
MX
i��

MX
j��

p�xi� yj� log p�xi� yj� �����

If we �x x to� say xi then the probability of y taking on a particular value� say yj� is
given by the conditional probability

p�y � yjjx � xi� �
p�x � xi� y � yj�

p�x � xi�
�����

For example� if xi � t and yj � h then the joint probability p�xi� yj� is just the
probability of occurrence of the pair �which from table � is 
�
���� The conditional
probability p�yjjxi�� however� says that� given we�ve seen the letter t� what�s the
probability that the next letter will be h �which from tables � and � is 
�
���
�
� �

����� Re�arranging the above relationship �and dropping the y � yj notation� gives

p�x� y� � p�yjx�p�x� �����

Now if y does not depend on x then p�yjx� � p�y�� Hence� for independent variables�
we have

p�x� y� � p�y�p�x� ���	�

This means that� for independent variables� the joint entropy is the sum of the indi�
vidual �or scalar entropies�

H�x� y� � H�x� �H�y� �����

Consecutive letters in the English language are not independent �except either after or
during a bout of serious drinking�� If we take into account the statistical dependence
on the previous letter� the entropy of English reduces to ���� bits per letter �from
������ If we look at the statistics of not just pairs� but triplets and quadruplets of
letters or at the statistics of words then it is possible to calculate the entropy more
accurately� as more and more contextual structure is taken into account the estimates
of entropy reduce� See Cover�s book ����� page ���� for more details�
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��� Relative Entropy

The relative entropy or Kullback	Liebler Divergence between a distribution q�x� and
a distribution p�x� is de�ned as

D�qjjp� �X
x

q�x� log
q�x�

p�x�
����
�

Jensen�s inequality states that for any convex function � f�x� and set of M positive
coe�cients f�jg which sum to one

f�
MX
j��

�jxj� �
MX
j��

�jf�xj� ������

A sketch of a proof of this is given in Bishop ����� page ���� Using this inequality we
can show that

�D�qjjp� �
X
x

q�x� log
p�x�

q�x�
������

� log
X
x

p�x�

� log �

Hence
D�qjjp� � 
 ������

The KL�divergence will appear again in the discussion of the EM algorithm and
Variational Bayesian learning �see later lectures��

��� Mutual Information

The mutual information is de�ned ���� as the relative entropy between the joint
distribution and the product of individual distributions

I�x� y� � D�p�X� Y �jjp�X�p�Y �� ������

Substuting these distributions into ���
 allows us to express the mutual information
as the di�erence between the sum of the individual entropies and the joint entropy

I�x� y� � H�x� �H�y��H�x� y� ������

Therefore if x and y are independent the mutual information is zero� More generally�
I�x� y� is a measure of the dependence between variables and this dependence will be
captured if the underlying relationship is linear or nonlinear� This is to be contrasted
with Pearsons correlation coe�cient� which measures only linear correlation �see �rst
lecture��

�A convex function has a negative second derivative�
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��� Minimum Description Length

Given that a variable has a determinisitic component and a random component the
complexity of that variable can be de�ned as the length of a concise description of
that variables regularities �����

This de�nition has the merit that both random data and highly regular data will
have a low complexity and so we have a correspondence with our everyday notion of
complexity �

The length of a description can be measured by the number of binary bits required
to encode it� If the probability of a set of measurements D is given by p�Dj�� where
� are the parameters of a probabilistic model then the minimum length of a code for
representing D is� from Shannon�s coding theorem ����� the same as the information
content of that data under the model �see eg� equation ����

L � � log p�Dj�� ������

However� for the recevier to decode the message they will need to know the parameters
� which� being real numbers are encoded by truncating each to a �nite precision �
�
We need a total of �k log�
 bits to encode the This gives

Ltx � � log p�Dj��� k log�
 ������

The optimal precision can be found as follows� First� we expand the negative log�
likelihood �ie� the error� using a Taylor series about the Maximum Likelihood �ML�
solution ��� This gives

Ltx � � log p�Dj��� � �

�
��TH�� � k log�
 ����	�

where �� � �� �� and H is the Hessian of the error which is identical to the inverse
covariance matrix �the �rst order term in the Taylor series disappears as the error
gradient is zero at the ML solution�� The derivative is

�Ltx

��

� H�� � k

�

������

If the covariance matrix is diagonal �and therefore the Hessian is diagonal� then� for
the case of linear regression �see equation ����� the diagonal elements are

hi �
N��

xi

��
e

����
�

where ��
e is the variance of the errors and �

�
xi
is the variance of the ith input� More

generally� eg� nonlinear regression� this last variance will be replaced with the variance

�This is not the case� however� with measures such as the Algorithm Information Content �AIC�
or Entropy as these will be high even for purely random data�



g g � y� p

of the derivative of the output wrt� the ith parameter� But the dependence on N
remains� Setting the above derivative to zero therefore gives us

��
�� �
�

N
� constant ������

where the constant depends on the variance terms �when we come to take logs of �

this constant becomes an additive term that does�nt scale with either the number of
data points or the number of parameters in the model� we can therefore ignore it��
The Minimum Description Length �MDL� is therefore given by

MDL�k� � � log p�Dj�� � k

�
logN ������

This may be minimised over the number of parameters k to get the optimal model
complexity�

For a linear regression model

� log p�Dj�� � N

�
log ��

e ������

Therefore

MDLLinear�k� �
N

�
log ��

e �
k

�
logN ������

which is seen to consist of an accuracy term and a complexity term� This criterion can
be used to select the optimal number of input variables and therefore o�ers a solution
to the bias�variance dilemma �see lecture ��� In later lectures the MDL criterion will
be used in autoregressive and wavelet models�

The MDL complexity measure can be further re�ned by integrating out the depen�
dence on � altogether� The resulting measure is known as the stochastic complexity
����

I�k� � � log p�Djk� ������

where
p�Djk� �

Z
p�Dj�� k�p���d� ������

In Bayesian statistics this quantity is known as the �marginal likelihood� or �evidence��
The stochastic complexity measure is thus equivalent �after taking negative logs� to
the Bayesian model order selection criterion �see later�� See Bishop ����� page ����
for a further discussion of this relationship�



Chapter �

Fourier methods

��� Introduction

Of the many books on Fourier methods those by Chat�eld ����� Proakis and Manolakis
���� and Bloom�eld ��� are particularly good�

��� Sinewaves and Samples

Sines and cosines can be understood in terms of the vertical and horizontal displace�
ment of a �xed point on a rotating wheel� the wheel has unit length and rotates
anti	clockwise� The angle round the wheel is measured in degrees or radians �
� ���
for unit radius circles the circumference is ��� radians tell us how much of the circum�
ference we�ve got�� If we go round the wheel a whole number of times we end up in
the same place� eg�cos �� � cos �� � cos 
 � �� Frequency� f � is the number of times
round the wheel per second� Therefore� given x � cos���ft�� x � � at t � ��f� ��f
etc� For x � cos���ft �  � we get a head start �lead� of  radians� Negative
frequencies may be viewed as a wheel rotating clockwise instead of anti�clockwise�

If we assume we have samples of the signal every Ts seconds and in total we have
N such samples then Ts is known as the sampling period and Fs � ��Ts is the
sampling frequency in Hertz �Hz� �samples per second�� The nth sample occurs at
time t�n� � nTs � n�Fs� The cosine of sampled data can be written

x�n� � cos���ft�n�� �����

When dealing with sampled signals it is important to note that some frequencies
become indistinguishable from others� at a sampling frequency Fs the only unique
frequencies are in the range 
 to �Fs���Hz� Any frequencies outside this range become
aliases of one of the unique frequencies�

For example� if we sample at 	Hz then a ��Hz signal becomes indistinguishable from

��
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Figure ���
 Aliases The �gure shows a �Hz cosine wave and a 	�Hz cosine wave
as solid curves� At sampling times given by the dotted lines� which correspond to a
sampling frequency of �Hz� the ��Hz signal is an alias of the �Hz signal� Other
aliases are given by equation ����

a �Hz signal� This is shown in �gure ���� More generally� if f� is a unique frequency
then its aliases have frequencies given by

f � f� � kFs �����

where k is any positive or negative integer� eg� for f� � � and Fs � 	 the two lowest
frequency aliases� given by k � �� and k � �� are ��Hz and �
Hz�
Because of aliasing we must be careful when we interpret the results of spectral
analysis� This is discussed more at the end of the lecture�

��� Sinusoidal models

If our time series has a periodic component in it we might think about modelling it
with the equation

x�n� � R� �Rcos���ft�n� �  � � e�n� �����

where R� is the o�set �eg� mean value of x�n��� R is the amplitude of the sine wave� f
is the frequency and  is the phase� What our model does�nt explain will be soaked
up in the error term e�n�� Because of the trig identity

cos�A�B� � cosA cosB � sinA sinB �����

the model can be written in an alternative form

x�n� � R� � a cos���ft�n�� � b sin���ft�n�� � e�n� �����
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where a � R cos� � and b � �R sin� �� This is the form we consider for subsequent
analysis�

This type of model is similar to a class of models in statistics called Generalised Linear
Models �GLIMS�� They perform nonlinear regression by� �rst� taking �xed nonlinear
functions of the inputs� these functions being called basis functions� and second� form
an output by taking a linear combination of the basis function outputs� In sinusoidal
models the basis functions are sines and cosines� In statistics a much broader class
of functions is considered� However� sinewaves have some nice properties as we shall
see�

����� Fitting the model

If we let x � �x���� x���� ���� x�N��T � w � �R�� a� b�
T � e � �e�� e�� ���� eN �

T and

A �

�
�������

� cos��ft��� sin��ft���
� cos��ft��� sin��ft���
� cos��ft��� sin��ft���
�� �� ��
� cos��ft�N � sin��ft�N �

�
������	

�����

then the model can be written in the matrix form

x � Aw � e �����

which is in the standard form of a multivariate linear regression problem� The solution
is therefore

w � �ATA���ATx ���	�

����� But sinewaves are orthogonal

Because we are dealing with sinewaves it turns out that the above solution simpli�
�es� We restrict ourselves to a frequency fp which is an integer multiple of the base
frequency

fp � pFb �����

where p � ���N�� and

fb �
Fs
N

����
�

eg� for Fs � �

 and N � �

 �� seconds worth of data�� fb � �Hz and we can have
fp from �Hz up to �
Hz�� The orthogonality of sinewaves is expressed in the following
equations

NX
n��

cos ��fkt�n� �
NX
n��

sin ��fkt�n� � 
 ������

�To keep things simple we don�t allow fp where p � N��� if we did allow it we�d get N and � in
equations ���� and ���� for the case k � l� Also we must have N even�
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Figure ���
 Orthogonality of sinewaves Figure �a� shows cos ���fbt�n� and
cos ���fbt�n�� cosines which are 
 and � times the base frequency fb � �Hz� For
any two integer multiples k� l we get

PN
n�� cos��fkt�n�cos��flt�n� � 
� This can be

seen from Figure �b� which shows the product cos���fbt�n�cos���fbt�n�� Because of
the trig identity cosAcosB � 
��cos�A � B� � 
��cos�A � B� this looks like a �Hz
signal superimposed on a �Hz signal� The sum of this signal over a whole number of
cycles can be seen to be zero� because each cos term sums to zero� If� however� k or l
are not integers the product does not sum to zero and the orthogonality breaks down�

NX
n��

cos ��fkt�n� sin ��flt�n� � 
 ������

NX
n��

cos ��fkt�n� sin ��flt�n� � 
 ������

NX
n��

cos ��fkt�n� cos ��flt�n� �

 k �� l
N�� k � l

������

NX
n��

sin ��fkt�n� sin ��flt�n� �

 k �� l
N�� k � l

������

These results can be proved by various trig� identities or� more simply� by converting
to complex exponentials �see ��� or later in this chapter�� The results depend on the
fact that all frequencies that appear in the above sums are integer multiples of the
base frequency� see �gure ����

This property of sinewaves leads to the result

ATA �D ������

where D is a diagonal matrix� The �rst entry is N �from the inner product of two
columns of ��s of length N � the ��s are the coe�cients of the constant term R�� and
all the other entries are N��� A matrix Q for which

QTQ �D ������

is said to be orthogonal� Therefore ourAmatrix is orthogonal� This greatly simpli�es
the �tting of the model which now reduces to

w � D��ATx ����	�
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Figure ���
 Sunspot index �solid line� and prediction of it from a simple sinusoidal
model �dotted line��

which is simply a projection of the signal onto the basis matrix� with some pre�factor
�D��� remember the inverse of a diagonal matrix is simply the inverse of each of
the diagonal terms� so this is easy to compute�� Given that w � �a� b� R��

T we can
see that� for example� a is computed by simply projecting the data onto the second
column of the matrix A� eg�

a �
�

N

NX
n��

cos���ft�xt ������

Similarly�

b �
�

N

NX
n��

sin���ft�xt ����
�

R� �
�

N

NX
n��

xt ������

We applied the simple sinusoidal model to a �sunspot data set� as follows� We chose
�
 samples between the years ���� and ���
 �because there was a fairly steady mean
level in this period�� The sampling rate Fs � �Year� This gives a base frequency of
fb � ���
� We chose our frequency f � pfb with p��� giving a complete cycle once
every ten years� This gave rise to the following estimates� R� � ������ a � ����� and
b � ������ The data and predictions are shown in Figure ����
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��� Fourier Series

We might consider that our signal consists of lots of periodic components in which
case the multiple sinusoidal model would be more appropriate

x�t� � R� �
pX

k��

Rk cos���fkt�  k� � et ������

where there are p sinusoids with di�erent frequencies and phases� In a discrete Fourier
series there are p � N�� such sinusoids having frequencies

fk �
kFs
N

������

where k � ���N�� and Fs is the sampling frequency� Thus the frequencies range from
Fs�N up to Fs��� The Fourier series expansion of the signal x�t� is

x�t� � R� �
N��X
k��

Rk cos���fkt �  k� ������

Notice that there is no noise term� Because of the trig identity

cos�A�B� � cosA cosB � sinA sinB ������

this can be written in the form

x�t� � a� �
N��X
k��

ak cos���fkt� � bk sin���fkt� ������

where ak � Rk cos� k� and bk � �Rk sin� k�� Alternatively� we have R
�
k � a�k � b�k

and  � tan���bk�ak�� The signal at frequency fk is known as the kth harmonic�
Equivalently� we can write the nth sample as

x�n� � a� �
N��X
k��

ak cos���fkt�n�� � bk sin���fkt�n�� ������

where t�n� � nTs�

The important things to note about the sinusoids in a Fourier series are �i� the
frequencies are equally spread out� �ii� there are N�� of them where N is the number
of samples� �iii� Given Fs and N the frequencies are �xed� Also� note that in the
Fourier series �model� there is no noise� The Fourier series aims to represent the data
perfectly �which it can do due to the excessive number of basis functions���

The Fourier coe�cients can be computed by a generalisation of the process used to
compute the coe�cients in the simple sinusoidal model�

ak �
�

N

NX
n��

cos���fkt�n��x�n� ����	�

�Statisticians would frown on 
tting a model with N coe�cients toN data points as the estimates
will be very noisy� the Fourier series is a low bias �actually zero�� high variance model� This underlines
the fact that the Fourier methods are transforms rather than statistical models�
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Similarly�

bk �
�

N

NX
n��

sin���fkt�n��x�n� ������

a� �
�

N

NX
n��

x�n� ����
�

These equations can be derived as follows� To �nd� for example� ak� multiply both
sides of equation ���� by cos���fkt�n�� and sum over n� Due to the orthogonality
property of sinusoids �which still holds as all frequencies are integer multiples of a
base frequency� all terms on the right go to zero except for the one involving ak� This
just leaves ak�N��� on the right giving rise to the above formula�

����� Example

The plots on the right of Figure ��� show four components in a Fourier series expan�
sion� The components have been ordered by amplitude� The plots on the left of the
Figure show the corresponding Fourier approximation�

��� Fourier Transforms

Fourier series are representations of a signal by combinations of sinewaves of di�erent
magnitudes� frequencies and o�sets �or phases�� The magnitudes are given by the
Fourier coe�cients� These sinewaves can also be represented in terms of complex
exponentials �see the appendix for a quick review of complex numbers�� a representa�
tion which ultimately leads to algorithms for computing the Fourier coe�cients� the
Discrete Fourier Transform �DFT� and the Fast Fourier Transform �FFT��

����� Discrete Fourier Transform

Fourier series can be expressed in terms of complex exponentials� This representation
leads to an e�cient method for computing the coe�cients� We can write the cosine
terms as complex exponentials

ak cos���fkt�n�� � ak
exp�i��fkt�n�� � exp��i��fkt�n��

�
������

where i� � ��� Picture this as the addition of two vectors� one above the real axis
and one below� Together they make a vector on the real axis which is then halved�

We can also write the sine terms as

bk sin���fkt�n�� � bk
exp�i��fkt�n��� exp��i��fkt�n��

�i
������
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Figure ���
 Signal �solid line� and components of the Fourier series approximationPp
k��Rkcos���fk� k� �dotted lines� with �a� p � �� �b� p � �� �c� p � � and �d� p �

�� where we have ordered the components according to amplitude� The corresponding
individual terms are �e� R� � 
��
��f � ���� and  � 
����� �f� R� � 
����� f � ���
and  � 
����� �g� R� � 
�
��� f � ����� and  � 
���� and �h� R� � 
�
���
f � ��� and  � �
���
�



g g � y� p

Picture this as one vector above the real axis minus another vector below the real
axis� This results in a purely imaginary �and positive� vector� The result is halved
and then multiplied by the vector exp������ ��i� from multplying top and bottom
by i� which provides a rotation to the real axis�

Adding them �and moving i to the numerator by multiplying bk top and bottom by
i� gives

�

�
�ak � bki� exp�i��fkt�n�� �

�

�
�ak � bki� exp��i��fkt�n�� ������

Note that a single term at frequency k has split into a complex combination �the co�
e�cients are complex numbers� of a positive frequency term and a negative frequency
term� Substituting the above result into equation ���� and noting that fkt�n� � kn�N
we get

x�n� � a� �
�

�

N��X
k��

�ak � bki� exp�i��kn�N� �
�

�

N��X
k��

�ak � bki� exp��i��kn�N� ������

If we now let
�X�k� �

N

�
�ak � bki� ������

and note that for real signals �X��k� � �X��k� �negative frequencies are re!ections
across the real plane� ie� conjugates� then the �ak � bki� terms are equivalent to
�X��k�� Hence

x�n� � a� �
�

�N

N��X
k��

�X�k� exp�i��kn�N� �
�

�N

N��X
k��

�X�k� exp��i��kn�N� ������

Now� because �X�N � k� � �X��k� �this can be shown by considering the Fourier
transform of a signal x�n� and using the decomposition exp��i���N � k�n�N� �
exp��i��N�N� exp�i��kn�N� where the �rst term on the right is unity� we can write
the second summation as

x�n� � a� �
�

�N

N��X
k��

�X�k� exp�i��kn�N� �
�

�N

N��X
k�N��

�X�k� exp��i���N � k�n�N�

������
Using the same exponential decomposition allows us to write

x�n� � a� �
�

N

N��X
k��

�X�k� exp�i��kn�N� ����	�

If we now let X�k � �� � �X�k� then we can absorb the constant a� into the sum
giving

x�n� �
�

N

NX
k��

X�k� exp�i���k � ��n�N� ������

which is known as the Inverse Discrete Fourier Transform �IDFT�� The terms X�k�
are the complex valued Fourier coe�cients� We have the relations

a� � RefX���g ����
�
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ak �
�

N
RefX�k � ��g

bk �
��
N

ImfX�k � ��g

The complex valued Fourier coe�cients can be computed by �rst noting the orthog�
onality relations

NX
n��

exp�i���k � ��n�N� �
N k � ����N � �����N � ��

 otherwise

������

If we now multiply equation ���� by exp��i��ln�N�� sum from � to N and re�arrange
we get

X�k� �
NX
n��

x�n� exp��i���k � ��n�N� ������

which is the Discrete Fourier Transform �DFT��

����� The Fourier Matrix

If we write X�k� as a vector X � �X���� X���� ���� X�N��T and the input signal as
a vector x � �x�
�� x���� ���� x�N � ���T then the above equations can be written in
matrix form as follows� The Inverse Discrete Fourier Transform is

x � FX ������

where F is the Fourier Matrix and the Discrete Fourier Transform is

X � F��x ������

If we let

wN � exp�i���N� ������

we can write the Fourier matrix as

FN � �
N

�
��������

� � � � �

� wN w�
N � w


N���
N

� w�
N w�

N � w
�
N���
N

� � � � �

� w
N���
N w�
N���

N � w
N����

N

�
�������	

������

which has elements�

�FN�kn � w

k���
n���
N ������

�We have re	indexed such that we now have x��� to x�N � ��� Hence we have �n� �� instead of
n�
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Now� the inverse Fourier matrix is

F��
N �

�
��������

� � � � �

� w��
N w��

N � w
�
N���
N

� w��
N w��

N � w
��
N���
N

� � � � �

� w
�
N���
N w

��
N���
N � w

�
N����

N

�
�������	

����	�

where the elements are
�F��

N �kn � w
�
k���
n���
N ������

In the Fast Fourier Transform �FFT� an N �dimensional matrix multiplication can be
replaced by � M �dimensional multiplications� where M � N��� This is because the
exponential elements in the Fourier matrix have the key property

w�
N � wM ����
�

eg� exp�i������� � exp�i������� Cooley and Tukey realised you could use this
property as follows� If you split the IDFT

xj �
N��X
k��

wjk
NXk ������

into a summation of even parts and a summation of odd parts

xj �
M��X
k��

w�jk
N X�k �

M��X
k��

w

�k���j
N X�k�� ������

then we can use the identity w�
N � wM to give

xj �
M��X
k��

wjk
MX�k � wj

N

M��X
k��

wkj
MX�k�� ������

which is the summation of two IDFTs of dimension M �a similar argument applies
for the DFT��

This reduces the amount of computation by� approximately� a factor of �� We can then
replace each M �dimensional multiplication by an M���dimensional one� etc� FFTs
require N to be a power of �� because at the lowest level we have lots of ��dimensional
operations� For N � �
�� we get an overall speed�up by a factor of �	
� For larger
N the speed�ups are even greater� we are replacing N� multiplications by N

�
log�N �

��� Time�Frequency relations

Signals can be operated on in the time domain or in the frequency domain� We now
explore the relations between them�
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��	�� Power Spectral Density

The power in a signal is given by

Px �
NX
n��

jx�n�j� ������

We now derive an expression for Px in terms of the Fourier coe�cients� If we note
that jx�n�j can also be written in its conjugate form �the conjugate form has the same
magnitude� the phase is di�erent but this does�nt matter as we�re only interested in
magnitude�

jx�n�j � �

N

NX
k��

X��k� exp��i���k � ��n�N� ������

then we can write the power as

Px �
NX
n��

jx�n� �
N

NX
k��

X��k� exp��i���k � ��n�N�j ������

If we now change the order of the summations we get

Px �
�

N

NX
k��

jX��k�
NX
n��

x�n� exp��i���k � ��n�N�j ������

where the sum on the right is now equivalent to X�k�� Hence

Px �
�

N

NX
k��

jX�k�j� ����	�

We therefore have an equivalence between the power in the time domain and the
power in the frequency domain which is known as Parseval�s relation� The quantity

Px�k� � jX�k�j� ������

is known as the Power Spectral Density �PSD��

��	�� Filtering

The �ltering process

x�n� �
�X

l���

x��l�x��n� l� ����
�

is also known as convolution

x�n� � x��n� 	 x��n� ������

We will now see how it is related to frequency domain operations� If we let w �
���k� ���N � multiply both sides of the above equation by exp��iwn� and sum over
n the left hand side becomes the Fourier transform

X�w� �
�X

n���

x�n� exp��iwn� ������
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and the right hand side �RHS� is

�X
n���

�X
l���

x��l�x��n� l� exp��iwn� ������

Now� we can re�write the exponential term as follows

exp��iwn� � exp��iw�n� l�� exp��iwl� ������

Letting n� � n� l� we can write the RHS as

�X
l���

x��l� exp��iwl�
�X

n����

x��n
�� exp��iwn�� � X��w�X��w� ������

Hence� the �ltering operation is equivalent to

X�w� � X��w�X��w� ������

which means that convolution in the time domain is equivalent to multiplication in
the frequency domain� This is known as the convolution theorem�

��	�� Autocovariance and Power Spectral Density

The autocovariance of a signal is given by

�xx�n� �
�X

l���

x�l�x�l � n� ������

Using the same method that we used to prove the convolution theorem� but noting
that the term on the right is x�l � n� not x�n � l� we can show that the RHS is
equivalent to

X�w�X��w� � jX�w�j� ����	�

which is the Power Spectral Density� Px�w�� Combining this with what we get for the
left hand side gives

Px�w� �
�X

n���

�xx�n� exp��iwn� ������

which means that the PSD is the Fourier Transform of the autocovariance� This is
known as the Wiener	Khintchine Theorem� This is an important result� It means
that the PSD can be estimated from the autocovariance and vice�versa� It also means
that the PSD and the autocovariance contain the same information about the signal�

It is also worth noting that since both contain no information about the phase of a
signal then the signal cannot be uniquely constructed from either� To do this we need
to know the PSD and the Phase spectrum which is given by

 �k� � tan���
bk
ak
� ����
�
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where bk and ak are the real Fourier coe�cients�

We also note that the Fourier transform of a symmetric function is real� This is
because symmetric functions can be represented entirely by cosines� which are them�
selves symmetric� the sinewaves� which constitute the complex component of a Fourier
series� are no longer necessary� Therefore� because the autocovariance is symmetric
the PSD is real�

��� Spectral Estimation

��
�� The Periodogram

The periodogram of a signal xt is a plot of the normalised power in the kth harmonic
versus the frequency� fk of the kth harmonic� It is calculated as

I�fk� �
N

��
�a�k � b�k� ������

where ak and bk are the Fourier coe�cients�

The periodogram is a low bias �actually unbiased� but high variance � estimate of the
power at a given frequency� This is therefore a problem if the number of data points
is small� the estimated spectrum will be very spiky�

To overcome this� a number of algorithms exist to smooth the periodogram ie� to
reduce the variance� The Bartlett method� for example� takes an N �point sequence
and subdivides it into K nonoverlapping segments and calculates I�fk� for each� The
�nal periodogram is just the average over the K estimates� This results in a reduction
in variance by a factor K at the cost of reduced spectral resolution �by a factor K��

The Welch method is similar but averages modi�ed periodograms� the modi�cation
being a windowing of each segment of data� Also� the segments are allowed to overlap�
For further details of this and other smoothing methods see Chapter �� in Proakis
and Manolakis ����� This smoothing is necessary because at larger lags there are fewer
data points� so the estimates of covariance are commensurately more unreliable�

��
�� Autocovariance methods

The PSD can be calculated from the autocovariance� However� as the sample auto�
covariance on short segments of data has a high variance then so will the resulting
spectral estimates�

To overcome this a number of proposals have been made� The autocovariance func�
tion can �rst be smoothed and truncated by applying various smoothing windows�

�It is an inconsistent estimator� because the variance does�nt reduce to zero as the number of
samples tends to in
nity�
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for example Tukey� Parzen� Hanning or Hamming windows� For further details see
Chat�eld p���� ���� or Chapter �� in Proakis and Manolakis �����

��
�� Aliasing

Because of aliasing if we wish to uniquely identify frequencies up to BHz then we
must sample the data at a frequency fs 	 �BHz�

Alternatively� given a particular sample rate fs� in order to uniquely identify frequen�
cies up to fs��Hz �and not confuse them with higher frequencies� we must ensure that
there is no signal at frequencies higher than fs��� This can be achieved by applying
a Low�Pass Filter �LPF��

��
�� Filtering

There are two main classes of �lters� IIR �lters and FIR �lters� Their names derive
from how the �lters respond to a single pulse of input� their so�called impulse response�
The output of an In�nite Impulse Response �IIR� �lter is fed�back to its input� The
response to a single impulse is therefore a gradual decay which� though it may drop
rapidly towards zero �no output�� will never technically reach zero� hence the name
IIR�

In Finite Impulse Response �FIR� �lters the output is not fed�back to the input so
if there is no subsequent input there will be no output� The output of an FIR �lter
������ page ��
� is given by

y�n� �
p��X
k��

bkx�n� k� ������

where x�n� is the original signal and bk are the �lter coe�cients�

The simplest FIR �lter is the �normalised� rectangular window which takes a moving
average of a signal� This smooths the signal and therefore acts a low�pass �lter�
Longer windows cut down the range of frequencies that are passed�

Other examples of FIR �lters are the Bartlett� Blackman� Hamming and Hanning
windows shown in Figure ���� The curvier shape of the windows means their frequency
characteristics are more sharply de�ned� See Chapter 	 in ���� for more details� FIR
�lters are also known as Moving Average �MA� models which we will encounter in
the next lecture�

The output of an IIR �lter is given by

y�n� �
pa��X
k��

aky�n� k� �
pb��X
k��

bkx�n� k� ������

where the �rst term includes the feedback coe�cients and the second term is an FIR
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Figure ���
 Filter coe�cients of �a� Bartlett �triangular�� �b� Blackman� �c� Hamming
and �d� Hanning windows for p � �
�
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Figure ���
 Frequency response of a Hamming window �solid line� and a rectangular
window �dotted line�� The Hamming window cuts of the higher frequencies more
sharply�



g g � y� p

model� This type of �lter is also known as a Autoregressive Moving Average �ARMA�
model �the �rst term being the Autoregressive �AR� part��

IIR �lters can be designed by converting analog �lters into the above IIR digital form�
See ���� �section 	��� for details� Examples of resulting IIR implementations are the
Butterworth� Chebyshev� Elliptic and Bessel �lters�
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Chapter �

Stochastic Processes

��� Introduction

In Lecture � we discussed correlation and regression� We now discuss autocorrelation
and autoregressive processes� that is� the correlation between successive values of a
time series and the linear relations between them� We also show how autoregressive
models can be used for spectral estimation� Good textbooks that cover this material
are those by Grimmett and Stirzaker ���� and Papoulis �����

��� Autocorrelation

Given a time series xt we can produce a lagged version of the time series xt�T which
lags the original by T samples� We can then calculate the covariance between the two
signals

�xx�T � �
�

N � �
NX
t��

�xt�T � �x��xt � �x� �����

where �x is the signal mean and there are N samples� We can then plot �xx�T � as
a function of T � This is known as the autocovariance function� The autocorrelation
function is a normalised version of the autocovariance

rxx�T � �
�xx�T �

�xx�
�
�����

Note that �xx�
� � ��
x� We also have rxx�
� � �� Also� because �xy � �yx we have

rxx�T � � rxx��T �� the autocorrelation �and autocovariance� are symmetric functions
or even functions� Figure ��� shows a signal and a lagged version of it and Figure ���
shows the autocorrelation function�

��
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Figure ���
 Signal xt �top� and xt�� �bottom�� The bottom trace leads the top trace
by � samples� Or we may say it lags the top by 	� samples�
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Figure ���
 Autocorrelation function for xt� Notice the negative correlation at lag �

and positive correlation at lag �
� Can you see from Figure ��� why these should occur
�
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��� Autoregressive models

An autoregressive �AR� model predicts the value of a time series from previous values�
A pth order AR model is de�ned as

xt �
pX
i��

xt�iai � et �����

where ai are the AR coe�cients and et is the prediction error� These errors are
assumed to be Gaussian with zero�mean and variance ��

e � It is also possible to include
an extra parameter a� to soak up the mean value of the time series� Alternatively� we
can �rst subtract the mean from the data and then apply the zero�mean AR model
described above� We would also subtract any trend from the data �such as a linear
or exponential increase� as the AR model assumes stationarity �see later��

The above expression shows the relation for a single time step� To show the relation
for all time steps we can use matrix notation�

We can write the AR model in matrix form by making use of the embedding matrix�
M � and by writing the signal and AR coe�cients as vectors� We now illustrate this
for p � �� This gives

M �

�
����
x� x� x� x�
x� x� x� x�
�� �� �� ��
xN�� xN�� xN�� xN��

�
���	 �����

We can also write the AR coe�cients as a vector a � �a�� a�� a�� a��
T � the errors as a

vector e � �e�� e�� ���� eN �
T and the signal itself as a vector X � �x�� x�� ���� xN �

T � This
gives

�
����
x�
x�
��
xN

�
���	 �

�
����
x� x� x� x�
x� x� x� x�
�� �� �� ��
xN�� xN�� xN�� xN��

�
���	
�
����
a�
a�
a�
a�

�
���	�

�
����
e�
e�
��
eN

�
���	 �����

which can be compactly written as

X �Ma� e �����

The AR model is therefore a special case of the multivariate regression model �com�
pare the above equation to that given in the second lecture�� The AR coe�cients can
therefore be computed from the equation


a � �MTM���MTX �����

The AR predictions can then be computed as the vector


X �M �a ���	�
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and the error vector is then e �X � 
X� The variance of the noise is then calculated
as the variance of the error vector�

To illustrate this process we analyse our data set using an AR��� model� The AR
coe�cients were estimated to be


a � ���������
	� 
��
��
��	��T �����

and the AR predictions are shown in Figure ���� The noise variance was estimated to
be ��

e � 
�
�� which corresponds to a standard deviation of 
��	� The variance of the
original time series was 
��		� giving a signal to noise ratio of �
��		��
�
����
�
�� �
�����

	���� Random walks

If p � � and a� � � then the AR model reduces to a random walk model� an example
of which is shown in Figure ����

	���� Relation to autocorrelation

The autoregressive model can be written as

xt � a�xt�� � a�xt�� � ��� � apxt�p � et ����
�

If we multiply both sides by xt�k we get

xtxt�k � a�xt��xt�k � a�xt��xt�k � ���� apxt�pxt�k � etxt�k ������

If we now sum over t and divide by N � � and assume that the signal is zero mean
�if it isn�t we can easily make it so� just by subtracting the mean value from every
sample� the above equation can be re�written in terms of covariances at di�erent lags

�xx�k� � a��xx�k � �� � a��xx�k � �� � ���� ap�xx�k � p� � �e�x ������

where the last term �e�x is the covariance between the noise and the signal� But as the
noise is assumed to be independent from the signal �e�x � 
� If we now divide every
term by the signal variance we get a relation between the correlations at di�erent lags

rxx�k� � a�rxx�k � �� � a�rxx�k � �� � ���� aprxx�k � p� ������

This holds for all lags� For an AR�p� model we can write this relation out for the
�rst p lags� For p � �

�
����
rxx���
rxx���
rxx���
rxx���

�
���	 �

�
����
rxx�
� rxx���� rxx���� rxx����
rxx��� rxx�
� rxx���� rxx����
rxx��� rxx��� rxx�
� rxx����
rxx��� rxx��� rxx��� rxx�
�

�
���	
�
����
a�
a�
a�
a�

�
���	 ������
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Figure ���
 �a� Original signal �solid line�� X� and predictions �dotted line�� 
X� from
an AR��� model and �b� the prediction errors� e� Notice that the variance of the
errors is much less than that of the original signal�
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Figure ���
 A random walk�

which can be compactly written as

r � Ra ������

where r is the autocorrelation vector and R is the autocorrelation matrix� The above
equations are known� after their discoverers� as the Yule�Walker relations� They
provide another way to estimate AR coe�cients

a � R��r ������

This leads to a more e�cient algorithm than the general method for multivariate linear
regression �equation ���� because we can exploit the structure in the autocorrelation
matrix� By noting that rxx�k� � rxx��k� we can rewrite the correlation matrix as

R �

�
����
� rxx��� rxx��� rxx���
rxx��� � rxx��� rxx���
rxx��� rxx��� � rxx���
rxx��� rxx��� rxx��� �

�
���	 ������

Because this matrix is both symmetric and a Toeplitz matrix �the terms along any
diagonal are the same� we can use a recursive estimation technique known as the
Levinson�Durbin algorithm ��

	���� Relation to partial autocorrelation

The partial correlation coe�cients �see lecture �� in an AR model are known as
re�ection coe�cients� At lag m� the partial correlation between xt�m and xt� is

�This algorithm actually operates on the autocovariance matrix� although some authors� eg�
Pardey et al� ����� call it the autocorrelation matrix� What we refer to as autocorrelation� they refer
to as normalised autocorrelation�
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written as km� the mth re!ection coe�cient� It can be calculated as the relative
reduction in prediction error

km �
Em�� � Em

Em��

����	�

where Em is the prediction error from an AR�m� model �� The re!ection coe�cients
are to the AR coe�cients what the correlation is to the slope in a univariate AR
model� if the mth re!ection coe�cient is signi�cantly non�zero then so is the mth AR
coe�cient� And vice�versa�

The Levinson�Durbin algorithm computes re!ection coe�cients as part of a recursive
algorithm for computing the AR coe�cients� It �nds k� and from it calculates the AR
coe�cient for an AR��� model� a�� It then computes k� and from it calculates the AR
coe�cients for an AR��� model �a� is computed afresh and a� is re�estimated from a�
for the AR��� model � as it will be di�erent�� The algorithm continues by calculating
km and the coe�cients for AR�m� from AR�m � ��� For details� see Pardey et al�
�����

	���� Model order selection

Because an AR model is a special case of multivariate regression we can use the
same signi�cance testing procedure �see earlier lecture� to determine the relevance or
otherwise of our variables� To recap� �i� we compute our coe�cients for the AR�p�
model� �ii� we estimate the standard deviation of each AR coe�cient �see second
lecture�� �iii� we then perform a double�sided t�test to see if the smallest coe�cient is
signi�cantly di�erent from zero� If it is� then we might try a larger model order and
repeat the process� If it isn�t then we might try a smaller model order� We can either
start with a model order of � and gradually increase it �stepwise forward selection�
or start with a very high model order and gradually decrease it �stepwise backward
selection�� performing the signi�cance test as we increase�decrease the model order�

We note that the above statistical test is identical to seeing whether or not the pth
re!ection coe�cient is signi�cantly non�zero �see earlier lecture��

For our data set both SFS and SBS� with a signi�cance level of 
�
�� chose p � � as
the optimal model order� For SFS� for example� when p � � the smallest coe�cient
is a� � �
��	� and the corresponding standard deviation is �� � 
��
�� This gives
a t�statistic of t � ���	

� which under a double�sided test gives a probability of

�
���� We therefore cannot reject the null hypothesis that the coe�cient is zero at
the 
�
� signi�cance level� the SFS procedure therefore stops at a model order of ��

Alternatively� we could use other model selection criteria eg� the Minimum Descrip�
tion Length �MDL� �see Lecture ��

MDL�p� �
N

�
log��

e�p� �
p

�
logN ������

�We have also written Em � ��e �m��



g g � y� p

0 2 4 6 8 10
0.07

0.08

0.09

0.1

0.11

0.12

0.13

p

Figure ���
 Error variance� ��
e�p�� �solid line� and Final Prediction Error �FPE�

�dotted line� versus AR model order� p�

Another example is the Final Prediction Error

FPE�p� �

�
N � p� �

N � p� �

�
��
e�p� ����
�

where N is the number of samples and ��
e�p� is the error variance for model order p�

Applying this to our data gives the results shown in Figure ��� showing an optimal
moder order of � or ��

	���� Example� Sleep EEG

As a subject falls from wakefulness into a deep sleep the EEG increases in amplitude
and decreases in the frequency of its oscillations� The optimal AR model order also
decreases indicating a decrease in complexity� Using FPE Pardey et al� show� for
example� that wakefulness� REM sleep and deep sleep have typical optimal model
orders of �� � and � respectively� It should be noted that these are averages and the
optimal order has a high variance� Waking EEG shows the highest variance and deep
sleep the least�

	���	 Discussion

For a comprehensive introduction to AR modelling see Pardey at al� ����� This paper
also contains details of other methods for estimating AR coe�cients such as the
Burg algorithm� which minimises both a forwards prediction error and a backwards
prediction error�
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��� Moving Average Models

A Moving Average �MA� model of order q is de�ned as

xt �
qX
i��

biet�i ������

where et is Gaussian random noise with zero mean and variance ��
e � They are a

type of FIR �lter �see last lecture�� These can be combined with AR models to get
Autoregressive Moving Average �ARMA� models

xt �
pX
i��

aixt�i �
qX
i��

biet�i ������

which can be described as an ARMA�p�q� model� They are a type of IIR �lter �see
last lecture��

Usually� however� FIR and IIR �lters have a set of �xed coe�cients which have
been chosen to give the �lter particular frequency characteristics� In MA or ARMA
modelling the coe�cients are tuned to a particular time series so as to capture the
spectral characteristics of the underlying process�

��� Spectral Estimation

Autoregressive models can also be used for spectral estimation� An AR�p� model
predicts the next value in a time series as a linear combination of the p previous
values

xt � �
pX

k��

akxt�k � et ������

where ak are the AR coe�cients and et is IID Gaussian noise with zero mean and
variance ���

The above equation can be solved by assuming that the solution is in the form of an
exponential

xt � zt ������

where z is� generally� a complex number� This form of solution has the property that
xt�i � zt�i� e�ectively z�i acts as a delay operator denoting a delay of i time steps�
This allows the equation to be written

apz
t�p � ap��z

t�
p��� � ���� zt � et ������

It can then be rewritten
zt �

et
� �

Pp
k�� akz

�k
������

Given that any complex number can be written in exponential form

z � exp�i��fTs� ������
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Figure ���
 Power spectral estimates of two sinwaves in additive noise using �a�
Welch�s periodogram method and �b� Autoregressive spectral estimation�

where f is frequency and Ts is the sampling period we can see that the frequency
domain characteristics of an AR model are given by �also see Pardey et al� �����

P �f� �
��
eTs

j� �Pp
k�� ak exp��ik��fTs�j�

����	�

An AR�p� model can provide spectral estimates with p�� peaks� therefore if you know
how many peaks you�re looking for in the spectrum you can de�ne the ARmodel order�
Alternatively� AR model order estimation methods should automatically provide the
appropriate level of smoothing of the estimated spectrum�

AR spectral estimation has two distinct advantages over methods based on the pe�
riodogram �last lecture� �i� power can be estimated over a continuous range of fre�
quencies �not just at �xed intervals� and �ii� the power estimates have less variance�



Chapter �

Multiple Time Series

��� Introduction

We now consider the situation where we have a number of time series and wish to
explore the relations between them� We �rst look at the relation between cross�
correlation and multivariate autoregressive models and then at the cross�spectral
density and coherence�

��� Cross�correlation

Given two time series xt and yt we can delay xt by T samples and then calculate the
cross	covariance between the pair of signals� That is

�xy�T � �
�

N � �
NX
t��

�xt�T � �x��yt � �y� �����

where �x and �y are the means of each time series and there are N samples in
each� The function �xy�T � is the cross	covariance function� The cross	correlation is
a normalised version

rxy�T � �
�xy�T �q

�xx�
��yy�
�
�����

where we note that �xx�
� � ��
x and �yy�
� � ��

y are the variances of each signal�
Note that

rxy�
� �
�xy
�x�y

�����

which is the correlation between the two variables� Therefore unlike the autocorre�
lation� rxy is not� generally� equal to �� Figure ��� shows two time series and their
cross�correlation�

	�
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���� Cross�correlation is asymmetric

First� we re�cap as to why the auto�correlation is a symmetric function� The autoco�
variance� for a zero mean signal� is given by

�xx�T � �
�

N � �
NX
t��

xt�Txt �����

This can be written in the shorthand notation

�xx�T � �� xt�Txt 	 �����

where the angled brackets denote the average value or expectation� Now� for negative
lags

�xx��T � �� xt�Txt 	 �����

Subtracting T from the time index �this will make no di�erence to the expectation�
gives

�xx��T � �� xtxt�T 	 �����

which is identical to �xx�T �� as the ordering of variables makes no di�erence to the
expected value� Hence� the autocorrelation is a symmetric function�

The cross�correlation is a normalised cross�covariance which� assuming zero mean
signals� is given by

�xy�T � �� xt�T yt 	 ���	�

and for negative lags
�xy��T � �� xt�T yt 	 �����

Subtracting T from the time index now gives

�xy��T � �� xtyt�T 	 ����
�

which is di�erent to �xy�T �� To see this more clearly we can subtract T once more
from the time index to give

�xy��T � �� xt�T yt��T 	 ������

Hence� the cross�covariance� and therefore the cross�correlation� is an asymmetric
function�

To summarise
 moving signal A right �forward in time� and multiplying with signal
B is not the same as moving signal A left and multiplying with signal B� unless signal
A equals signal B�


���� Windowing

When calculating cross�correlations there are fewer data points at larger lags than
at shorter lags� The resulting estimates are commensurately less accurate� To take
account of this the estimates at long lags can be smoothed using various window
operators� See lecture ��
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Figure ���
 Signals xt �top� and yt �bottom��
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Figure ���
 Cross	correlation function rxy�T � for the data in Figure ���� A lag of
T denotes the top series� x� lagging the bottom series� y� Notice the big positive
correlation at a lag of ��� Can you see from Figure ��� why this should occur �
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���� Time�Delay Estimation

If we suspect that one signal is a� possibly noisy� time�delayed version of another signal
then the peak in the cross�correlation will identify the delay� For example� �gure ���
suggests that the top signal lags the bottom by a delay of �� samples� Given that the
sample rate is ���Hz this corresponds to a delay of 
�� seconds�

��� Multivariate Autoregressive models

A multivariate autoregressive �MAR� model is a linear predictor used for modelling
multiple time series� An MAR�p� model predicts the next vector value in a d�
dimensional time series� xt �a row vector� as a linear combination of the p previous
vector values of the time series

x�t� �
pX

k��

x�t� k�a�k� � et ������

where each ak is a d � by � d matrix of AR coe�cients and et is an IID Gaussian
noise vector with zero mean and covariance C� There are a total of np � p � d� d
AR coe�cients and the noise covariance matrix has d � d elements� If we write the
lagged vectors as a single augmented row vector

�x�t� � �x�t� ���x�t� ��� ����x�t� p�� ������

and the AR coe�cients as a single augmented matrix

A � �a����a���� ����a�p��T ������

then we can write the MAR model as

x�t� � �x�t�A� e�t� ������

The above equation shows the model at a single time point t�

The equation for the model over all time steps can be written in terms of the embed�
ding matrix� �M � whose tth row is �x�t�� the error matrix E having rows e�t� p� ��
and the target matrix X having rows x�t� p� ��� This gives

X � �MA�E ������

which is now in the standard form of a multivariate linear regression problem� The
AR coe�cients can therefore be calculated from


A �
�
�M
T �M


��
�M
T
X ������

and the AR predictions are then given by


x�t� � �x�t� 
A ����	�
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The predicion errors are
e�t� � x�t�� 
x�t� ������

and the noise covariance matrix is estimated as

C �
�

N � np
eT �t�e�t� ����
�

The denominator N � np arises because np degrees of freedom have been used up to
calculate the AR coe�cients �and we want the estimates of covariance to be unbiased��


���� Model order selection

Given that an MAR model can be expressed as a multivariate linear regression prob�
lem all the usual model order selection criteria can be employed such as stepwise
forwards and backwards selection� Other criteria also exist� Neumaier and Schneider
���� and Lutkepohl ���� investigate a number of methods including the Final Predic�
tion Error

FPE�p� � log�� � log
N � np
N � np

������

where

�� �
�

N
�det��N � np�C��

��d ������

but they prefer the Minimum Description Length �MDL� criterion�

MDL�p� �
N

�
log�� �

np
�
logN ������


���� Example

Given two time series and a MAR��� model� for example� the MAR predictions are


x�t� � �x�t�A ������


x�t� � �x�t� ���x�t� ���x�t� ���
�
��
a���
a���
a���

�
�	

h
�x��t� �x��t�

i
�
h
x��t� ��x��t� ��x��t� ��x��t� ��x��t� ��x��t� ��

i
�������

���������

�a����� �a�����
�a����� �a�����
�a����� �a�����
�a����� �a�����
�a����� �a�����
�a����� �a�����

�
��������	

�The MDL criterion is identical to the negative value of the Bayesian Information Criterion �BIC�
ie� MDL�p� � �BIC�p�� and Neumaier and Schneider refer to this measure as BIC�
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Figure ���
 Signals x��t� �top� and x��t� �bottom� and predictions from MAR�
�
model�

Applying an MAR��� model to our data set gave the following estimates for the AR
coe�cients� ap� and noise covariance C� which were estimated from equations ����
and ���


a� �


 ����	�� �
�����
�
�

�	 ���
	��

�

a� �




����� 
��	��
�
�
��� 
��
��

�

a� �



�
����� �
�
���
�
�
��� �
�����

�

C �




�
��� 
�

��

�

�� 
�
��	

�

��� Cross Spectral Density

Just as the Power Spectral Density �PSD� is the Fourier transform of the auto�
covariance function we may de�ne the Cross Spectral Density �CSD� as the Fourier
transform of the cross�covariance function

P���w� �
�X

n���

�x�x��n� exp��iwn� ������
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Note that if x� � x�� the CSD reduces to the PSD� Now� the cross�covariance of a
signal is given by

�x�x��n� �
�X

l���

x��l�x��l � n� ������

Substituting this into the earlier expression gives

P���w� �
�X

n���

�X
l���

x��l�x��l � n� exp��iwn� ����	�

By noting that

exp��iwn� � exp��iwl� exp�iwk� ������

where k � l � n we can see that the CSD splits into the product of two integrals

P���w� � X��w�X���w� ����
�

where

X��w� �
�X

l���

x��l� exp��iwl� ������

X���w� �
�X

k���

x��k� exp��iwk�

For real signals X�
� �w� � X���w� where " denotes the complex conjugate� Hence�

the cross spectral density is given by

P���w� � X��w�X
�
� �w� ������

This means that the CSD can be evaluated in one of two ways �i� by �rst estimating
the cross�covariance and Fourier transforming or �ii� by taking the Fourier transforms
of each signal and multiplying �after taking the conjugate of one of them�� A number
of algorithms exist which enhance the spectral estimation ability of each method�
These algorithms are basically extensions of the algorithms for PSD estimation� for
example� for type �i� methods we can perform Blackman�Tukey windowing of the
cross�covariance function and for type �ii� methods we can employ Welch�s algorithm
for averaging modi�ed periodograms before multiplying the transforms� See Carter
�	� for more details�

The CSD is complex

The CSD is complex because the cross�covariance is asymmetric �the PSD is real
because the auto�covariance is symmetric� in this special case the Fourier transorm
reduces to a cosine transform��
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���� More than two time series

The frequency domain characteristics of a multivariate time�series may be summarised
by the power spectral density matrix �Marple� ��	������ page �	��� For d time series

P �f� �

�
BBB�

P���f� P���f� 
 
 
 P�d�f�
P���f� P���f� 
 
 
 P�d�f�
� � � � � � � � � � � � � � � � � � � � � � � � � � �
P�d�f� P�d�f� 
 
 
 Pdd�f�

�
CCCA ������

where the diagonal elements contain the spectra of individual channels and the o��
diagonal elements contain the cross�spectra� The matrix is called a Hermitian matrix
because the elements are complex numbers�


���� Coherence and Phase

The complex coherence function is given by �Marple ��	�� p� ��
�

rij�f� �
Pij�f�q

Pii�f�
q
Pjj�f�

������

The coherence� or mean squared coherence �MSC�� between two channels is given by

rij�f� �j rij�f� j� ������

The phase spectrum� between two channels is given by


ij�f� � tan��


Im�rij�f��

Re�rij�f��

�
������

The MSC measures the linear correlation between two time series at each frequency
and is directly analagous to the squared correlation coe�cient in linear regression�
As such the MSC is intimately related to linear �ltering� where one signal is viewed
as a �ltered version of the other� This can be interpreted as a linear regression at
each frequency� The optimal regression coe�cient� or linear �lter� is given by

H�f� �
Pxy�f�

Pxx�f�
������

This is analagous to the expression for the regression coe�cient a � �xy��xx �see �rst
lecture�� The MSC is related to the optimal �lter as follows

r�xy�f� � jH�f�j�
Pxx�f�

Pyy�f�
����	�

which is analagous to the equivalent expression in linear regression r� � a���xx��yy��
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At a given frequency� if the phase of one signal is �xed relative to the other� then the
signals can have a high coherence at that frequency� This holds even if one signal is
entirely out of phase with the other �note that this is di�erent from adding up signals
which are out of phase� the signals cancel out� We are talking about the coherence
between the signals��

At a given frequency� if the phase of one signal changes relative to the other then
the signals will not be coherent at that frequency� The time over which the phase
relationship is constant is known as the coherence time� See ����� for an example�


���� Welch
s method for estimating coherence

Algorithms based on Welch�s method �such as the cohere function in the matlab
system identi�cation toolbox� are widely used �	� ����� The signal is split up into a
number of segments� N � each of length T and the segments may be overlapping� The
complex coherence estimate is then given as

�rij�f� �

PN
n��X

n
i �f��X

n
j �f��

�qPN
n��X

n
i �f�

�
qPN

n��X
n
j �f�

�
������

where n sums over the data segments� This equation is exactly the same form as for
estimating correlation coe�cients �see chapter ��� Note that if we have only N � �
data segment then the estimate of coherence will be � regardless of what the true
value is �this would be like regression with a single data point�� Therefore� we need
a number of segments�

Note that this only applies to Welch�type algorithms which compute the CSD from a
product of Fourier transforms� We can trade�o� good spectral resolution �requiring
large T � with low�variance estimates of coherence �requiring large N and therefore
small T �� To an extent� by increasing the overlap between segments �and therefore
the amount of computation� ie� number of FFTs computed� we can have the best of
both worlds�


���� MAR models

Just as the PSD can be calculated from AR coe�cients so the PSD�s and CSD�s can
be calculated from MAR coe�cients� First we compute

A�f� � I �
pX
k

ak exp��ik��fT � ����
�

where I is the identity matrix� f is the frequency of interest and T is the sampling
period� A�f� will be complex� This is analagous to the denominator in the equivalent
AR expression �� �

Pp
k�� ak exp��ik��ft��� Then we calculate the PSD matrix as

follows �Marple ��	� ����� page �
	�

PMAR�f� � T �A�f����C �A�f���H ������
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Figure ���
 Coherence estimates from �a� Welch�s periodogram method and �b� Mul	
tivariate Autoregressive model�

where C is the residual covariance matrix and H denotes the Hermitian transpose�
This is formed by taking the complex conjugate of each matrix element and then
applying the usual transpose operator�

Just as A�T denotes the transpose of the inverse so A�H denotes the Hermitian
transpose of the inverse� Once the PSD matrix has been calculated� we can calculate
the coherences of interest using equation �����

��� Example

To illustrate the estimation of coherence we generated two signals� The �rst� x� being
a �
Hz sine wave with additive Gaussian noise of standard deviation 
�� and the
second y being equal to the �rst but with more additive noise of the same standard
deviation� Five seconds of data were generated at a sample rate of ��	Hz� We
then calculated the coherence using �a� Welch�s modi�ed periodogram method with
N � ��	 samples per segment and a �
# overlap between segments and smoothing
via a Hanning window and �b� an MAR�	� model� Ideally� we should see a coherence
near to � at �
Hz and zero elsewhere� However� the coherence is highly non�zero at
other frequencies� This is because due to the noise component of the signal there
is power �and some cross�power� at all frequencies� As coherence is a ratio of cross�
power to power it will have a high variance unless the number of data samples is
large�

You should therefore be careful when interpreting coherence values� Preferably you
should perform a signi�cance test� either based on an assumption of Gaussian signals
�	� or using a Monte�Carlo method ��	�� See also the text by Bloom�eld ����
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��� Partial Coherence

There is a direct analogy to partial correlation� Given a target signal y and other
signals x�� x�� ���� xm we can calculate the �error� at a given frequency after including
k � ���m variables Em�f�� The partial coherence is

km�f� �
Em���f�� Em�f�

Em���f�
������

See Carter �	� for more details�
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Chapter 	

Subspace Methods

	�� Introduction

Principal Component Analysis �PCA� is applied to the analysis of time series data�
In this context we discuss measures of complexity and subspace methods for spectral
estimation�

	�� Singular Spectrum Analysis

����� Embedding

Given a single time series x� to xN we can form an embedding of dimension d by taking
length d snapshots xt � �xt� xt��� ���� xt�d� of the time series� We form an embedding
matrix X with di�erent snapshots in di�erent rows� For d � � for example

X �
�p
N

�
����
x� x� x� x�
x� x� x� x�
�� �� �� ��
xN�� xN�� xN�� xN

�
���	 �	���

The normalisation factor is there to ensure thatXTX produces the covariance matrix
�see PCA section��

C �XTX �	���

We note that embedding is identical to the procedure used in autoregressive modelling
to generate the �input data matrix�� Similarly� we see that the covariance matrix of
embedded data is identical to the autocovariance matrix

C �

�
����
�xx�
� �xx��� �xx��� �xx���
�xx��� �xx�
� �xx��� �xx���
�xx��� �xx��� �xx�
� �xx���
�xx��� �xx��� �xx��� �xx�
�

�
���	 �	���

��
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where �xx�k� is the autocovariance at lag k�

The application of PCA to embedded data �using either SVD on the embedding
matrix or eigendecomposition on the autocovariance matrix� is known as Singular
Spectrum Analysis �SSA� ��	� or PCA Embedding�

����� Noisy Time Series

If we suppose that the observed time series xn consists of a signal sn plus additive
noise en of variance �

�
e then

xn � sn � en �	���

If the noise is uncorrelated from sample to sample �a key assumption� then the noise
autocovariance matrix is equal to ��

eI� If the signal has autocovariance matrixCs and
corresponding singular values sk then application of SVD to the observed embedding
matrix will yield the singular values �see section 	�� for a proof�

�k � sk � �e �	���

Thus� the biggest singular values correspond to signal plus noise and the smallest to
just noise� A plot of the singular values is known as the singular spectrum� The value
�e is the noise �oor� By reconstructing the time series from only those components
above the noise !oor we can remove noise from the time series�

Projections and Reconstructions

To �nd the projection of the data onto the kth principal component we form the
projection matrix

P � QTXT �	���

where Q contains the eigenvectors of C �Q� from SVD� and the kth row of P ends
up containing the projection of the data onto the kth component� We can see this
more clearly as follows� for d � �

P �

�
����
� � q� � �
� � q� � �
� � q� � �
� � q� � �

�
���	
�
����
x� x� � xN��
x� x� � xN��
x� x� � xN��
x� x� � xN

�
���	 �	���

We can write the projection onto the kth component explicitly as

pk � q
T
kX

T �	�	�

After plotting the singular spectrum and identifying the noise !oor the signal can be
reconstructed using only those components from the signal subspace� This is achieved
by simply summing up the contributions from the �rst M chosen components


x �
MX
k��

pk �	���



g g � y� p

which is a row vector whose nth element� �xn contains the reconstruction of the original
signal xn�

From the section on dimensionality reduction �lecture �� we know that the average
reconstruction error will be

EM �
dX

k�M��

�k �	��
�

where �k � ��
k and we expect that this error is solely due to the noise� which has

been removed by SSA�

The overall process of projection and reconstruction amounts to a �ltering or denoising
of the signal� Figure 	�� shows the singular spectrum �embedding dimension d � �
�
of a short section of EEG� Figure 	�� shows the original EEG data and the SSA
�ltered data using only the �rst � principal components�

�a� 0 5 10 15 20 25 30
0

0.5

1

1.5

Figure 	��
 Singular spectrum of EEG data� A plot of �k versus k�
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Figure 	��
 �a� EEG data and �b� SSA	�ltered EEG data�
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����� Embedding Sinewaves

A pure sinewave

If we embed a pure sinewave with embedding dimension d � � then we can view the
data in the �embedding space�� Figure 	�� shows two such embeddings� one for a low
frequency sinewave and one for a high frequency sinewave� Each plot shows that the
data lie on a closed loop� There are two points to note�

�a� −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

�b� −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 	��
 Embedding Sinewaves� Plots of xn�� versus xn for sinewaves at frequencies
of �a� �
Hz and �b� �
Hz�

Firstly� whilst a loop is intrinsically a ��dimensional object �any point on the loop
can be described by a single number� how far round the loop from an agreed reference
point� in terms on linear bases �straight lines and planes� we need two basis vectors�
If the embedding took place in a higher dimension �d 	 �� we would still need two
basis vectors� Therefore� if we embed a pure sinewave in d dimensions the number of
corresponding singular values will be �� The remaining singular values will be zero�

Secondly� for the higher frequency signal we have fewer data points� This will become
relevant when we talk about spectral estimation methods based on SVD�

Multiple sinewaves in noise

We now look at using SSA on data consisting of multiple sinusoids with additive
noise� As an example we generated data from four sinusoids of di�erent ampltidues
and additive Gaussian noise� The amplitudes and frequencies were a� � �� a� �
�� a� � �� a� � � and f� � ��� f� � ��� f� � ��� f� � � and the standard deviation of
the noise was �e � �� We generated � seconds of data and sampled at ��	Hz� We then
embedded the data in dimension d � �
� Application of SVD yielded the singular
spectrum shown in Figure 	��� we also show the singular spectrum obtained for a data
set containing just the �rst two sinewaves� The pairs of singular values constitutng the
signal are clearly visible� Figure 	�� shows the Power Spectral Densities �computed
using Welch�s modi�ed periodogram method� see earlier� of the projections onto the
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Figure 	��
 The singular spectrums for �a� p � � and �b� p � � sinewaves in additive
noise�

�rst four pairs of principal components� They clearly pick out the corresponding
sinewaves�

	�� Spectral estimation

If we assume that our signal consists of p complex sinusoids

sk � exp�i��fkn� �	����

where k � ���p then the signal autocovariance function� being the inverse Fourier
transform of the Power Spectral Density� is

�xx�m� �
pX

k��

Pk exp�i��fkm� �	����

where m is the lag� Pk and fk are the power and frequency of the kth complex sinusoid
and i �

p��� If the signal embedding dimension is d� where d 	 p� then we can
compute �xx�m� for m � 
��d � �� The corresponding autocovariance matrix� for
d � �� for example is given by

Cxx �

�
����
�xx�
� �xx��� �xx��� �xx���
�xx��� �xx�
� �xx��� �xx���
�xx��� �xx��� �xx�
� �xx���
�xx��� �xx��� �xx��� �xx�
�

�
���	 �	����

The kth sinusoidal component of the signal at these d points is given by the d�
dimensional vector

sk � ��� exp�i��fk�� exp�i��fk�� ���� exp�i���M � ��fk��T �	����

The autocovariance matrix can now be written as follows

Cxx �
pX

k��

Pksks
H
k �	����
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Figure 	��
 The Power Spectral Densities of the �a� �rst �b� second �c� third and �d�
fourth pairs of projections� They clearly correspond to the original pure sinewaves
which were� in order of amplitude� of frequencies ��� ��� �
 and �Hz� The Fourier
transform of the data is the sum of the Fourier transforms of the projections�

where H is the Hermitian transpose �take the conjugate and then the transpose��

We now model our time series as signal plus noise� That is

y�n� � x�n� � e�n� �	����

where the noise has variance ��
e � The autocovariance matrix of the observed time

series is then given by

Cyy � Cxx � ��
eI �	����

We now look at an eigenanalysis of Cyy where the eigenvalues are ordered �� � �� �
��� � �M where M is the embedding dimension� The corresponding eigenvectors are
qk �as usual� they are normalised�� In the absence of noise� the eigenvalues ��� ��� ��� �p
will be non�zero while �p��� �p��� ��� �M will be zero �this is because there are only p
degrees of freedom in the data � from the p sinusoids��

The signal autocovariance matrix can therefore be written as

Cxx �
pX

k��

�kqkq
H
k �	��	�
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�this is the usual A � Q�QH eigendecomposition written as a summation� where
the sum runs only over the �rst p components�

In the presence of noise� ��� ��� ��� �p and �p��� �p��� ��� �M will be non�zero� Using the
orthogonality property QQH � I we can write the noise autocovariance as

��
eI � ��

e

MX
k��

qkq
H
k �	����

where the sum runs over all M components�

Combining the last two results allows us to write the observed autocovariance matrix
as

Cyy �
pX

k��

��k � ��
e�qkq

H
k �

MX
k�p��

��
eqkq

H
k �	��
�

We have two sets of eigenvectors� The �rst p eigenvectors form a basis for the signal
subspace while the remaining eigenvectors form a basis for the noise subspace� This
last name is slightly confusing as the noise also appears in the signal subspace� the
signal� however� does not appear in the noise subspace� In fact� the signal is orthogonal
to the eigenvectors constituting the noise subspace� This last fact can be used to
estimate the frequencies in the signal�

Suppose� for example� that d � p��� This means there will be a single vector in the
noise subspace and it will be the one with the smallest eigenvalue� Now� because the
signal is orthogonal to the noise we can write

sHk qp�� � 
 �	����

If we write the elements of qp�� as q
k
p�� then we have which can be written as

dX
k��

qkp�� exp��i���k � ��fk� � 
 �	����

Writing zk � exp��i��kfk� allows the above expression to be written in terms of
a polynomial in z� The roots allow us to identify the frequencies� The amplitudes
can then be found by solving the usual AR�type equation� This method of spectral
estimation is known as Pisarenko�s harmonic decomposition method�

More generally� if we have d 	 p�� �ie� p is unknown� then we can use the Multiple
Signal Classi�cation �MUSIC� algorithm� This is essentially the same as Pisarenko�s
method except that the noise variance is estimated as the average of the d�p smallest
eigenvalues� See Proakis ���� for more details� Figure 	�� compares spectral estimates
for the MUSIC algorithm versus Welch�s method on synthetic data containing � pure
sinusoids and additive Gaussian noise�



g g � y� p

�a� 0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

�b� 0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

Figure 	��
 Power Spectral Density estimates from �a� MUSIC and �b� Welch�s mod	
i�ed periodogram�

����� Model Order Selection

Wax and Kailath ���� suggest the Minimum Description Length �MDL� criterion for
selecting p

MDL�p� � �N log

�
G�p�

A�p�

�
� E�p� �	����

where

G�p� �
dY

k�p��

�k �	����

A�p� �

�
� �

d� p

dX
k�p��

�k

�
	
d�p

E�p� �
�

�
p��d� p� logN

where d is the embedding dimension� N is the number of samples and �k are the
eigenvalues� The optimal value of p can be used as a measure of signal complexity�

����� Comparison of methods

Kay and Marple ���� provide a comprehensive tutorial on the various spectral esti�
mation methods� Pardey et� al ���� show that the AR spectral estimates are typi�
cally better than those obtained from periodogram or autocovariance�based methods�
Proakis and Manolakis �Chapter ��� ���� tend to agree� although for data containing
a small number of sinusoids in additive noise� they advocate the MUSIC algorithm
and its relatives�



Chapter 


Nonlinear Methods


�� Introduction

This chapter covers entropy� mutual information� correlation sums� source entropy
and nonlinear prediction�

To motivate the use of nonlinear methods we give a simple example of where other
methods fail� Our example is the logistic map

xt�� � Rxt��� xt� �����

which is nonlinear because of the x�t term� Di�erent values of R are known to produce
di�erent dynamics� R���� and ��� produce periodic dynamics and R�� produces
chaotic dynamics� A �chaotic� system is a low�dimensional nonlinear determnistic
system which is sensitive to initial conditions� Because of the �folding� in the logistic

0 0.2 0.4 0.6 0.8 1
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0.6
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1

Figure ���
 A plot of xt�� versus xt for logistic map function xt�� � �xt�� � xt�� If
xt�� � 
��� then what was xt � Was it 
��
 or 
��� �

map� for example� the system quickly forgets where its been before� Also� a slight
change in the initial conditions soon leads to a big change in the subsequent state of
the system�

�
�
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For R � � the Power Spectral Density �PSD� is !at which is reminiscent of white
noise �the corresponding autocovariance is only sign�ciantly non�zero at zero lag��
Application of autoregressive models yields prediction errors with the same variance
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Figure ���
 �a� Time series from the logistic map �R � �� and �b� its Power Spectral
Density

as the signal itself� ie� they are unable to detect any deterministic component in the
signal� Thus� the application of linear methods would lead us to mistakenly conclude
that the signal is purely stochastic when in fact it is purely deterministic�

If we apply nonlinear methods� however� then the underlying determinism can be
discovered� This holds the promise of short�term predictability when� under the
hypothesis of linear dynamics the system was considered to be unpredictable�

Also most early claims that physiological systems were chaotic have since been dis�
credited� What is a more plausible working hypothesis� however� is that whilst these
systems may not be nonlinear and deterministic they may very well be nonlinear and
stochastic� and there is much evidence for this �����

We look at methods for detecting nonlinear dependencies such as the mutual informa	
tion and marginal mutual information and methods for exploiting these dependencies
for purposes of prediction� such as local	linear methods and neural networks�


�� Lyapunov Exponents

A de�ning characteristic of a chaotic system is sensitivity to initial conditions� Points
which are near at time 
 become exponentially far apart at time t� This can be
captured in the relation

dt � d�e
�t �����

where d� is the initial distance� dt is the distance at time t and � is the Lyapunov
exponent� Re�arranging the above equation gives

� � lim
t��

log
dt
d�

�����
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�� �� �� Attractor
� � � Fixed Point

 � � Cycle

 
 � Torus
� 
 � Chaotic

Table ���
 Relation of sign of Lyaponov exponents to type of attractor�

Negative ��s indicate convergence �damping� and positive ��s indicate divergence�
Exponents equal to zero indicate cycles�

If the points are in a d�dimensional embedding space then neighboring points will
initially be contained in a small multidimensional sphere� As time progresses this
sphere will be stretched to form an ellipsoid with the length of the ith principal axis
at time t given by di�t�� There is a corresponding spectrum of Lyapunov exponents�
one for each axis� If we consider a ��dimensional system� for example� then the
relation between the signs of the Lyapunov exponents and the type of attractors is
shown in Table ���� See ���� for more details�

The exponents can be calculate from a data set using the relation

�i � lim
t��

log
di�t�

d�
�����

Lyapunov exponents can be calculated from box�counting algorithms or from pre�
dictive models� In the last approach� for example� we can �t a neural network to
the data� calculate the networks Jacobian matrix J �the derivative of the network�s
output with respect to its inputs � see Bishop ��� for details� and �nd �i from an
eigendecomposition of J ���
� page ����� See also �����


�� Measures of Information

See earlier lecture on Information Theory�

����� Continuous variables

In order to apply information theory to continuous variables we can partition con�
tinuous space into a number of discrete bins �� If we use M bins and observe ni
occurences in the ith bin then the probability of the value xi occuring is

p�xi� �
ni
N

�����

�An alternative is to use a parametric model to estimate the probability density p�x� from which
H�x� can be calculated� The entropy of such a continuous variable is known as the di�erential
entropy �����
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where N is the total number of samples�

As we increase the number of bins� so the entropy increases�

If we have two continuous variables x and y and partition the two�dimensional space
into bins where the number of levels in each dimension is M then the probability of
a vector is given by

p�xi� yi� �
nij
N

�����

where there are nij samples in the i� jth bin and a total of N samples� The total
number of bins will beM�� The entropy of the above distribution is the joint entropy
�see equation ���� and the mutual information can be calculated from ����� In general�
these discretization procedures can be applied to d variables� But because the number
of bins is Md we need a lot of data to estimate the probabilities� As an alternative
to box�counting algorithms we could use tree search algorithms or correlation sum
methods �see later�� See Pineda and Sommerer ��	� for a review�

����� Measures of Information for Time Series

If our d continuous variables have come from a d�dimensional embedding of a time
series eg�

xi � �xi� xi��� ���� xi�d��� �����

and we partition the d�dimensional space into bins where the number of levels in each
dimension is M then the probability of a vector is given by

pd�xi� �
ni

N � d� �
���	�

where there are ni samples in the ith bin and a total of N � d � � samples� The
total number of bins will be Md so we need long time series to get good probability
estimates�

Given a signal that has a range V the bin width will be r � V�M � The entropy of
the above distribution is the joint entropy

Hd��� r� � �
MdX
i��

pd�xi� log pd�xi� �����

where � is the lag between samples� The mutual information� de�ned for d � �� is

I��� r� � �H���� r��H���� r� ����
�

It tells us about the nonlinear �or linear� correlation between xt�� and xt and by
varing � we can plot an autocorrelation function� Figure ��� shows a plot of this
for the logistic map time series� The entropies were calculated using a correlation
sum method �see later� rather than a box�counting method� The mutual information
reduces from about � at a lag of zero to nearly zero after � time steps� This makes
sense as with the logistic map we lose about � bit of information per iteration� The
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Figure ���
 Mutual Information� I��� r� versus lag � for Logistic Map data� A reso	
lution r � 
���x was used where �x is the standard deviation of the data

folding of the attractor acts like a switch and we lose about � bit of information per
switch press�

For general d we can de�ne the joint mutual information as the di�erence between
the scalar entropies and the joint entropy

Id��� r� � dH���� r��Hd��� r� ������

The joint mutual information measures the amount of information about xt contained
independently in the previous d samples ie� if we were to build a predictor� each of
the previous d samples could be used but no interaction terms would be allowed�

����� Marginal Mutual Information

The joint mutual information measures the di�erence between the measured joint
entropy of d variables and their joint entropy as if they were independent� For the
special case d � � it therefore measures the amount of information about xt contained
in the previous sample xt�� � For d � � and above� however� the corresponding
measure is the marginal mutual information �or incremental mutual information or
redundancy�

Rd��� r� � Id��� r�� Id����� r� ������

We can re�write this in terms of joint entropies

Rd��� r� � H���� r� �Hd����� r��Hd��� r� ������

Here the e�ect of the d � � previous variables is considered jointly �in the second
term� whereas in the joint mutual information they were considered independently�
The marginal mutual information� Rd��� r� measures the amount of information about
xt contained in the previous d samples� For d � � the marginal mutual information
reduces to the mutual information�
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����� Source Entropy

The Approximate Source Entropy statistics ���� are de�ned as

ApEn�d� r� N� � Hd��� r��Hd����� r� ������

and
ApEn�d� r� � lim

N��
�Hd��� r��Hd����� r�� ������

They are approximations to the source entropy or KS	entropy �from Mr� Kolmogorov
and Mr Sinai� which is de�ned as

hKS��� � lim
r��

lim
d��

ApEn�d� r� ������

Now� because of the limits� the KS�Entropy can never be estimated experimentally
�and� besides� it is only really of interest for purely deterministic sytems�� But ApEn
can� and as long as the embedding dimension is large enough and the resolution �ne
enough it will provide a good approximation� That is�

hKS��� � ApEn�d� r� ������

Moreover� we can relate it to the marginal mutual information� If we substitute the
above relation into equation ���� we get

Rd��� r� � H���� r�� hKS��� ����	�

Given that �see Weigend ���� page �
� or equation ���� later on�

hKS��� � �hKS ������

then we have
Rd��� r� � H���� r�� �hKS ����
�

Thus hKS is the gradient of a plot of Rd��� r� versus � � The d previous samples
contain an amount of information Rd��� r� about the present sample which decreases
as the time lag � is increased� The rate of decrease is governed by the source entropy�

So� at a time lag of zero� the second term on the right is zero� The marginal mutual
information is equal to the scalar entropy of the signal and the signal is completely
predictable�

At each additional time step our predictive accuracy �which is governed by the
marginal mutual information� loses hKS bits� After a certain number of time steps�
pt� the marginal mutual information will fall to zero and all prediction accuracy will
be lost�

In practice� zero prediction accuracy occurs when the the variance of the prediction
error equals the variance of the signal ��

x� Given a prediction accuracy at zero lag of
e� �equal to the resolution of the signal� after pt time steps the accuracy will be

�x � e��
pthKS ������
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Taking logs �to the base �� gives

pt �
log��x�e��

hKS
������

Therefore we must know the initial conditions exponentially more accurately �ex�
ponential decrease in e�� to get a linear increase of the prediction horizon pt� By
measuring hKS we can estimate the prediction horizon� Conversely� by measuring the
prediction horizon� from a predictive model �see later�� we can estimate hKS�

����� Correlation Sums

As an alternative to box�counting algorithms we can use correlation sums to estimate
the joint entropy �and therefore the mutual information and the source entropy�� If
we embed a time series in d�dimensional lag space such that

xi � �xi� xi��� ���� xi�d��� ������

then we can measure the maximum distance between two points as

jxi � xjj � max
k
fxi�k�� � xj�k��g ������

ie� look along the k out of d dimensions and pick the biggest distance� If we de�ne
the step function �or Heaviside function� as h�x� � � for x � 
 and h�x� � 
 for
x � 
 then the indicator function

Ir�xi�xj� � h�r � jxi � xjj� ������

is � if the maximum distance between two points is less than r� and zero otherwise�
We can now de�ne the pointwise correlation sum as

Cd
i �r� �

�

N � d� �

N�d��X
j��

Ir�xi�xj� ������

which is the proportion of points within distance r of the point xi� As such this
provides a good estimate for the probability density at point i

pd�xi� � Cd
i �r� ������

The joint entropy can be approximated as the average log of this inverse probability
����

Hd�r� �
��

N � d� �

N�d��X
i��

log pd�xi� ����	�

Note that the sum is now over i whereas before it was over j� This method was
used to calculate the mutual information in the earlier example� Now the probability
pd�xi� can be decomposed as

pd�xi� � p�x�i � x
�
i � ��� x

d
i � ������

� p�xdi jx�i � x�i � ��� xd��i �p�x�i � x
�
i � ��� x

d��
i �

� p�xdi jx�i � x�i � ��� xd��i �pd���xi�
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Substituting this into the de�nitions for the joint entropies gives an expression for
the approximate source entropy

ApEn�d� r� N� �
��

N � d� �

N�d��X
i��

log p�xdi jx�i � x�i � ��� xd��i � ����
�

Therefore� the approximate source entropy can be interpreted as the average log of a
conditional probability� the probability that points are within distance r in embed�
ding dimension d given that they were within this distance in embedding dimension
d��� Application of ApEn to the logistic map shows that it is able to detect the dif�
ference between the �simpler� periodic regime and the more complex �chaotic� regime�
Application of ApEn to physiological signals is discussed in ���� ��� ���� See Pincus

R ApEn
��� 
�

��� 
����
��	 
����

Table ���
 Approximate entropy of the logistic map time series with d � �� N � �

�
r � 
���x� Increasing R increases the complexity of the time series which is re�ected
in higher values of ApEn�

���� for a discussion on how to select r�


�� Nonlinear Prediction

Given a time series xn where n � ���N we wish to predict future values of the series
ie xN��� xN�� etc� If we view the time series up to time N as a �xed data set D then
this can be achieved by inferring a statistical model from the data and using this
model to predict future values of the signal�

This could� for example� be achieved by an autoregressive model which predicts the
next value in the time series eg xN�� as a linear combination of the p previous values

�xN�� � w�xN � w�xN�� � ���� wkxN�k�� ������

where wk are the autoregressive coe�cients �see earlier lecture�� These can be �learnt�
by tuning the model to the data set D�

This same process can be repeated but with a more powerful class of predictive
models� nonlinear predictors� These replace the linear function in the above equation
with a nonlinear function

�xN�� � f�w� xN � xN��� ��� xN�k��� ������

having parameters w� Nonlinear predictors may be categorized into two broad classes
�i� Local methods and �ii� Global methods�
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����� Local methods

Given a data set of N embedded points D � fxng we can make a nonlinear prediction
of a future time series value xp�T from the embedded data point xp as follows� Firstly�
we �nd the k�nearest neighbours amongst D� That is� the k points in D which
minimise the distance

jjxn � xpjj ������

Put these points� �xn� in rows of a matrixX and put the corresponding �future� values
�xn�T into the vector Y � We now �t a linear model

Y � wX ������

in the usual manner

w � �XTX���XTY ������

and we can then use it to make the prediction

�xp�T � wxp ������

This constitutes a local autoregressive model since only points in the neighbourhood
of the predicting region have been used� As k � N we get the usual �global� autore�
gresive model�

A plot of prediction error versus k shows whether a local linear model �which is
globally nonlinear� or a global linear model is appropriate� These plots are known
as Deterministic versus Stochastic �DVS� plots ���� For stochastic linear dynamics
k � N gives the smallest error and for deterministic nonlinear dynamics k � �d���
where d is the dimension of the attractor� gives the smallest error� Physiological data�
such as heart rate or EEG� is in�between� it varies from nonlinear�stochastic to linear
stochastic�

A cautionary note in the interpretation of these plots is due to the issue of stationarity�
This is because a nonstationary linear system may be viewed as a stationary nonlinear
system� The two viewpoints are both valid descriptions of the same dynamics�
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Figure ���
 �a� Intensity pulsations of a laser and �b� heart rate�



g g � y� p

�a� 3 4 5 6 7
0.5

1

1.5

2

2.5

3

�b� 3 4 5 6 7
−0.23

−0.22

−0.21

−0.2

−0.19

−0.18

−0.17

−0.16

−0.15

−0.14

Figure ���
 Plots of �log� prediction error� E� versus �log� neighbourhood size� k� for
�a� laser data and �b� heart	rate data� The minimum error points are at �a� logk � ��
k � �� and �b� logk � ���� k � ��� These indicate that �a� the laser data is nonlinear
and deterministic and �b� the heart	rate data is nonlinear and stochastic�

Denoising

Not only can local methods be used for nonlinear prediction but also for nonlinear
denoising� If� for example� the above linear prediction step is replaced by an SVD
step we have a local�SVD denoising algorithm� This can also be used in combination
with local prediction methods � see Sauer et� al in �����

����� Global methods

Probably the most powerful nonlinear predictor is a Neural Network and the most
commonly used network is the Multi	Layer Perceptron �MLP�� This consists of a
number of layers of processing elements �usually only two�� The �rst layer consists of
a number of linear transforms which are then operated on by a nonlinearity� There
are j � ���p such functions each called a hidden unit

hj � f�
dX
i��

wijxn�i� ������

where i sums over the embedding and f is usually a sigmoidal nonlinearity

f�a� �
�

� � e�a
����	�

The output of the second layer gives the networks prediction which is a linear com�
bination of hidden unit responses

�xn�T �
dX

j�p

vjhj ������

Given a data set of of embedded vectors xn and corresponding future values xn�T
�often T � �� the parameters of the model can be set so as to minimise the prediction
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error

E �
NX
n��

�xn�T � �xn�T �� ����
�

This can be achieved by various non�linear optimisation algorithms� The number of
hidden units can be chosen according to various model order selection criterion� See
Bishop ��� for details�

Application of neural nets to some time series� eg� the laser data� shows them to be
better predictors than linear methods by several orders of magnitude �����

Other global nonlinear methods involve the use of polynomial functions or Volterra
series� Predictions are formed from linear combinations of quadratic and higher order
terms eg�

�xn�T � w�xn � w�x
�
n � w�xnxn�� � w�xn�� � ��� ������

The number and order of such functions can be found empirically or from prior
knowledge of the possible interactions�


�� Discusion

A nonlinear dynamical system� with or without added stochastic noise� can thus be
characterised by a number of measures
 �i� source entropy� �ii� prediction error and
�iii� Lyapunov exponents and there are relations between them� There are also many
more measures that we have�nt discussed� Most of these are relevant to nonlinear
deterministic systems rather than nonlinear stochastic ones� �the most prominent
being correlation dimension ������

To use them to� say� di�erentiate between di�erent physiological states or experimen�
tal conditions requires not just estimating the measures themselves but also providing
error bars so we can apply signi�cance tests�

For these �nonlinear� statistics� these most often take the form of Monte�Carlo esti�
mates� Given a particular time series we compute our measure of interest� say ApEn�
We then shu$e the data and recompute the statistic� If we do this for a number of
shu$es then where on the resulting PDF our original value falls is the signi�cance
value�

The sum of the positive Lyapunov exponents is equal to the source entropy

hKS �
X
�i	�

�i ������

This is known as Pesin�s Identity �� This completes the circle
 Source Entropy �
Nonlinear Prediction � Lyapunov Exponents � Source Entropy etc�

�In fact� it is an upper bound on the source entropy ����
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Chapter ��

Bayesian Methods

���� Introduction

See ���� or Box and Tiao ��� for a general introduction to Bayesian statistics and ����
for applications of Bayesian methods in signal processing�

���� Bayes Rule

The distribution of a variable x conditioned on a variable y is

p�x j y� � p�x� y�

p�y�
��
���

Given that p�y j x� can be expressed similarly we can write

p�x j y� � p�y j x�p�x�
p�y�

��
���

which is Baye�s rule� The density p�x� is known as the prior� p�y j x� as the likelihood
and p�y� as the evidence or marginal likelihood� Baye�s rule shows how a prior distri�
bution can be turned into a posterior distribution ie� how we update our distribution
in the light of new information� To do this it is necessary to calculate the normalising
term� the evidence

p�y� �
Z
p�y j x�p�x�dx ��
���

which� being an integral� can sometimes be problematic to evaluate�

���
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������ Example

For discrete variables� Given a disease D with a prevalence of ten percent� a test for
it T having a sensitivity of ��# and a speci�city of 	�# we have

p�D � �� � 
�� ��
���

p�T � �jD � �� � 
��� ��
���

p�T � 
jD � 
� � 
�	� ��
���

The probability that subjects who test positive for D actually have D is then given
by Bayes� rule

p�D � �jT � �� �
p�T � �jD � ��p�D � ��

p�T � �jD � ��p�D � �� � p�T � �jD � 
�p�D � 
�
��
���

�

���� 
��


���� 
�� � 
���� 
�� ��
�	�

� 
���� ��
���

���� Gaussian Variables

A Gaussian random variable x has the probability density function �PDF�

p�x� �
�p
����

exp


��x� ���

���

�
��
��
�

where the mean is � and the variance is ��� The inverse of the variance is known as
the precision 
 � ����� The Gaussian PDF is written in shorthand as

p�x� � N�x��� ��� ��
����

If the prior is Gaussian
p�x� � N�x� x�� ��
�� ��
����

where x� is the prior mean and 
� is the prior precision and the likelihood is also
Gaussian

p�y j x� � N�y� x� ��
D� ��
����

where the variable x is the mean of the likelihood and 
D is the data precision then
the posterior distribution is also Gaussian �see eg� �����page ����

p�x j y� � N�x�m� ��
� ��
����

where the mean and precision are given by


 � 
� � 
D ��
����

and

m �

�


x� �


D


y ��
����

Thus� the posterior precision is given by the sum of the prior precision and the data
precision and the posterior mean is given by the sum of the prior data mean and the
new data value each weighted by their relative precisions ��

�This is the same as inverse variance weighting where the weights sum to one�
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������ Combining Estimates

This type of updating is relevant to the sensor fusion problem� where we have in�
formation about a variable from two di�erent sources and we wish to combine that
information�

Say� for example� we had two estimates for the amount of carbon in a given compound�
method � estimates the percentage to be ���� units and method � estimates it to be
�
� � units� Before observing the second result we have a prior belief that the mean
percentage is x� � �� and the variance is �� � �� which corresponds to a precision
of 
� � 
�
���� Whilst the �rst result is viewed as the prior� the second result is
viewed as the �data�� which has mean y � �
 and precision 
D � ���

� � 
�
�
�� Our
posterior estimate for the amount of carbon is then estimated as

m �

�
���


�
	��
� �� � 
�
�
�


�
	��
� �
 � ���� ��
����

and the posterior standard deviation is ���� If the results of method � were chosen as
the prior �instead of method �� we�d get the same result�

The equation for the posterior mean can be re�arranged as

m � x� �

D


�y � x�� ��
��	�

showing that the new estimate is the old estimate plus some fraction �which may be
viewed as a learning rate� of an error term e � y � x��

������ Sequential Estimation

Also� this type of update is particularly suited to sequential estimation� where data
comes in a sample at a time and we update our estimates at each time step� Baye�s
rule is perfect for this because today�s posterior becomes tomorrow�s prior�

Say� for example� we have a random variable x which we observe sequentially � the
value at time t being xt ie� a time series � and that we wish to estimate the mean�
without storing all the data points� At time t our estimate for the mean is �t and
our estimate for the variance is ��

t � Now our prior distribution for �t �ie� prior to
observing xt� is

p��t� � N��t��t� �
�
t �t� ��
����

where the variance is given by the usual standard error formula �see lecture ��� The
likelihood of the new data point is

p�xtj�t� � N�xt��t� �
�
t � ��
��
�

Adding the precisions to get the posterior precision gives �from equation �
����


 �
t

��
t

�
�

��
t

�
t� �

��
t

��
����
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Figure �
��
 Sequential estimation of stationary mean� The graph plots data
values xt �crosses� and the estimated mean value �t �circles� versus iteration number
t�

The posterior mean is then given by equation �
���

�t�� �
t

t� �
�t �

�

t � �
xt ��
����

Re�arranging gives

�t�� � �t �
�

t � �
�xt � �t� ��
����

In the above procedure we have implicitly assumed that the data xt is stationary
ie� that the mean at time t is equal to the mean at time t � T for all T �a more
formal de�nition of stationarity will be given later�� This results in our estimate for
the mean converging to a steady value as t increases� The �nal value is exactly the
same as if we�d stored all the data and calculated it in the usual way�

But what if the signal is non�stationary � See the chapter on Kalman �lters�

���� Multiple Gaussian Variables

A d�dimensional Gaussian random vector x has a PDF given by

p�x� �
�

����d��jCj��� exp
�
��
�
�x� �x�TC���x� �x�



��
����

where the mean �x is a d�dimensional vector� C is a d � d covariance matrix� and
jCj denotes the determinant of C� The multivariate Gaussian PDF is written in
shorthand as

p�x� � N�x� �x�C� ��
����
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If the prior distribution is Gaussian

p�x� � N�x�x��%�� ��
����

where x� is the prior mean and %� is the prior covariance and the likelihood is

p�y j x� � N�y�x�%D� ��
����

where the variable x is the mean of the likelihood and %D is the data covariance then
the posterior distribution is given by ��
�

p�x j y� � N�x�m��� ��
��	�

where the mean and covariance are given by

��� � ���
� ����

D ��
����

and
m � ����

� x� �����
D y ��
��
�

These updates are similar in form to the updates for the univariate case� Again� these
update formulae are useful for both sequential estimation and sensor fusion� In the
sequential estimation case we have a Kalman �lter �see next lecture��

���� General Linear Models

Given a set of input variables zn �a row vector� where n � ���N and a �xed� possibly
nonlinear� function of them

xn � F �zn� ��
����

the output variable is then given as a linear combination

yn � xnw � en ��
����

where w is a column vector of coe�cients and e is zero mean Gaussian noise with
precision 
� This type of model is su�ciently general to include �i� autoregressive
models if F is the identity function and xn � �yn��� yn��� ���� yn�p�� �ii� Fourier�type
models if F are sine and cosine functions and �iii� wavelet models if F are the wavelet
bases�

Given a data set D � fzn� yng where n � ���N the likelihood of the data is given by

p�D j w� 
� �

�



��

�N��
exp��
ED� ��
����

where

ED �
�

�
�Y �Xw�T �Y �Xw� ��
����
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and Y is a column vector with entries yn and the nth row of the matrixX contains xn�
The weights are drawn from a zero�mean Gaussian prior with an isotropic covariance
having precision �

p�w j �� �
�
�

��


p��
exp���EW � ��
����

where

EW �
�

�

pX
i��

w�
i ��
����

�
�

�
wTw

The posterior distribution over the unknown coe�cients is then given by Bayes� rule

p�wjD��� 
� � p�Djw� 
�p�wj��R
p�Djw� 
�p�wj��dw ��
����

As the prior is normal with mean w� � 
 and covariance �� � �����I� the likelihood
is normal with mean wD �X

��Y and covariance �D � �
X
TX��� then the poste�

rior is also a normal with mean and covariance given by equations �
��
 and �
����
The posterior is therefore given by

p�wjD��� 
� � N�w� �w� ��� ��
��	�

where

�� � �
XTX � �I��� ��
����

�w � ��XT
Y

������ The evidence framework

If the �hyperparameters� � and 
 are unknown �they almost always are� they can
be set according to following method known as either the evidence framework ����
or Maximimum Likelihood II �ML II� ���� In this approach � and 
 are set so as to
maximise the evidence �also known as marginal likelihood�

p�Dj�� 
� �
Z
p�Djw� 
�p�wj��dw ��
��
�

Substituting in our earlier expressions for the prior and likelihood gives

p�Dj�� 
� �
�



��

��N�� �
�

��


�p�� Z
exp��E�w��dw ��
����

where
E�w� � 
ED � �Ew ��
����



g g � y� p

Bishop shows that ����� page ��	 and further details in Appendix B� the integral in
equation �
��� can be evaluated as

Z
exp��E�w��dw � ����p��j�j��� exp��E�w�� ��
����

The log of the evidence can then be written as

EV �p� � ��EW � 
ED � 
�� log j�j� p

�
log� �

N

�
log 
 � N

�
log �� ��
����

The values of � and 
 which maximise the evidence are

� �
�

�EW

��
����


 �
N � �

�ED
��
����

where �� the number of �well�determined� coe�cients� is given by

� � p� �Trace��� ��
����

which is calculated using the �old� value of �� The update for � is therefore an implicit
equation� We can also write it as the explicit update

� �
p

�EW � Trace���
��
��	�

See Bishop ����� chapter �
� or Mackay ���� for a derivation of the above equations�

To summarise� the evidence framework works as follows� The weights are �rst es�
timated using equation �
��
� The hyperparmeters are then estimated using equa�
tions �
��� and �
��	� This weights are then re�estimated and so are the hyperpa�
rameters until the procedure converges� This usually takes ten or so cycles�

Once the above procedure has converged we can use the evidence as a model order
selection criterion�

������ Example

The following �gures compare the MDL and Bayesian Evidence model order selection
criteria� The �rst �gure shows that� for low model order �relative to the number
of data samples� both methods work equally well� The second �gure shows that�
at high model order� the Bayesian evidence is superior� The last �gure shows that
EEG recordings from an awake subject can be di�erentiated from those of an anaes�
thetised subject� Di�erentiation was good using the Bayesian evidence criterion but
insigni�cant using MDL�
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Figure �
��
 Model Order Selection for AR��� data with �a� MDL and �b� Bayesian
Evidence with ��second blocks of data�
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Figure �
��
 Model Order Selection for AR���� data with �a� MDL and �b� Bayesian
Evidence with ��second blocks of data�
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Figure �
��
 Bayesian Evidence model order selection on EEG data from �a� awake
subject and �b� anaesthetised subject�
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Kalman Filters

���� Introduction

We describe Bayesian Learning for sequential estimation of parameters �eg� means�
AR coe�cients�� The update procedures are known as Kalman Filters� We show how
Dynamic Linear Models� Recursive Least Squares and Steepest Descent algorithms
are all special cases of the Kalman �lter�

������ Sequential Estimation of Nonstationary Mean

In the lecure on Bayesian methods we described the sequential estimation of a sta�
tionary mean� We now extend that analysis to the nonstationary case�

A reasonable model of a time varying mean is that it can drift from sample to sample�
If the drift is random �later on we will also consider deterministic drifts� then we have

�t � �t�� � wt ������

where the random drift is Gaussian p�wt� � N�wt� 
� �
�
w� with drift variance �

�
w� The

data points are then Gaussian about mean �t� If they have a �xed variance �
�
x �later

on we will also consider time�varing variance�

xt � �t � et ������

where et � xt � �t� Hence p�et� � N�et� 
� �
�
x��

At time t � � our estimate of �t�� has a Gaussian distribution with mean ��t�� and
variance ���

t��� We stress that this is the variance of our mean estimate and not the
variance of the data� The standard error estimate for this variance ���

t �t� is no longer
valid as we have nonstationary data� We therefore have to estimate it as we go along�

This means we keep running estimates of the distribution of the mean� At time t� �
this distribution has a mean ��t�� and a variance ��

�
t��� The distribution at time t is

���
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then found from Bayes rule� Speci�cally� the prior distribution is given by

p��t� � N��t� ��t��� rt� ������

where rt is the prior variance �we add on the random drift variance to the variance
from the previous time step�

rt � ���
t�� � ��

w ������

and the likelihood is
p�xtj�t� � N�xt� ��t��� �

�
x� ������

The posterior is then given by

p��tjxt� � N��t� ��t� ��
�
t � ������

where the mean is
��t � ��t�� �

rt
��
x � rt

�xt � ��t��� ������

and the variance is

���
t �

rt�
�
x

rt � ��
x

����	�

We now write the above equations in a slightly di�erent form to allow for comparison
with later estimation procedures

��t � ��t�� �Ktet ������

���
t � rt���Kt�

where
Kt �

rt
��
x � rt

�����
�

and
et � xt � ��t�� �������

In the next section we will see that our update equations are a special case of a
Kalman �lter where et is the prediction error and Kt is the Kalman gain�

In �gure ���� we give a numerical example where �

 data points were generated� the
�rst �

 having a mean of � and the next �

 a mean of �
� The update equations
have two paramaters which we must set �i� the data variance ��

x and �ii� the drift
variance ��

w� Together� these parameters determine �a� how responsive the tracking
will be and �b� how stable it will be� The two plots are for two di�erent values of ��

w

and ��
x � �� Later we will see how these two parameters can be learnt�

������ A single state variable

We now look at a general methodology for the sequential estimation of a nonstationary
parameter �this can be anything � not necesarily the data mean��
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Figure ����
 Sequential estimation of nonstationary mean� The graphs plot
data values xt �crosses� and estimated mean values ��t �circles� along with error bars
��t �vertical lines� versus iteration number t for two di�erent drift noise values �a�
��
w � 
�
� and �b� �

�
w � 
���

The parameter�s evolution is modelled as a linear dynamical system� The state	space
equations are


t � gt
t�� � wt� wt 
 N�wt� 
� �
�
w�

xt � ft
t � et� et 
 N�et� 
� �
�
x�

�������

The value of the parameter at time t is referred to as the state of the system 
t� This
state can change deterministically� by being multiplied by gt� and stochastically by
added a random drift wt� This drift is referred to as state noise� The observed data
�eg� time series values� are referred to as observations xt which are generated from
the state according to the second equation� This allows for a linear transformation
plus the addition of observation noise�

At time t � � our estimate of 
t�� has a Gaussian distribution with mean �
t�� and
variance ���

t��� The prior distribution is therefore given by

p�
t� � N�
t� gt�
t��� rt� �������

where rt is the prior variance
rt � g�t ��

�
t�� � ��

w �������

and the likelihood is
p�xtj
t� � N�xt� ft�
t��� �

�
x� �������

The posterior is then given by

p�
tjxt� � N�
t� �
t� ��
�
t � �������

where

�
t � gt�
t�� �Ktet �������

���
t � rt���Ktft�

and
Kt �

rt
��
x � f �

t rt
ft �����	�
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The above equations constitute a ��dimensionalKalman Filter �the state is ��dimensional
because there is only � state variable�� Next we consider many state variables�

������ Multiple state variables

We now consider linear dynamical systems where data is generated according to the
model

�t � Gt�t�� �wt� wt 
 N�wt� 
�W t�
yt � F t
t � vt� vt 
 N�vt� 
�V t�

�������

where �t are �state� or �latent� variables� Gt is a �!ow� matrix� wt is �state noise�
distributed according to a normal distribution with zero mean and covariance matrix
W t� yt are the multivariate observations� F t is a transformation matrix and vt is
�observation noise� distributed according to a normal distribution with zero mean
and covariance matrix V t� The model is parameterised by the matrices Gt� W t� F t

and V t� These parameters may depend on t �as indicated by the subscript��

The Kalman �lter is a recursive procedure for estimating the latent variables� �t �����
Meinhold and Singpurwalla ��
� show how this estimation procedure is derived �also
see lecture on Bayesian methods�� The latent variables are normally distributed with
a mean and covariance that can be estimated with the following recursive formulae

��t � Gt
��t�� �Ktet �����
�

�t � Rt �KtF tRt

where Kt is the �Kalman gain� matrix� et is the prediction error and Rt is the �prior
covariance� of the latent variables �that is� prior to yt being observed�� These quan�
tities are calculated as follows

Kt � RtF
T
t

�
V t � F tRtF

T
t

���
�������

et � yt � F tGt
��t��

Rt � Gt�t��G
T
t �W t

To apply these equations you need to know the parameters Gt� W t�F t and V t and
make initial guesses for the state mean and covariance� ��� and ��� Equations ��� and
��� can then be applied to estimate the state mean and covariance at the next time
step� The equations are then applied recursively�
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A useful quantity is the likelihood of an observation given the model parameters
before they are updated

p�yt� � N
�
yt�F t

��t���V t � F t

�
GT

t �t��Gt

�
F T

t

�
�������

In Bayesian terminology this likelihood is known as the evidence for the data point
����� Data points with low evidence correspond to periods when the statistics of the
underlying system are changing �non�stationarity� or� less consistently� to data points
having large observation noise components�

The state�space equations may be viewed as a dynamic version of factor analysis
where the factor� �t� evolves over time according to linear dynamics� Shumway and
Sto�er ���� derive an Expectation�Maximisation �EM� algorithm �see next lecture�
in which the parameters of the model G� W and V can all be learnt� Only F is
assumed known� Note that these parameters are no longer dependent on t� This does
not� however� mean that the model is no longer dynamic� the state� �t� is still time
dependent� Ghahramani and Hinton ���� have recently extended the algorithm to
allow F to be learnt as well� These learning algorithms are batch learning algorithms
rather than recursive update procedures� They are therefore not suitable for �on�line�
learning �where the learning algorithm has only one �look� at each observation��

In the engineering and statistical forecasting literature ���� ���� the transformation
matrix� F t� is known� It is related to the observed time series �or other observed time
series� according to a known deterministic function set by the statistician or �model
builder�� Assumptions are then made about the !ow matrix� Gt� Assumptions are
also made about the state noise covariance�W t� and the observation noise covariance�
V t� or they are estimated on�line� We now look at a set of assumptions which reduces
the Kalman �lter to a �Dynamic Linear Model��

������ Dynamic Linear Models

In this section we consider Dynamic Linear Models �DLMs� ���� which for a univariate
time series are

�t � �t�� �wt� wt 
 N�wt� 
�W t�
yt � F t
t � vt� vt 
 N�vt� 
� �

�
t �

�������

This is a linear regression model with time�varying coe�cients� It is identical to the
generic Kalman �lter model withGt � I� Substituting this into the update equations
gives

��t � ��t�� �Ktet �������

�t � Rt �KtF tRt
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where

Kt �
RtF

T
t

��

yt

�������

Rt � �t�� �W t

��

yt � ��

t � ��



��

 � F tRtF

T
t

et � yt � �yt

�yt � F t
��t��

�������

where �yt is the prediction and �
�

yt is the estimated prediction variance� This is com�

posed of two terms� the observation noise� ��
t � and the component of prediction vari�

ance due to state uncertainty� ��

 � The likelihood of a data point under the old model

�or evidence� is

p�yt� � N
�
yt� �yt� �

�

yt

�
�������

If we make the further assumption that the transformation vector �its no longer a
matrix because we have univariate predictions� is equal to F t � ��yt��� yt��� ���� yt�p�
then we have a Dynamic Autoregressive �DAR� model�

To apply the model we make initial guesses for the state �AR parameters� mean and
covariance ���� and ��� and use the above equations� We must also plug in guesses
for the state noise covariance�W t� and the observation noise variance� �

�
t � In a later

section we show how these can be estimated on�line� It is also often assumed that the
state noise covariance matrix is the isotropic matrix� W t � qI� Next� we look at a
set of assumptions that reduce the Kalman �lter to Recursive Least Squares�

������ Recursive least squares

If there is no state noise �wt � 
�W t � 
� and no state !ow �Gt � I� then the linear
dynamical system in equation ��� reduces to a static linear system ��t � ��� If we
further assume that our observations are univariate we can re�write the state�space
equations as

yt � F t
 � vt� vt 
 N�vt� 
� �
�
t � �����	�

This is a regression model with constant coe�cients� We can� however� estimate these
coe�cients in a recursive manner by substituting our assumptions aboutW t� Gt and
V t into the Kalman �lter update equations� This gives
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��t � ��t�� �Ktet �������

�t � �t�� �KtF t�t��

�����
�

where

Kt �
�t��F

T
t

��

yt

�������

��

yt � ��

t � ��



��

 � F t�t��F

T
t

et � yt � �yt

�yt � F t
��t��

�������

where �yt is the prediction and �
�

yt is the estimated prediction variance� This is com�

posed of two terms� the observation noise� ��
t � and the component of prediction vari�

ance due to state uncertainty� ��

 �

The above equations are identical to the update equations for recursive least squares
�RLS� as de�ned by Abraham and Ledolter �equation �	��
� in �����

The likelihood of a data point under the old model �or evidence� is

p�yt� � N
�
yt� �yt� �

�

yt

�
�������

If we make the further assumption that the transformation vector �its no longer a
matrix because we have univariate predictions� is equal to F t � ��yt��� yt��� ���� yt�p�
then we have a recursive least squares estimation procedure for an autoregressive
�AR� model�

To apply the model we make initial guesses for the state �AR parameters� mean and
covariance ���� and ��� and use the above equations� We must also plug in our guess
for the observation noise variance� ��

t � In a later section we show how this can be
estimated on�line�

�����	 Estimation of noise parameters

To use the DLM update equations it is necessary to make guesses for the state noise
covariance� W t� and the observation noise variance� �

�
t � In this section we show

how these can be estimated on�line� Note� we either estimate the state noise or the
observation noise � not both�
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Jazwinski�s method for estimating state noise

This method� reviewed in ���� is ultimately due to Jazwinski ��	� who derives the
following equations using the MLII approach �see Bayes lecture�� We assume that
the state noise covariance matrix is the isotropic matrix�W � qI� The parameter q
can be updated according to

q � h

�
e� � ��

q�

F tF
T
t

�
�������

where h�x� is the �ramp� function

h�x� �

�
x if x � 


 otherwise

�������

and ��
q� is the estimated prediction variance assuming that q � 


��
q� � ��

t � F t�t��F
T
t �������

Thus� if our estimate of prediction error assuming no state noise is smaller than our
observed error �e�� we should infer that the state noise is non�zero� This will happen
when we transit from one stationary regime to another� our estimate of q will increase�
This� in turn� will increase the learning rate �see later section�� A smoothed estimate
is

qt � �qt�� � ��� ��h

�
e� � ��

q�

F tF
T
t

�
�������

where � is a smoothing parameter� Alternatively� equation ����� can be applied to a
window of samples �����

Jazwinski�s method for estimating observation noise

This method� reviewed in ���� is ultimately due to Jazwinski ��	� who derives the fol�
lowing equations by applying the MLII framework �see Bayes lecture�� Equation �����
shows that the estimated prediction variance is composed of two components� the ob�
servation noise and the component due to state uncertainty� Thus� to estimate the
observation noise one needs to subtract the second component from the measured
squared error

��
t � h

�
e�t � F tRt��F

T
t

�
�����	�
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This estimate can be derived by setting ��
t so as to maximise the evidence �likelihood�

of a new data point �equation ������� A smoothed estimate is

��
t � ���

t�� � ��� ��h
�
e�t � F tRt��F

T
t

�
�������

where � is a smoothing parameter� Alternatively� equation ����	 can be applied to a
window of samples �����

For RLS these update equations can be used by substituting Rt � %t��� We stress�
however� that this estimate is especially unsuitable for RLS applied to non�stationarity
data �but then you should only use RLS for stationary data� anyway�� This is because
the learning rate becomes dramatically decreased�

We also stress that Jazwinski�s methods cannot both be applied at the same time� the
�extra� prediction error is explained either as greater observation noise or as greater
state noise�

Skagens� method

Skagen ���� lets W � ���
t I ie� assumes the state noise covariance is isotropic with a

variance that is proportional to the observation noise ��
t �

He observes that if � is kept �xed then varying ��
t over six orders of magnitude has

little or no e�ect on the Kalman �lter updates� He therefore sets ��
t to an arbitrary

value eg� ��

He then de�nes a measure R as the relative reduction in prediction error due to
adaption and chooses � to give a value of R � 
���

�����
 Comparison with steepest descent

For a linear predictor� the learning rule for �on�line� steepest descent is ���

��t � ��t�� � �F T
t et �����
�

where � is the learning rate� which is �xed and chosen arbitrarily beforehand� This
method is otherwise known as Least Mean Squares �LMS�� Haykin ���� �page ����
discusses the conditions on � which lead to a convergent learning process� Comparison
of the above rule with the DLM learning rule in equation ����� shows that DLM has
a learning rate matrix equal to

� �
�t�� � qtI

��
t � ��




�������

The average learning rate� averaged over all state variables� is given by
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�DLM �
�

p

Tr ��t�� � qtI�

���
t � ��


�
�������

where Tr�� denotes the trace of the covariance matrix and p is the number of state
variables�

DLM thus uses a learning rate which is directly proportional to the variance of the
state variables and is inversely proportional to the estimated prediction variance�

If the prediction variance due to state uncertainty is signi�cantly smaller than the
prediction variance due to state noise ���


 � ��
t �� as it will be once the �lter has

reached a steady solution� then increasing the state noise parameter� qt� will increase
the learning rate� This is the mechanism by which DLM increases its learning rate
when a new dynamic regime is encountered�

The average learning rate for the RLS �lter is

�RLS �
�

p

Tr ��t���

���
t � ��


�
�������

As there is no state noise �qt � 
� there is no mechanism by which the learning rate
can be increased when a new dynamic regime is encountered� This underlines the fact
that RLS is a stationary model� In fact� RLS behaves particularly poorly when given
non�stationary data� When a new dynamic regime is encountered� ��


 will increase
�and so may ��

t if we�re updating it online�� This leads not to the desired increase in
learning rate� but to a decrease�

For stationary data� however� the RLS model behaves well� As the model encounters
more data the parameter covariance matrix decreases which in turn leads to a decrease
in learning rate� In on�line gradient descent learning it is desirable to start with a
high learning rate �to achieve faster convergence� but end with a low learning rate
�to prevent oscillation�� RLS exhibits the desirable property of adapting its learning
rate in exactly this manner� DLM also exhibits this property when given stationary
data� but when given non�stationary data� has the added property of being able to
increasing its learning rate when necessary�

We conclude this section by noting that DLM and RLS may be viewed as linear on�
line gradient descent estimators with variable learning rates� RLS for stationary data
and DLM for non�stationary data�

������ Other algorithms

The Least Mean Squares �LMS� algorithm ���� �Chapter �� is identical to the steepest�
descent method �as described in this paper� � both methods have constant learning
rates�
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Our comments on the RLS algorithm are relevant to RLS as de�ned by Abraham
and Ledolter ���� There are� however� a number of variants of RLS� Haykin ����
�page ���� de�nes an exponentially weighted RLS algorithm� where past samples
are given exponentially less attention than more recent samples� This gives rise
to a limited tracking ability �see chapter �� in ������ The tracking ability can be
further improved by adding state noise �Extended RLS�� ����� page ���� or a non�
constant state transition matrix �Extended RLS�� ����� page ����� The Extended
RLS�� algorithm is therefore similar to the DAR model described in this paper�

������ An example

This example demonstrates the basic functioning of the dynamic AR model and
compares it to RLS�

A time series was generated consisting of a �
Hz sine wave in the �rst second� a �
Hz
sinewave in the second second and a �
Hz sine wave in the third second� All signals
contained additive Gaussian noise with standard deviation 
��� One hundred samples
were generated per second�

A DAR model with p � 	 AR coe�cients was trained on the data� The algorithm
was given a �xed value of observation noise ���

t � 
���� The state noise was initially
set to zero and was adapted using Jazwinski�s algorithm described in equation ������
using a smoothing value of � � 
��� The model was initialised using linear regression�
the �rst p data points were regressed onto the p � �th data point using an SVD
implementation of least squares� resulting in the linear regression weight vector wLR�
The state at time step t � p � � was initialised to this weight vector� �p�� � wLR�
The initial state covariance matrix was set to the linear regression covariance matrix�
%p�� � ��

tF p��F
T
p��� Model parameters before time p� � were set to zero�

An RLS model �with p � 	 AR coe�cients� was also trained on the data� The
algorithm was given a �xed value of observation noise ���

t � 
���� The model was
initilised by setting �p�� � wLR and %p�� � I �setting %p�� � ��

tF p��F
T
p�� resulted

in an initial learning rate that was�nt su�ciently large for the model to adapt to the
data � see later��

Figure ���� shows the original time series and the evidence of each point in the time
series under the DAR model� Data points occuring at the transitions between di�erent
dynamic regimes have low evidence�

Figure ���� shows that the state noise parameter� q� increases by an amount necessary
for the estimated prediction error to equal the actual prediction error� The state noise
is high at transitions between di�erent dynamic regimes� Within each dynamic regime
the state noise is zero�

Figure ���� shows that the variance of state variables reduces as the model is exposed
to more data from the same stationary regime� When a new stationary regime is
encountered the state variance increases �because q increases��
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Figure ����
 �a� Original time series �b� Log evidence of data points under DAR
model� log p�yt��

Figure ���� shows that the learning rate of the DAR model increases when the system
enters a new stationary regime� whereas the learning rate of RLS actually decreases�
The RLS learning rate is initially higher because the state covariance matrix was
initialised di�erently �initialising it in the same way gave much poorer RLS spectral
estimates��

Figure ���� shows the spectral estimates obtained from the DAR and RLS models�
The learning rate plots and spectrogram plots show that DAR is suitable for non�
stationary data whereas RLS is not�

������� Discussion

Dynamic Linear Models� Recursive Least Squares and Steepest�Descent Learning�
are special cases of linear dynamical systems and their learning rules are special cases
of the Kalman �lter� Steepest�Descent Learning is suitable for modelling stationary
data� It uses a learning rate parameter which needs to be high at the beginning of
learning �to ensure fast learning� but low at the end of learning �to prevent oscilla�
tions�� The learning rate parameter is usually hand�tuned to ful�ll these criteria� Re�
cursive Least Squares is also suitable for modelling stationary data� It has the advan�
tage of having an adaptive learning rate that reduces gradually as learning proceeds�
It reduces in response to a reduction in the uncertainty �covariance� of the model
parameters� Dynamic Linear Models are suitable for stationary and non�stationary
enviroments� The models possess state�noise and observation noise parameters which
can be updated on�line so as to maximise the evidence of the observations�
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Figure ����
 �a� Squared prediction error� e�t � �b� Estimated prediction error with
qt � 
� ��

q�� �c� Estimated prediction error� �
�

yt �the baseline level is due to the �xed

observation noise component� ��
t � 
��� and �d� Estimate of state noise variance� qt�

The state noise� qt� increases by an amount necessary for the estimated prediction
error �plot c� to equal the actual predicition error �plot a� � see equation ������
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Figure ����
 Average prior variance of state variables� �
p
Tr�Rt�� As the model is

exposed to more data from the same stationary regime the estimates of the state
variables become more accurate �less variance�� When a new stationary regime is
encountered the state variance increases �because q increases��
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Figure ����
 Average learning rates for �a� DAR model �b� RLS model� The learning
rate for RLS is set to a higher initial value �indirectly by setting � to have larger
entries� to give it a better chance of tracking the data� The DAR model responds to a
new dynamic regime by increasing the learning rate� The RLS responds by decreasing
the learning rate and is therefore unable to track the nonstationarity�
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Figure ����
 Spectrograms for �a� DAR model �b� RLS model�
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EM algorithms

The Expectation�Maximization �EM� algorithm is a maximum likelihood method for
models that have hidden variables eg� Gaussian Mixture Models �GMMs�� Linear
Dynamic Systems �LDSs� and Hidden Markov Models �HMMs��

���� Gaussian Mixture Models

Say we have a variable which is multi�modal ie� it separates into distinct clusters�
For such data the mean and variance are not very representative quantities�

In a ��dimensional Gaussian Mixture Model �GMM� with m�components the likeli�
hood of a data point xn is given by

p�xn� �
mX
k��

p�xnjk�p�sn � k� ������

where sn is an indicator variable indicating which component is selected for which
data point� These are chosen probabilistically according to

p�sn � k� � �k ������

and each component is a Gaussian

p�xnjk� � �

�����
k�

���
exp

�
��xn � �k�

�

���
k

�
������

To generate data from a GMM we pick a Gaussian at random �according to ����� and
then sample from that Gaussian� To �t a GMM to a data set we need to estimate �k�
�k and ��

k� This can be achieved in two steps� In the �E�Step� we soft�partition the
data among the di�erent clusters� This amounts to calculating the probability that
data point n belongs to cluster k which� from Baye�s rule� is

�nk � p�sn � kjxn� � p�xnjk�p�sn � k�P
k� p�xnjk��p�sn � k��

������

���
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In the �M�Step� we re�estimate the parameters using Maximum Likelihood� but the
data points are weighted according to the soft�partitioning

�k �
X

�nk ������

�k �

P
�nkxnP
�nk

��
k �

P
�nk �xn � �k�

�P
�nk

These two steps constitute an EM algorithm� Summarizing
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Figure ����
 A variable with � modes� This can be accurately modelled with a ��
component Gaussian Mixture Model�

� E�Step
 Soft�partitioning�
� M�Step
 Parameter updating�

Application of a ��component GMM to our example data gives for cluster �i� �� � 
���
�� � �
� ��

� � �
� �ii� �� � 
���� �� � �
� ��
� � �
� and �iii� �� � 
���� �� � �
�

��
� � ��

GMMs are readily extended to multivariate data by replacing each univariate Gaus�
sian in the mixture with a multivariate Gaussian� See eg� chapter � in ����

���� General Approach

If V are visible variables� H are hidden variables and 
 are parameters then
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�� E�Step
 Get p�HjV� 
�
�� M�Step� change 
 so as to maximise

Q �� log p�V�Hj
� 	 ������

where expectation is wrt p�HjV� 
��

Why does it work � Maximising Q maximises the likelihood p�V j
�� This can be
proved as follows� Firstly

p�V j 
� � p�H� V j 
�
p�H j V� 
� ������

This means that the log�likelihood� L�
� � log p�V j 
�� can be written

L�
� � log p�H� V j 
�� log p�H j V� 
� ����	�

If we now take expectations with respect to a distribution p��H� then we get

L�
� �
Z
p��H� log p�H� V j 
�dH �

Z
p��H� log p�H j V� 
�dH ������

The second term is minimised by setting p��H� � p�HjV� 
� �we can prove this from
Jensen�s inequality or the positivity of the KL divergence� see ���� or lecture ��� This
takes place in the E�Step� After the E�step the auxiliary function Q is then equal to
the log�likelihood� Therefore� when we maximise Q in the M�step we are maximising
the likelihood�

���� Probabilistic Principal Component Analysis

In an earlier lecture� Principal Component Analysis �PCA� was viewed as a linear
transform

y � QTx �����
�

where the jth column of the matrix Q is the jth eigenvector� qj� of the covariance
matrix of the original d�dimensional data x� The jth projection

yj � q
T
j x �������

has a variance given by the jth eigenvalue �j� If the projections are ranked according
to variance �ie� eigenvalue� then the M variables that reconstruct the original data
with minimum error �and are also linear functions of x� are given by y�� y�� ���� yM � The
remaining variables yM��� ��� yd can be be discarded with minimal loss of information
�in the sense of least squares error�� The reconstructed data is given by

�x � Q��My��M �������

where Q��M is a matrix formed from the �rst M columns of Q� Similarly� y��M �
�y�� y�� ���� yM �

T �
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In probabilistic PCA �pPCA� ��
� the PCA transform is converted into a statistical
model by explaining the �discarded� variance as observation noise

x �Wy � e �������

where the noise is drawn from a zero mean Gaussian distribution with isotropic co�
variance ��I� The �observations� x are generated by transforming the �sources� y
with the �mixing matrix� W and then adding �observation noise�� The pPCA model
has M sources where M � d� For a given M � we have W � Q��M and

�� �
�

M � d

dX
j�M��

�j �������

which is the average variance of the discarded projections�

There also exists an EM algorithm for �nding the mixing matrix which is more e�cient
than SVD for high dimensional data� This is because it only needs to invert an M �
by�M matrix rather than a d�by�d matrix�

If we de�ne S as the sample covariance matrix and

C �WW T � ��I �������

then the log�likelihood of the data under a pPCA model is given by ��
�

log p�X� � �Nd

�
log �� � N

�
log jCj � N

�
Tr�C��S� �������

where N is the number of data points�

We are now in the position to apply the MDL model order selection criterion� We
have

MDL�M� � � log p�X� � Md

�
logN �������

This gives us a procedure for choosing the optimal number of sources�

Because pPCA is a probabilistic model �whereas PCA is a transform� it is readily
incorporated in larger models� A useful model� for example� is the Mixtures of pPCA
model� This is identical to the Gaussian Mixture model except that each Gaussian is
decomposed using pPCA �rather than keeping it as a full covariance Gaussian�� This
can greatly reduce the number of parameters in the model �����

���� Linear Dynamical Systems

A Linear Dynamical System is given by the following �state�space� equations

xt�� � Axt � wt �����	�

yt � Cxt � vt
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where the state noise and observation noise are zero mean Gaussian variables with
covariances Q and R� Given A�C�Q and R the state can be updated using the Kalman
�lter�

For real�time applications we can infer the states using a Kalman �lter� For retro�
spective�o$ine data analysis the state at time t can be determined using data before
t and after t� This is known as Kalman smoothing� See eg� �����

Moreover� we can also infer other parameters� eg� state noise covariance Q � state
transformation matrix C� etc� See eg� ����� To do this� the state is regarded as a
�hidden variable� �we do not observe it� and we apply the EM algorithm �����

For an LDS

xt�� � Axt � wt �������

yt � Cxt � vt

the hidden variables are the states xt and the observed variable is the time series yt�
If xt� � �x�� x�� ��� xt� are the states and yT� � �y�� y�� ���� yt� are the observations then
the EM algorithm is as follows�

M�Step

In the M�Step we maximise

Q �� log p�yT� � x
T
� j
� 	 �����
�

Because of the Markov Property of an LDS �the current state only depends on the
last one� and not on ones before that� we have

p�yT� � x
T
� j
� � p�x��

TY
t��

p�xtjxt���
TY
t��

p�ytjxt� �������

and when we we take logs we get

log p�yT� � x
T
� j
� � log p�x�� �

TX
t��

log p�xtjxt��� �
TX
t��

log p�ytjxt� �������

where each PDF is a multivariate Gaussian� We now need to take expectations wrt�
the distribution over hidden variables

�t � p�xtjyT� � �������

This gives

� log p�yT� � x
T
� j
� 	� �� log p�x�� �

TX
t��

�t log p�xtjxt��� �
TX
t��

�t log p�ytjxt� �������

By taking derivates wrt each of the parameters and setting them to zero we get
update equations for A� Q�C and R� See ���� for details� The distribution over
hidden variables is calculated in the E�Step�
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E�Step

The E�Step consists of two parts� In the forward�pass the joint probability

�t � p�xt� y
t
�� �

Z
�t��p�xtjxt���p�ytjxt�dxt�� �������

is recursively evaluated using a Kalman �lter� In the backward pass we estimate the
conditional probability


t � p�yTt jxt� �
Z

t��p�xt��jxt�p�yt��jxt���dxt�� �������

The two are then combined to produce a smoothed estimate

p�xtjyT� � � �t
t �������

This E�Step constitutes a Kalman smoother�
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Figure ����
 �a� Kalman �ltering and �b� Kalman smoothing�
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Appendix A

Series and Complex Numbers

A�� Power series

A function of a variable x can often be written in terms of a series of powers of x�
For the sin function� for example� we have

sinx � a� � a�x � a�x
� � a�x

� � ��� �A���

We can �nd out what the appropriate coe�cients are as follows� If we substitite
x � 
 into the above equation we get a� � 
 since sin
 � 
 and all the other terms
disappear� If we now di�erentiate both sides of the equation and substitute x � 
 we
get a� � � �because cos 
 � � � a��� Di�erentiating twice and setting x � 
 gives
a� � 
� Continuing this process gives

sinx � x� x�

�&
�
x�

�&
� x�

�&
� ��� �A���

Similarly� the series representations for cosx and ex can be found as

cos x � �� x�

�&
�
x�

�&
� x�

�&
� ��� �A���

and

ex � � �
x

�&
�
x�

�&
�
x�

�&
� ��� �A���

More generally� for a function f�x� we get the general result

f�x� � f�
� � xf ��
� �
x�

�&
f ���
� �

x�

�&
f ����
� � ��� �A���

where f ��
�� f ���
� and f ����
� are the �rst� second and third derivatives of f�x� eval�
uated at x � 
� This expansion is called a Maclaurin series�

So far� to calculate the coe�cients in the series we have di�erentiated and substituted
x � 
� If� instead� we substitute x � a we get

f�x� � f�a� � �x� a�f ��a� �
�x� a��

�&
f ���a� �

�x� a��

�&
f ����a� � ��� �A���

���
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which is called a Taylor series�

For a d�dimensional vector of parameters x the equivalent Taylor series is

f�x� � f�a� � �x� a�Tg � �

�
�x� a�TH�x� a� � ��� �A���

where
g � ��f��a�� �f��a�� ���� �f��ad�

T �A�	�

is the gradient vector and

H �

�
�������

�f�

�a�
�

�f�

�a��a�
�� �f�

�a��ad
�f�

�a��a�

�f�

�a�
�

�� �f�

�a��ad

�� �� �� ��
�f�

�ad�a�

�f�

�ad�a�
�� �f�

�a�
d

�
������	

�A���

is the Hessian�

A�� Complex numbers

Very often� when we try to �nd the roots of an equation �� we may end up with
our solution being the square root of a negative number� For example� the quadratic
equation

ax� � bx � c � 
 �A��
�

has solutions which may be found as follows� If we divide by a and complete the
square � we get �

x �
b

�a

��

� b�

�a�
�
�c
a

�A����

Re�arranging gives the general solution

x �
�b�pb� � �ac

�a
�A����

Now� if b�� �ac � 
 we are in trouble� What is the square root of a negative number
� To handle this problem� mathematicians have de�ned the number

i �
p�� �A����

allowing all square roots of negative numbers to be de�ned in terms of i� eg
p�� �p

�
p�� � �i� These numbers are called imaginary numbers to di�erentiate them

from real numbers�

�We may wish to do this in a signal processing context in� for example� an autoregressive model�
where� given a set of AR coe�cients we wish to see what signals �ie� x� correspond to the AR model�
See later in this chapter�

�This means re	arranging a term of the form x��kx into the form �x� k
�
���

�
k
�

��
which is often

convenient because x appears only once�
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Finding the roots of equations� eg� the quadratic equation above� requires us to
combine imaginary numbers and real numbers� These combinations are called complex
numbers� For example� the equation

x� � �x� � � 
 �A����

has the solutions x � � � i and x � �� i which are complex numbers�

A complex number z � a� bi has two components� a real part and an imaginary part
which may be written

a � Refzg �A����

b � Imfzg
The absolute value of a complex number is

R � Absfzg �
p
a� � b� �A����

and the argument is


 � Argfzg � tan��
�
b

a

�
�A����

The two numbers z � a � bi and z� � a � bi are known as complex conjugates� one
is the complex conjugate of the other� When multiplied together they form a real
number� The roots of equations often come in complex conjugate pairs�

A�� Complex exponentials

If we take the exponential function of an imaginary number and write it out as a
series expansion� we get

ei
 � � �
i


�&
�
i�
�

�&
�
i�
�

�&
� ��� �A��	�

By noting that i� � �� and i� � i�i � �i and similarly for higher powers of i we get

ei
 �



�� 
�

�&
� ���

�
� i






�&
� 
�

�&
� ���

�
�A����

Comparing to the earlier expansions of cos 
 and sin 
 we can see that

ei
 � cos 
 � i sin 
 �A��
�

which is known as Euler�s formula� Similar expansions for e�i
 give the identity

e�i
 � cos 
 � i sin 
 �A����

We can now express the sine and cosine functions in terms of complex exponentials

cos 
 �
ei
 � e�i


�
�A����

sin 
 �
ei
 � e�i


�i
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A�� DeMoivre
s Theorem

By using the fact that
ei
ei
 � ei
�i
 �A����

�a property of the exponential function and exponents in general eg� ���� � ��� or
more generally

�ei
�k � eik
 �A����

we can write
�cos
 � i sin 
�k � cosk
 � isink
 �A����

which is known as DeMoivre�s theorem�

A�� Argand Diagrams

Any complex number can be represented as a complex exponential

a� bi � Rei
 � R�cos
 � i sin 
� �A����

and drawn on an Argand diagram�

Multiplication of complex numbers is equivalent to rotation in the complex plane �due
to DeMoivre�s Theorem��

�a� bi�� � R�ei�
 � R��cos�
 � i sin �
� �A����



Appendix B

Linear Regression

B�� Univariate Linear Regression

We can �nd the slope a and o�set b by minising the cost function

E �
NX
i��

�yi � axi � b�� �B���

Di�erentiating with respect to a gives

�E

�a
� ��

NX
i��

xi�yi � axi � b� �B���

Di�erentiating with respect to b gives

�E

�b
� ��

NX
i��

�yi � axi � b� �B���

By setting the above derivatives to zero we obtain the normal equations of the regres�
sion� Re�arranging the normal equations gives

a
NX
i��

x�i � b
NX
i��

xi �
NX
i��

xiyi �B���

and

a
NX
i��

xi � bN �
NX
i��

yi �B���

By substituting the mean observed values �x and �y into the last equation we get

b � �y � a�x �B���

Now let

Sxx �
NX
i��

�xi � �x�
� �B���

�
NX
i��

x�i �N��
x

�B�	�

���
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and

Sxy �
NX
i��

�xi � �x��yi � �y� �B���

�
NX
i��

xiyi �N�x�y

�B��
�

Substiting for b into the �rst normal equation gives

a
NX
i��

x�i � ��y � a�x�
NX
i��

xi �
NX
i��

xiyi �B����

Re�arranging gives

a �

PN
i�� xiyi � �y

PN
i�� xiPN

i�� x
�
i � �x

PN
i�� xi

�B����

�

PN
i�� xiyi �N�x�yPN

i�� x
�
i �N��

x

�

PN
i���xi � �x��yi � �y�PN

i���xi � �x��

�
�xy
��
x

B���� Variance of slope

The data points may be written as

yi � �yi � ei �B����

� axi � b� ei

where the noise� ei has mean zero and variance �
�
e � The mean and variance of each

data point are

E�yi� � axi � b �B����

and

V ar�yi� � V ar�ei� � ��
e �B����

We now calculate the variance of the estimate a� From earlier we see that

a �

PN
i���xi � �x��yi � �y�PN

i���xi � �x��
�B����

Let

ci �
�xi � �x�PN
i���xi � �x��

�B����
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We also note that
PN

i�� ci � 
 and
PN

i�� cixi � �� Hence�

a �
NX
i��

ci�yi � �y� �B��	�

�
NX
i��

ciyi � �y
NX
i��

ci

�B����

The mean estimate is therefore

E�a� �
NX
i��

ciE�yi�� �y
NX
i��

ci �B��
�

� a
NX
i��

cixi � b
NX
i��

ci � �y
NX
i��

ci

� a

�B����

The variance is

V ar�a� � V ar�
NX
i��

ciyi � �y
NX
i��

ci� �B����

The second term contains two �xed quantities so acts like a constant� From the later
Appendix on Probability Distributions we see that

V ar�a� � V ar�
NX
i��

ciyi� �B����

�
NX
i��

c�iV ar�yi�

� ��
e

NX
i��

c�i

�
��
ePN

i���xi � �x��

�
��
e

�N � ����
x

B�� Multivariate Linear Regression

B���� Estimating the weight covariance matrix

Di�erent instantiations of target noise will generate di�erent estimated weight vectors
according to the last equation� The corresponding weight covariance matrix is given
by

V ar� 
w� � V ar��XTX���XTy� �B����
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Substituting y �Xw � e gives

V ar� 
w� � V ar��XTX���XTXw � �XTX���XTe� �B����

This is in the form of equation B��	 in Appendix A with d being given by the �rst
term which is constant� C being given by �XTX���XT and z being given by e�
Hence�

V ar� 
w� � �XTX���XT �V ar�e����XTX���XT �T �B����

� �XTX���XT ���I���XTX���XT �T

� �XTX���XT ���I�X�XTX���

Re�arranging further gives

V ar� 
w� � ���XTX��� �B����

B�� Functions of random vectors

For a vector of random variables� z� and a matrix of constants� C� and a vector of
constants� d� we have

V ar�Cz � d� � C�V ar�z��CT �B��	�

where� here� Var�� denotes a covariance matrix� This is a generalisation of the result
for scalar random variables V ar�cz� � c�V ar�z��

The covariance between a pair of random vectors is given by

V ar�C�z�C�z� � C��V ar�z��C
T
� �B����

B���� Estimating the weight covariance matrix

Di�erent instantiations of target noise will generate di�erent estimated weight vectors
according to the equation ���� The corresponding weight covariance matrix is given
by

� � V ar��XTX���XTy� �B��
�

Substituting y �X 
w � e gives
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� � V ar��XTX���XTXw � �XTX���XTe� �B����

This is in the form of V ar�Cz � d� �see earlier� with d being given by the �rst term
which is constant� C being given by �XTX���XT and z being given by e� Hence�

� � �XTX���XT �V ar�e����XTX���XT �T �B����

� �XTX���XT ���
eI���X

TX���XT �T

� �XTX���XT ���
eI�X�X

TX���

Re�arranging further gives
� � ��

e�X
TX��� �B����

B���� Equivalence of t�test and F�test for feature selection

When adding a new variable xp to a regression model we can test to see if the increase
in the proportion of variance explained is signi�cant by computing

F �
�N � ����

y �r
��y� �yp�� r��y� �yp����

��
e�p�

�B����

where r��y� �yp� is the square of the correlation between y and the regression model with
all p variables �ie� including xp� and r

��y� �yp��� is the square of the correlation between
y and the regression model without xp� The denominator is the noise variance from
the model including xp� This statistic is distributed according to the F�distribution
with v� � � and v� � N � p� � degrees of freedom�
This test is identical to the double sided t�test on the t�statistic computed from the
regression coe�cient ap� described in this lecture �see also page ��	 of ������ This test
is also equivalent to seeing if the partial correlation between xp and y is signi�cantly
non�zero �see page ��� of ������
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Appendix C

Matrix Identities

C�� Multiplication

Matrix multiplication is associative

�AB�C � A�BC� �C���

distributive
A�B �C� � AB �AC �C���

but not commutative
AB �� BA �C���

C�� Transposes

Given two matrices A and B we have

�AB�T � BTAT �C���

C�� Inverses

Given two matrices A and B we have

�AB��� � B��A�� �C���

The Matrix Inversion Lemma is

�XBXT �A��� � A�� �A��X�B�� �XTA��X���XTA�� �C���

The Sherman�Morrison�Woodury formula or Woodbury�s identity is

�UV T �A��� � A�� �A��U�I � V TA��U���V TA�� �C���

���
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C�� Eigendecomposition

QTAQ � � �C�	�

Pre�multiplying by Q and post�multiplying by QT gives

A � Q�QT �C���

which is known as the spectral theorem� Any real� symmetric matrix can be repre�
sented as above where the columns of Q contain the eigenvectors and � is a diagonal
matrix containing the eigenvalues� �i� Equivalently�

A �
dX

k��

�kqkq
T
k �C��
�

C�� Determinants

If det�A� � 
 the matrix A is not invertible� it is singular� Conversely� if det�A� �� 

then A is invertible� Other properties of the determinant are

det�AT � � det�A� �C����

det�AB� � det�A� det�B�

det�A��� � �� det�A�

det�A� �
Y
k

akk det�A� �
Y
k

�k

C�� Traces

The Trace is the sum of the diagonal elements

Tr�A� �
X
k

akk �C����

and is also equal to the sum of the eigenvalues

Tr�A� �
X
k

�k �C����

Also
Tr�A�B� � Tr�A� � Tr�B� �C����

C�� Matrix Calculus

From ���� we know that the derivative of cTBc with respect to c is �BT �B�c�



Appendix D

Probability Distributions

This appendix archives a number of useful results from texts by Papoulis ����� Lee ����
and Cover ����� Table ���� in Cover �page �	�� gives entropies of many distributions
not listed here�

D�� Transforming PDFs

Because probabilities are de�ned as areas under PDFs when we transform a variable

y � f�x� �D���

we transform the PDF by preserving the areas

p�y�jdyj � p�x�jdxj �D���

where the absolute value is taken because the changes in x or y �dx and dy� may be
negative and areas must be positive� Hence

p�y� �
p�x�

j dy
dx
j �D���

where the derivative is evaluated at x � f���y�� This means that the function f�x�
must be one�to�one and invertible�

If the function is many�to�one then it�s inverse will have multiple solutions x�� x�� ���� xn
and the PDF is transformed at each of these points �Papoulis� Fundamental Theorem
����� page ���

p�y� �
p�x��

j dy
dx�
j �

p�x��

j dy
dx�
j � ��� �

p�xn�

j dy
dxn
j �D���

D���� Mean and Variance

For more on the mean and variance of functions of random variables see Weisberg
�����

���
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Expectation is a linear operator� That is

E��a�x � a�x�� � a�E�x� � a�E�x� �D���

Therefore� given the function

y � ax �D���

we can calculate the mean and variance of y as functions of the mean and variance
of x�

E�y� � aE�x� �D���

V ar�y� � a�V ar�x�

If y is a function of many uncorrelated variables

y �
X
i

aixi �D�	�

we can use the results

E�y� �
X
i

aiE�xi� �D���

V ar�y� �
X
i

a�iV ar�xi� �D��
�

But if the variables are correlated then

V ar�y� �
X
i

a�iV ar�xi� � �
X
i

X
j

aiajV ar�xi� xj� �D����

where V ar�xi� xj� denotes the covariance of the random variables xi and xj�

Standard Error

As an example� the mean

m �
�

N

X
i

xi �D����

of uncorrelated variables xi has a variance

��
m � V ar�m� �

X
i

�

N
V ar�xi� �D����

�
��
x

N

where we have used the substitution ai � ��N in equation D��
� Hence

�m �
�xp
N

�D����



g g � y� p

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

x

p(
x)

Figure D��
 The Gaussian Probability Density Function with � � � and � � ��

D�� Uniform Distribution

The uniform PDF is given by

U�x� a� b� �
�

b� a
�D����

for a � x � b and zero otherwise� The mean is 
���a� b� and variance is �b� a������

The entropy of a uniform distribution is

H�x� � log�b� a� �D����

D�� Gaussian Distribution

The Normal or Gaussian probability density function� for the case of a single variable�
is

N�x��� ��� �
�

���������
exp

�
��x� ���

���

�
�D����

where � and �� are the mean and variance�

D���� Entropy

The entropy of a Gaussian variable is

H�x� �
�

�
log �� �

�

�
log �� �

�

�
�D��	�
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Figure D��
 The Gamma Density for b � ��� and c � ������

For a given variance� the Gaussian distribution has the highest entropy� For a proof
of this see Bishop ����� page ��
��

D���� Relative Entropy

For Normal densities q�x� � N�x��q� �
�
q � and p�x� � N�x��p� �

�
p� the KL�divergence

is

D�qjjp� � �

�
log

��
p

��
q

�
��
q � ��

p � ��
q � ��q�p

���
p

� �

�
�D����

D�� The Gamma distribution

The Gamma density is de�ned as

'�x� b� c� �
�

'�c�

xc��

bc
exp

��x
b



�D��
�

where '�� is the gamma function ����� The mean of a Gamma density is given by bc
and the variance by b�c� Logs of gamma densities can be written as

log '�x� b� c� �
�x
b
� �c� �� logx�K �D����

where K is a quantity which does not depend on x� the log of a gamma density
comprises a term in x and a term in logx� The Gamma distribution is only de�ned
for positive variables�
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D���� Entropy

Using the result for Gamma densities

Z
p�x� logx � (�c� � log b �D����

where (�� is the digamma function ���� the entropy can be derived as

H�x� � log'�c� � c log b� �c� ���(�c� � log b� � c �D����

D���� Relative Entropy

For Gamma densities q�x� � '�x� bq� cq� and p�x� � '�x� bp� cp� the KL�divergence is

D�qjjp� � �cq � ��(�cq�� log bq � cq � log '�cq� �D����

� log '�cp� � cp log bp � �cp � ���(�cq� � log bq� � bqcq
bp

D�� The ���distribution

If z�� z�� ���� zN are independent normally distributed random variables with zero�mean
and unit variance then

x �
NX
i��

z�i �D����

has a ���distribution with N degrees of freedom ������ page ����� This distribution
is a special case of the Gamma distribution with b � � and c � N��� This gives

���x�N� �
�

'�N���

xN����

�N��
exp

��x
�



�D����

The mean and variance are N and �N � The entropy and relative entropy can be
found by substituting the the values b � � and c � N�� into equations D��� and
D���� The �� distribution is only de�ned for positive variables�

If x is a �� variable with N degrees of freedom and

y �
p
x �D����

then y has a ��density with N degrees of freedom� For N � � we have a Maxwell
density and for N � � a Rayleigh density ������ page ����
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Figure D��
 The �� Density for N � � degrees of freedom�

D�� The t�distribution

If z�� z�� ���� zN are independent Normally distributed random variables with mean �
and variance �� and m is the sample mean and s is the sample standard deviation
then

x �
m� �

s�
p
N

�D��	�

has a t�distribution with N � � degrees of freedom� It is written

t�x�D� �
�

B�D��� ����

�
� �

x�

D

��
D�����

�D����

where D is the number of �degrees of freedom� and

B�a� b� �
'�a�'�b�

'�a� b�
�D��
�

is the beta function� For D � � the t�distribution reduces to the standard Cauchy
distribution ������ page �	���

D�� Generalised Exponential Densities

The �exponential power� or �generalised exponential� probability density is de�ned as

p�a� � G�a�R� 
� �
R
��R

�'���R�
exp��
jajR� �D����
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Figure D��
 The t	distribution with �a� N � � and �b� N � �� degrees of freedom�
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Figure D��
 The generalised exponential distribution with �a� R � ��w � � and �b�
R � ��w � �� The parameter R �xes the weight of the tails and w �xes the width
of the distribution� For �a� we have a Laplacian which has positive kurtosis �k � ���
heavy tails� For �b� we have a light	tailed distribution with negative kurtosis �k � ����

where '�� is the gamma function ����� the mean of the distribution is zero �� the
width of the distribution is determined by ��
 and the weight of its tails is set by
R� This gives rise to a Gaussian distribution for R � �� a Laplacian for R � � and a
uniform distribution in the limit R��� The density is equivalently parameterised
by a variable w� which de�nes the width of the distribution� where w � 
���R giving

p�a� �
R

�w'���R�
exp��ja�wjR� �D����

The variance is

V � w�'���R�

'���R�
�D����

which for R � � gives V � 
��w�� The kurtosis is given by ���

K �
'���R�'���R�

'���R��
� � �D����

where we have subtracted � so that a Gaussian has zero kurtosis� Samples may be
generated from the density using a rejection method �����

�For non zero mean we simply replace a with a� � where � is the mean�
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D�	 PDFs for Time Series

Given a signal a � f�t� which is sampled uniformly over a time period T � its PDF�
p�a� can be calculated as follows� Because the signal is uniformly sampled we have
p�t� � ��T � The function f�t� acts to transform this density from one over t to to
one over a� Hence� using the method for transforming PDFs� we get

p�a� �
p�t�

jda
dt
j �D����

where jj denotes the absolute value and the derivative is evaluated at t � f���x��

D���� Sampling

When we convert an analogue signal into a digital one the sampling process can
have a crucial e�ect on the resulting density� If� for example� we attempt to sample
uniformly but the sampling frequency is a multiple of the signal frequency we are�
in e�ect� sampling non�uniformly� For true uniform sampling it is necessary that the
ratio of the sampling and signal frequencies be irrational�

D���� Sine Wave

For a sine wave� a � sin�t�� we get

p�a� �
�

jcos�t�j �D����

where cos�t� is evaluated at t � sin���a�� The inverse sine is only de�ned for ���� �
t � ��� and p�t� is uniform within this� Hence� p�t� � ���� Therefore

p�a� �
�

�
p
�� a�

�D����

This density is multimodal� having peaks at �� and ��� For a more general sine wave

a � R sin�wt� �D��	�

we get p�t� � w��

p�a� �
�

�
q
�� �a�R��

�D����

which has peaks at �R�
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Figure D��
 The PDF of a � R sin�wt� for R � ��



g g � y� p



Appendix E

Multivariate Probability

Distributions

E�� Transforming PDFs

Just as univariate Probability Density Functions �PDFs� are transformed so as to pre�
serve area so multivariate probability distributions are transformed so as to preserve
volume� If

y � f�x� �E���

then this can be achieved from

p�y� �
p�x�

abs�jJ j� �E���

where abs�� denotes the absolute value and jj the determinant and

J �

�
�����

�y�
�x�

�y�
�x�

�� �y�
�xd

�y�
�x�

�y�
�x�

�� �y�
�xd

�� �� �� ��
�yd
�x�

�yd
�x�

�� �yd
�xd

�
����	 �E���

is the Jacobian matrix for d�dimensional vectors x and y� The partial derivatives
are evaluated at x � f���y�� As the determinant of J measures the volume of the
transformation� using it as a normalising term therefore preserves the volume under
the PDF as desired� See Papoulis ���� for more details�

E���� Mean and Covariance

For a vector of random variables �Gaussian or otherwise�� x� with mean �x and
covariance �x a linear transformation

y � Fx�C �E���

���
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Figure E��
 �a� 
D	plot and �b� contour plot of Multivariate Gaussian PDF with
� � ��� ��T and ��� � ��� � � and ��� � ��� � 
�� ie� a positive correlation of
r � 
���

gives rise to a random vector y with mean

�y � F�x �C �E���

and covariance
�y � F�xF

T �E���

If we generate another random vector� this time from a di�erent linear transformation
of x

z � Gx�D �E���

then the covariance between the random vectors y and z is given by

�y�z � F�xG
T �E�	�

The i�jth entry in this matrix is the covariance between yi and zj�

E�� The Multivariate Gaussian

The multivariate normal PDF for d variables is

N�x����� �
�

����d��j�j��� exp
�
��
�
�x� ��T����x� ��



�E���

where the mean � is a d�dimensional vector� � is a d� d covariance matrix� and j�j
denotes the determinant of ��

E���� Entropy

The entropy is

H�x� �
�

�
log j�j� d

�
log �� �

d

�
�E��
�
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E���� Relative Entropy

For Normal densities q�x� � N�x��q��q� and p�x� � N�x��p��p� the KL�divergence
is

D�qjjp� � 
�� log j�pj
j�qj �
��Trace��

��
p �q� � 
����q ��p�

T���
p ��q ��p��

d

�
�E����

where j�pj denotes the determinant of the matrix �p�

E�� The Multinomial Distribution

If a random variable x can take one of one m discrete values x�� x�� ��xm and

p�x � xs� � �s �E����

then x is said to have a multinomial distribution�

E�� The Dirichlet Distribution

If � � ���� ��� ����m� are the parameters of a multinomial distribution then

q��� � '��tot�
mY
s��

��s��s

'��s�
�E����

de�nes a Dirichlet distribution over these parameters where

�tot �
X
s

�s �E����

The mean value of �s is �s��tot�

E���� Relative Entropy

For Dirichlet densities q��� � D����q� and p��� � D����p� where the number of
states is m and �q � ��q���� �q���� ��� �q�m�� and �p � ��p���� �p���� ��� �p�m��� the
KL�divergence is

D�qjjp� � '�log�qtot� �
mX
s��

��q�s�� ���(��q�s��� (��qtot�� log '��q�s���E����

� '�log�ptot� �
mX
s��

��p�s�� ���(��q�s���(��qtot�� log '��p�s��
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where

�qtot �
mX
s��

�q�s� �E����

�ptot �
mX
s��

�p�s�

and (�� is the digamma function�
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