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Abstract

We have developed a novel algorithm for cluster analysis that is based on graph theoretic tech-
niques. A similarity graph is defined and clusters in that graph correspond to highly connected
subgraphs. A polynomial algorithm to compute them efficiently is presented. Our algorithm
produces a solution with some provably good properties and performs well on simulated and

real data.
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1 Introduction

Problem definition: Cluster analysis seeks grouping of elements into subsets based on similarity
between pairs of elements. The goal is to find disjoint subsets, called clusters, such that two
criteria are satisfied: homogeneity: elements in the same cluster are highly similar to each other;
and separation: elements in different clusters have low similarity to each other. The process of
generating the subsets is called clustering. The similarity level is usually determined by a set of
features of each element. These often originate from noisy experimental measurements, and thus
give inaccurate similarity values.

Motivation: Cluster analysis is a fundamental problem in experimental science, where one
wishes to classify observations into groups or categories. It is an old problem with a history going
back to Aristotle (cf. [5]). It has applications in biology, medicine, economics, psychology, astro-
physics and numerous other fields. The application that motivated this study was gene expression
in molecular biology.

Contribution of the paper: In this paper we present a new clustering algorithm. The

approach presented here is graph theoretic. The similarity data is used to form a similarity graph
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in which vertices correspond to elements and edges connect elements with similarity values above
some threshold. In that graph, clusters are highly connected subgraphs, defined as subgraphs
whose edge connectivity exceeds half the number of vertices. Using minimum cut algorithms such
subgraphs can be computed efficiently. We prove that the solution produced by our algorithm
possesses several properties that are desirable for clustering.

Experimental Results: The algorithm has been implemented and tested intensively on gene
expression simulated data and was shown to give good results even in the presence of relatively high
noise levels, and to outperform a previous algorithm for that problem [17]. It has also obtained
promising results in a blind test with experimental gene expression data [8, 9]. Further details can
be found in [7].

Previous graph theoretic approaches: Due to its wide applicability, cluster analysis has
been addressed by numerous authors in various disciplines in the past. The cluster separation and
homogeneity goals described above can be interpreted in various ways for optimization. Numerous
approaches exist depending on the specific objective function chosen (cf. [10, 1, 20, 6, 21, 18, 5]).
We briefly review the approaches that are most related to our work. (Definitions and terminology
will be given in Section 2.)

Matula [12, 13, 14, 15] was the first to observe the usefulness of high connectivity in similarity
graphs to cluster analysis. Matula’s approach is based on the cohesiveness function, defined for
every vertex and edge of a graph G to be the maximum edge-connectivity of any subgraph containing
that element. The components of the subgraph of G, obtained by deleting all elements in G of
cohesiveness less than k, are precisely the maximal k-connected subgraphs of G. In [13] Matula
suggested finding clusters by using a constant value k. The drawback in this approach is that
different real clusters may have different connectivity values. Later [14] Matula suggested identifying
as clusters maximal k-connected subgraphs (for any k) which do not contain a subcomponent with
higher connectivity. This may cause the splitting of some real clusters that contain several highly
cohesive parts.

Minimum cuts in capacitated similarity graphs were also used by Wu and Leahy [22]. The
number of clusters K is assumed to be known for their algorithm. The K — 1 smallest cuts in G are
computed (e.g., using the Gomory-Hu algorithm [4]) and their removal produces a K-partition of
the data. The resulting K-partition of G has two desirable properties: (1) it minimizes the largest
inter-subgraph mincut among all possible K-partitions of G. (2) the maximum mincut between
any pair of vertices in the same subgraph (intra-subgraph mincut) is always greater than or equal
to the mincut between vertices in two different subgraphs (inter-subgraph mincut). In Section 5

we shall compare the two approaches with ours.

2 The HCS Algorithm

In this section we describe the Highly Connected Subgraphs (HCS) algorithm for cluster analysis.
We first review some standard graph-theoretic definitions (cf. [3, 2]).
The edge-connectivity (or simply the connectivity) k(G) of a graph G is the minimum number &

of edges whose removal results in a disconnected graph. If £(G) = [ then G is called an I-connected



graph. A cut in a graph is a set of edges whose removal disconnects the graph. A minimum cut
(abbreviated mincut) is a cut with a minimum number of edges. Thus a cut S is a minimum cut
of a non-trivial graph G iff |S| = k(G). The distance d(u, v) between vertices u and v in G is the
minimum length of a path joining them, if such path exists; otherwise d(u, v) = co (the length of a
path is the number of edges in it). The diameter of a connected graph G, denoted diam(G), is the
longest distance between any two vertices in G. The degree of vertex v in a graph, denoted deg(v),
is the number of edges incident with it. The minimum degree of a vertex in G is denoted é(G).

A key definition for our approach is the following: A graph G with n > 1 vertices is called
highly connected if k(G) > 3. A highly connected subgraph (HCS) is an induced subgraph H C G,
such that H is highly connected. Our algorithm identifies highly connected subgraphs as clusters.
The HCS algorithm is shown in Figure 1, and Figure 2 contains an example of its application.
We assume that procedure MINCUT(G) returns H, H, and C, where C is a minimum cut which
separates G into the subgraphs H and H. Procedure HCS returns a graph in case it identifies it as
a cluster. Otherwise, it returns nothing, and subgraphs identified as clusters are returned by lower
levels of the recursion. Single vertices are not considered clusters and are grouped into a singletons
set §. The collection of subgraphs returned when applying HCS on the original graph constitutes

the overall solution.

HCS( G(V,E))
begin
(H,H,C) + MmincuT(G)
if GG is highly connected
then return (G)
else
HCS(H)
HCS(H)
end if

end

Figure 1: The HCS algorithm.

The running time of the HCS algorithm is bounded by 2N X f(n, m), where N is the number of
clusters found and f(n,m) is the time complexity of computing a minimum cut in a graph with n
vertices and m edges. Note that in many applications N << n. The current fastest deterministic
algorithms for finding a minimum cut in an unweighted graph require O (nm) steps, and are due to
Matula [16] and Nagamochi and Ibaraki [19]. The fastest randomized algorithm is due to Karger
and requires O(mlog® n) time [11].

3 Properties of HCS Clustering.

In this section we prove some properties of the clusters produced by the HCS algorithm. These

demonstrate the homogeneity and the separation of the solution.
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Figure 2: An example of applying the HCS algorithm to a graph. Minimum cut edges are denoted

by broken lines.

Theorem 1 The diameter of every highly connected graph is at most two.

Proof: When all the edges incident with a vertex of minimum degree are removed, a disconnected
graph results. Therefore the edge connectivity of a graph is not greater than its minimum degree:
k(G) < 6(G). If G is highly connected then m < k(G) < 6(G), so every vertex is adjacent to at
least half of the vertices of G. Therefore every two vertices are at distance at most two, as they

have a common neighbor. [

Note that the theorem holds even if we allow the cardinality of the minimum cut in an HCS

to be equal to m

Note also that the converse of Theorem 1 does not hold: Take for example the
path on 3 vertlces. In Theorem 3 below we give a characterization of the case where a graph has
diameter 2 but is not highly connected. Using the characterization, we shall later argue that this

situation is unlikely to occur in clustering real, noisy data.

Lemma 2 If S is a minimum cut which splits the graph into two induced subgraphs, the smaller

of which, H, contains k > 1 vertices, then |S| < k, with equality only if H is a clique.

Proof: Let degg(z) denote the degree of vertex z in the induced subgraph H, and let deggs(z)

be the number of edges in S that are incident on z. Since S is a minimum cut, for every z € H
degs(z) + degz(z) > S|
(Since otherwise ({z}, V\{z}) would be a minimum cut). Summing over all vertices in H we get
Y degs(z) + Y degg(z) > [S||[V(H)
EEF mEF
or, equivalently

S|+ 2| E(H)| > |S||V(H)]



or

21E(H)| > |S|(IV(H)| - 1)
Hence, if |V (H)| > 1,
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If |S| = [V(H)| then both inequalities in the above equation must hold as equalities, so

\E(H)| = |V(ﬁ)l(|‘;(ﬁ)| —1)

which implies that H is a clique. [ |

Note that the lemma implies that if a minimum cut S in G = (V, E) satisfies |S| > |2L| then S
splits the graph into a single vertex {v} and G \ {v}. This shows us that using a stronger stopping
criterion in our algorithm, say, |C| > a > |2ﬂ will be detrimental for clustering: Any cut of value

z, |2ﬂ < # < o separates only a singleton from the current graph.

Theorem 3 Suppose G is not highly connected but has diameter 2. Let H and H be the induced
subgraphs obtained by removing a minimum cut S from G, where |V(H)| < |V(H)|. Then (1) every
vertez in H is incident on S, (2) H is a clique, and (38) if |V(H)| > 1 then every vertez in H is

tncident on a single edge of S.

Proof: Case 1, |S| = |2ﬂ: If |V (H)| = 1, the theorem is trivially true. Suppose |V (H)| > 1. By
\4

Lemma 2, H and H are cliques on ! vertices. If there exists 2 € H so that z is not incident on S

2
then deg(z) < |2ﬂ so, the partition ({z}, V\{z}) has a smaller cut value than |S|, a contradiction.

Case 2, |S| < |‘2’_|: We first show that |V (H)| < |V (H)|: Suppose |V (H)| = |V(H)| = |‘2’_| Then
since |S| < |V(H)| and |S| < |V(H)|, there exist u € H and v € H such that u is not adjacent to
any vertex in H, and v is not adjacent to any vertex in H. But then d(u,v) > 2, a contradiction to
the fact that diam(G) < 2.

Since |V (H)| > J%l > |S|, there exist a vertex v € H that is not incident on S. If there exists a
vertex u € H that is not incident on S then again we get d(u,v) > 2, a contradiction. This proves
assertion (1).

By assertion (1), |S| > |V(H)|. If |V(H)| = 1, H is trivially a clique. Suppose |V (H)| > 1. By
Lemma 2, |S| < |V(H)|. Therefore, |S| = |V (H)|. The second part of Lemma 2 now implies that
H is a clique. [ |

Theorem 4 (a) The number of edges in a highly connected subgraph is quadratic.
(b) The number of edges removed by each iteration of the HCS algorithm is at most linear.



Proof: (1) Let G = (V, E) be a highly connected subgraph with n vertices. We saw in the proof of
Theorem 1 that £(G) < 6(G). By the definition of a HCS 3 < k(G). Therefore, 3 < §(G), and a

n?

lower bound for the total number of edges is [E| > 2 x n X 3 = %-.
(2) If an iteration of the HCS algorithm splits an n-vertex graph into two components, then the

number of edges between these components is at most 7. [

By Theorem 1 each cluster produced by the HCS algorithm has diameter at most two. This is
a strong indication to the homogeneity, as the only better possibility in terms of the diameter is
that every two vertices of a cluster are connected by an edge. This condition is too stringent since
it does not allow false negative errors in determining similarities. Moreover, its use requires solving
the NP-hard maximum clique problem. By Theorem 4(a) we see that each cluster is at least half
as dense as a clique, which is another strong indication of homogeneity.

The above theorems also give a strong indication of the separation property of the solution
provided by the HCS algorithm, in that any non-trivial set split by the algorithm is unlikely to
have diameter two: Suppose the algorithm splits the subgraph G’ into non-trivial sets C; and Cs,
and diam(G') < 2. Let S be the set of minimum cut edges causing that split. W.l.o.g. suppose
t = |C1]| < |C%|. By Theorem 3 every vertex of C; is incident on S. How likely is it that G’ is a true
cluster or a part thereof? Each vertex in C; is adjacent only to a single vertex in Cy, and is not
adjacent to the rest of the vertices in Cy. As |Cy| > [¢], it follows that in the true cluster containing
C1 U Cy, only t out of the 2 or more edges between C; and C; are present, and they manifest a
highly structured pattern. In contrast, within Cj, all (;) edges are present, again by Theorem 3.
Therefore, unless ¢ is very small we have a situation that is highly unlikely to be caused by random
noise within a cluster. Hence, with the exception of this unlikely situation, any non trivial set split
by the algorithm has diameter at least three.

Another indication of separation is given in Theorem 4: The number of edges removed by each
iteration of the HCS algorithm is at most linear in the size of the underlying subgraph, compared
to a quadratic number of edges within final clusters. This indicates separation, unless the sizes are
very small. Note, however, that this does not imply that the number of edges between any two

clusters that are eventually produced by the algorithm is at most linear.

4 Practice

We describe below several heuristic improvements that speed up the algorithm and improve its

performance in practice.

4.1 Iterated HCS: When there are several minimum cuts in a graph, the HCS algorithm
might choose a minimum cut which is not best from a clustering point of view. In many cases this
process will break clusters into singletons. (For example, a different choice of minimum cuts by the
algorithm for the graph in Figure 2 may split z from G5 and eventually find the clusters G; and
G3, leaving z,y, z as singletons.) A possible solution is to perform several iterations of the HCS

algorithm until no new cluster is found. The iterated HCS adds theoretically another O(n) factor



to the running time, but in practice only very few (1-5) iterations are usually needed.

4.2 Singletons adoption: Elements left as singletons by the initial clustering process can be
“adopted” by clusters based on similarity to the cluster: For each singleton element z we compute
the number of neighbors it has in each cluster and in the singletons set S. If the maximum number
of neighbors is sufficiently large, and is obtained by one of the clusters (rather than by S), then z
is added to that cluster. The process is repeated up to a prescribed number of times in order to

accommodate changes in clusters as a result of previous adoptions.

4.3 Removing Low Degree Vertices: When the input graph contains vertices with low
degrees, one iteration of the mincut algorithm may simply separate a low degree vertex from the
rest of the graph. This is computationally very expensive, not informative in terms of the clustering,
and may happen many times if the graph is large. Removing low degree vertices from G eliminates
such iterations, and significantly reduces the running time. A refinement of the algorithm that
incorporates this idea as well as the singleton adoption and the iterated HCS is shown in Figure 3.

dy,dy, ...dy is a decreasing sequence of integers given as external input to the algorithm.

HCS_LOOP(G(V, E))
begin
for (i=1 to p) do
remove clustered vertices from G
H+G
repeatedly remove all vertices of degree < d; from H
until (no new cluster is found by the HCS call) do
HCS(H)
perform singletons adoption
remove clustered vertices from H
end until
end for

end

Figure 3: The improved HCS algorithm.

The algorithm, together with the heuristics, was implemented and tested on both simulated and
real data, with very good results. Detailed description of the experiments can be found in [8, 9].
For completeness, we summarize these results very briefly. We used the following score to evaluate
the quality of clustering: A clustering solution for a set of n elements can be represented by an
n X n matrix M where M;; = 1 iff < and j are in the same cluster according to the solution and
M;; = 0 otherwise. If T' denotes the matrix of the true solution, then the Minkowski score of M is
||T — M]||/||T|| [21, 10]. Hence, a perfect solution will obtain a score of zero, and the smaller the
score the better the solution.

The algorithm was first applied to simulated of gene expression data. An extant greedy algo-

rithm used in practice on such data [17] was also applied for comparison. On ten different groups



of datasets, varying in sizes from 60 to 980 elements with 3-13 clusters and high noise rate, HCS
achieved an average score below 0.2. In comparison, the greedy algorithm deteriorated from an
average score of 0.4 for the smallest problems to 1.4 for the largest. Stability of the solution qual-
ity, as measured by the variance of the score, was also much smaller in our algorithm. HCS also
manifested robustness with respect to higher noise levels.

Next, the algorithms were applied in a blind test to real gene expression data provided by H.
Lehrach’s group of Max Planck Institute, Berlin. The data consisted of 2329 elements partitioned
into 18 clusters varying in size from 1 to 708 elements. HCS identified 16 clusters and left 206 as
singletons, reaching a score of 0.71. Greedy generated 66 clusters and left 478 singletons, and got
a score of 0.77. Hence HCS was superior in all parameters. Running time of HCS on a 194 MHZ

SGI machine was 43 minutes.

5 Concluding Remarks

We have presented a clustering algorithm based on high connectivity in graphs, and demonstrated
that it generates solutions with desirable properties for clustering. The algorithm has low poly-
nomial complexity. It is also efficient in practice: Our initial implementation, after some heuristic
improvements as described in Section 4, handles well problems with up to thousands of elements
in a reasonable computing time [7].

As noted in the introduction, graph connectivity has been previously used for clustering. Our
novel definition of highly connected subgraphs gives a stopping criterion, by defining clusters as
subgraphs with connectivity that is above half the number of vertices. This has several advantages:
It gives clusters with provable good properties (Section 3), and it precludes the need to know in
advance (or guess) the number of clusters as in [22].

The HCS algorithm generates clusters with diameter two. This is a strong indication of ho-
mogeneity, as any two vertices are either adjacent or share one or more common neighbors. This
property is not satisfied by the solutions in [14, 22]. (The 3-connected component in [14, Fig. 1]
has diameter 3. Moreover, a path of arbitrary length is a cluster according to [14]).

In contrast with [22], the HCS algorithm computes minimum cuts in the smaller subgraphs
which were obtained by removing the mincut edges of previous partitions. It seems that the HCS
way of computing mincuts is more suitable for clustering, because the mincut edges of previous
partitions correspond to erroneous edges which connect mistakenly entities from different clusters,
so there is no reason to take them into account again in subsequent partitions. For example, on
the graph in Figure 4, given the number of clusters 3 as input, the algorithm in [22] will find an
isolated vertex v € {a, b, c,d}, G1 \ {v}, and (G2 UG3) \ {v}. In contrast, HCS finds the three more
plausible clusters G1, G2, G3. On the graph in Figure 2, [22] finds G;, {z}, and G3 U {y, z}.

We have chosen not to view as an HCS (and thus a cluster) an n-vertex subgraph H with

connectivity exactly %, even though its diameter is 2. By Theorem 3, in that case H consists of two

n_

2
union of two clusters. (Subgraphs with n = 2 may be handled as a special case in implementations.)

vertex cliques connected by a perfect matching. Unless n is very small, this is more likely to be a

In contrast, if a minimum cut exceeds 7, it must separate only a single vertex from the graph.



Figure 4: A similarity graph of three clusters G, G2, G3, with some false positive edges. Here the
basic HCS clustering performs better than Wu and Leahy’s clustering.

Possible future improvements include finding maximal highly connected subgraphs (e.g. using
Matula’s cohesiveness function [14]), and finding a weighted minimum cut in an edge-weighted
graph. Most of our theoretical results carry over to weighted graphs. Further theoretical questions
on the properties of the algorithm are also of interest: Can we determine the optimal value of the
threshold on the similarity values that is used to form the similarity graph? Can we determine a
probabilistic threshold for the level of noise under which good (or perfect) clustering is guaranteed,
with high probability? Proving additional (deterministic or probabilistic) properties of HCS clusters

is also of interest.
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