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Abstract

Investigations of neural coding in many brain systems have focused on the role of spike rate and timing as two means of encoding information
within a spike train. Recently, statistical pattern recognition methods, such as linear discriminant analysis (LDA), have emerged as a standard
approach for examining neural codes. These methods work well when data sets are over-determined (i.e., there are more observations than
predictor variables). But this is not always the case in many experimental data sets. One way to reduce the number of predictor variables is
to preprocess data prior to classification. Here, a wavelet-based method is described for preprocessing spike trains. The method is based on
the discriminant pursuit (DP) algorithm of Buckheit and Donoho [Proc. SPIE 2569 (1995) 540–51]. DP extracts a reduced set of features
that are well localized in the time and frequency domains and that can be subsequently analyzed with statistical classifiers. DP is illustrated
using neuronal spike trains recorded in the motor cortex of an awake, behaving rat [Laubach et al. Nature 405 (2000) 567–71]. In addition,
simulated spike trains that differed only in the timing of spikes are used to show that DP outperforms another method for preprocessing spike
trains, principal component analysis (PCA) [Richmond and Optican J. Neurophysiol. 57 (1987) 147–61].
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A major unresolved issue in systems neuroscience is the
extent to which neurons make use of variations in spike
rate and timing to transmit information (Engel et al., 1992;
Shadlen and Newsome, 1995; Softky, 1995; Theunissen and
Miller, 1995). A variety of data analysis paradigms have
been developed to examine this issue, including multivari-
ate statistical methods such as discriminant analysis (Miller
et al., 1991; Gochin et al., 1994; Schoenbaum and
Eichenbaum, 1995; Deadwyler et al., 1996; Nicolelis et al.,
1997b, 1998; Ghazanfar et al., 2000; Laubach et al., 2000;
Furukawa and Middlebrooks, 2002). Methods for discrimi-
nant analysis generate statistical models that predict whether
a given class of signal occurred on a single trial. The results
of a given discriminant analysis can easily be converted to
the terms and metrics of information theory (i.e., bits of
information). For spike train data, methods for discrimi-
nant analysis perform well when relatively large bin sizes
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(>100 ms) are used as inputs for a given statistical classi-
fier; however, the use of smaller bin sizes (<10 ms) tends to
result in degraded performance(Nicolelis et al., 1999). This
is likely due to a well-known aspect of algorithms such as
linear discriminant analysis (LDA;Fisher, 1936) and other
methods based on artificial neural networks (ANNs; see
Ripley, 1996; Hastie et al., 2001for review): the data set
must be over-determined, i.e., there needs to be many more
observations than predictor variables. The development of
newer methods for pattern recognition, such as support vec-
tor machines (SVMs) (Vapnik, 2000; seeHastie et al., 2001
for review), may help overcome this issue. Nevertheless, to
resolve whether a given set of neurons make use of varia-
tions in spike rate or timing, it is necessary to examine the
neuronal response over a set of small bins. Reducing the
dimensionality of spike train data prior to analysis with sta-
tistical classifiers is thus a major goal for current research.

A standard multivariate approach to dimension reduction
is to use principal component analysis (PCA). PCA reduces
a large number of original variables into a smaller number
of “components” that represent most of the variance in the
original data.Richmond and Optican (1987)developed an
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application of PCA for spike train data in the 1980s. The
method revealed that visual cortical neurons make use of
more than just firing rate to encode information about a
collection of stimuli. In Richmond and Optican’s method,
each principal component is formed by the weighted linear
sum of the firing rate of the neuron over the collection of
bins that form the peri-event histogram. Coefficients for each
component are determined for each bin in the peri-event
histogram and each principal component is derived in an
orthogonal manner (i.e., each accounts for a unique portion
of variance). By taking the dot product of the coefficients and
the observed spike train, one can compute an overall score
for the component on a single-trial basis. The collection of
scores for all trials in a given experimental data set can then
be analyzed with statistical classifiers(Heller et al., 1995)
or information theory(Richmond and Optican, 1987).

PCA is known to have limited utility when the signals of
interest are sparsely distributed, e.g., the difference between
firing patterns is based on one or a small number of spikes
occurring within a narrow time window. This issue is due to
an emphasis by PCA on global features in signals and images
(Penev and Atick, 1996)that compromises the resolution of
localized features. Alternatives to PCA have been developed
since the early 1990s, e.g., independent component analysis
(ICA) (seeHyvarinen et al., 2001for review) and multi-scale
spectral methods such as wavelets (seeWickerhauser, 1994
for review). These methods are not compromised by the
sparseness of data and, in the case of wavelets, can account
for structure in both the time and frequency domains.

Saito and Coifman (1994)described a method called lo-
cal discriminant bases (LDB) that can be used to discrimi-
nate between multiple classes of signals by using expansions
of the data in the wavelet (or local trigonometric) domain.
Each signal in a given training data set is decomposed into a
wavelet packet table, which is a way of describing the com-
plete, orthonormal set of basis functions for a given wavelet
function. Features derived with LDB are mutually perpen-
dicular, i.e., their dot product is thus equal to zero, and are
well localized in time and frequency. A criterion function
that can be used for classification problems is, for example,
the relative entropy (i.e., the Kullback–Leibler divergence).
A subset of components with the maximum relative entropy
are chosen as a set of features and used as input for statis-
tical classifiers.

Buckheit and Donoho (1995a)proposed another algo-
rithm with the same goals as LDB, which they referred to as
discriminant pursuit (DP). DP uses the same wavelet-packet
analysis as LDB. Instead of being based on relative entropy,
DP is based on a simple contrast function which is deter-
mined from the means of each class (e.g., subtract mean
response of one class from another). Features are extracted
from the contrast function in a sequential and iterative man-
ner. At each iteration, the portion of the signal captured by
the best discriminanting basis function is then removed from
the initial contrast function and the residual contrast is bro-
ken down in the wavelet domain to obtain additional fea-

tures. This aspect of the method is referred to as a “pursuit”
type of decomposition (seeFriedman, 1987). LDB and DP
achieve similar levels of performance on benchmark data
sets (e.g., Breiman’s waveform data) and real-world sig-
nals such as speech data (seeBuckheit and Donoho, 1995a).
However, experience has shown that features derived with
DP are often more readily interpretable due to the fact that
they are obtained from the contrast functions. In the case
of a two-class discrimination problem, positive aspects of
the features are related to one class of signal and negative
aspects to the other.

Motivated by the work of Richmond and Optican and the
novel wavelet-based methods developed by the Coifman and
Donoho groups, an application of the discriminant pursuit
algorithm for quantifying temporal encoding of stimuli by
neuronal spike trains was developed(Laubach, 1997). The
method has since been applied to many different types of
neuronal data sets, including recordings of spike trains and
local field potentials in the cerebral cortex and other brain
areas of rats and monkeys (Nicolelis et al., 1999; Laubach
et al., 2000and unpublished data). DP identifies features on
a trial-by-trial basis using single-trial peri-event histograms.
The amount of information contained in neuronal firing pat-
terns is quantified using statistical classifiers and informa-
tion theory. In this manuscript, the basic discriminant pursuit
algorithm is described and its application to neuronal spike
train data is illustrated. In addition, a simulated data set that
differs exclusively in the timing of spikes is used to directly
compare the performance of DP with the PCA-based method
of Richmond and Optican (1987).

2. Materials and methods

2.1. General data analysis procedures

All analysis procedures described in this study were
done using custom scripts written for Matlab (The Math-
works, Natick, MA) and the Wavelab (v.8) toolbox
from Stanford Universityhttp://www-stat.stanford.edu/∼
wavelab/. In the spirit of reproducible research(Buckheit
and Donoho, 1995b), all code needed to replicate the anal-
yses described in this manuscript can be downloaded from
http://spikelab.jbpierce.org/dp.

Discriminations between trials with correct and error
responses (physiological data) or response components 1
or 2 (simulations) were performed as follows (Fig. 1A):
Single-trial peri-event histograms (1 ms bins) were con-
structed for the epoch of interest (e.g., for the physiological
data, this was a 200 ms epoch). The spike trains were then
smoothed over 5 ms intervals by low-pass filtering (using
the filtfilt function in Matlab and a five-point Ham-
ming window) and re-sampling (using Matlab’sdecimate
function). In a previous study(Laubach et al., 2000), the
temporal precision of firing patterns in the physiological data
were examined by comparing classifications based on “raw”

http://www-stat.stanford.edu/$~$ wavelab/
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Fig. 1. The series of operations in the data analysis procedures described
in this manuscript are shown in A. In B, the steps in the discriminant
pursuit algorithm ofBuckheit and Donoho (1995a)are shown. See the
text for details.

spike trains (i.e., single-trial peri-event histograms with
1 ms bins) and spike trains smoothed over several different
temporal epochs (i.e., 2, 5, 10, and 20 ms). Here, we used
five-fold decimation as this level of smoothing was found in
the study above to result in optimal levels of classification.
Next, firing patterns associated with correct and error trials
were identified for each neuron using discriminant pursuit
(see below) and were then fed into a statistical classifier,
either linear discriminant analysis or learning vector quan-
tization (LVQ) (Kohonen, 1997; seeNicolelis et al., 1999
for details on the use of these methods for spike train data).

For LVQ, the following parameters were used for run-
ning the implementation of the method that is included in
the Matlab Neural Networks toolbox: First, the learning
rule from the original Matlab code was altered to perform
Kohonen’s optimized-learning-rate learning vector quanti-
zation (OLVQ). Second, the number of “codebook vectors”
(implemented as competitive neurons in Matlab) was equal
to twice the number of classes of signals. Third, the code-
book vectors were initialized using a modification of the
Matlab functioninitlvq. Rather than using the entire distri-
bution of observed signals to determine the initial values and
group assignments for the competitive neurons, the initial
functions were assigned as the means for each class of sig-
nal. This was done to improve the performance of LVQ for
data sets that have unequal numbers of trials per class (as in
the neurophysiological data described in this manuscript).
In such cases, the default initialization procedure from the
Matlab Neural Networks toolbox tends to produce classifiers
that are highly biased to the class with the largest number
of observed trials in the training data.

Leave-one-out cross-validation (LOO-CV) (i.e., all tri-
als except one used for training and a single trial used as
test data) was used to estimate error rates on training and
testing data and to construct confusion matrices. LOO-CV

was also used for feature extraction, although this is typ-
ically not necessary for the DP algorithm when trimmed
means are used to compute the difference vector (see be-
low). Results were expressed in terms of percentage of single
trials that were classified correctly and in bits of informa-
tion, defined by applying information theory(Krippendorff,
1986) to the confusion matrices. Chance levels of classifi-
cation were determined using a permutation test(Efron and
Tibshirani, 1994)in which the group identities were scram-
bled pseudo-randomly.

For feature extraction with DP, the Daubechies four-point
wavelet, d4, was used for all analyses in this study. Ex-
perience has shown that this basis function is well suited
for smoothed neuronal spike trains, especially for peri-event
histograms that have asymmetric components (e.g., prepara-
tory discharge) that are typical for recordings from associa-
tive and motor-related brain areas. Smoother members of
the Daubechies family and other types of wavelets (Coiflets,
Symmlets) typically result in lower levels of classification
and produce less consistent features when multiple permu-
tations of a given data set are evaluated. The Haar wavelet
(a simple basis function that is only localized in the time
domain) might also seem to be a reasonable choice for our
analyses. This wavelet works very well when spikes are not
smoothed prior to analysis with the DP algorithm. But for
smoothed spike trains, the Haar wavelet is not well suited as
it is unable to account for structure in the frequency domain.

In addition to running DP on spike trains from single
neurons prior to classification, one can feed features from a
collection of simultaneously recorded neurons into a classi-
fier such as LVQ. Alternatively, once can use PCA for di-
mension reduction prior to classification. This can be done
in two ways. First, one can arrange data from each neuron
into a single column, by stacking up the set of bins for each
trial end-on-end. Then, a matrix is formed from the col-
lection of columns for all simultaneously recorded neurons.
(Laubach et al. (1999)used this data structure for analy-
sis of spike trains with independent component analysis.)
This approach uses PCA (or ICA) to quantify simultaneous
covariance/correlation between neurons into a reduced set
of component functions. Typically, classifications with such
functions perform at levels that are worse than classifications
performed on the original data, due to the fact that simulta-
neous correlations are only a portion of the total variance in
the spike trains(Laubach et al., 2000).

A second use of PCA for preprocessing is to run PCA
on the collection of features identified by DP for all neu-
rons together. This use of PCA allows for identification of a
reduced set of components that reflect correlations between
the wavelet features from multiple, simultaneously recorded
neurons. While not the focus of the present paper, this ap-
proach has been shown to be most useful when linear dis-
criminant analysis is used for classification and there are
many neurons to be analyzed. In such a case, even with the
use of DP, the data set is often still underdetermined with
more predictor variables (features) than observations (trials).
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2.2. The discriminant pursuit algorithm

The sequence of operations in the discriminant pursuit al-
gorithm is described inFig. 1B. For the sake of simplicity,
the algorithm is illustrated here for a two-class discrimina-
tion. The first step in the algorithm is to find structure that
contrasts neural activity in the two categories. Formally, this
amounts to maximizing the difference vector,d, defined as:

d = x̄1 − x̄2 = ∆ + 1√
N

z̃, z̃∼N(0, 1) (1)

where x̄1 and x̄2 are the average signals for each of two
classes,∆ is the true distance between the classes,N is the
number of samples, and̃z is random noise(Buckheit and
Donoho, 1995a). In practice, trimmed means (the upper and
lower 10% of trials omitted from estimation of the mean)
were used in the analysis described here. The difference vec-
tor is then partitioned into its fundamental time–frequency
components by a discrete wavelet packet analysis (see Chap-
ter 7 inWickerhauser, 1994for review).

The wavelet packet decomposition performs an iterative
dyadic decomposition of the group difference vector into
low and high frequency bands through convolution and dec-
imation operations (seeFig. 4). The method thus requires
that the length of the signal is of a power of two,N = 2J .
For example, if a signal has 64 bins, thenN = 64 andJ =
6. The decomposition results from operation of a low-pass
filter G = {gk}L−1

n=0 and a high-pass filterH = {hk}L−1
n=0 on

the signal. The filters G and H are called quadrature mirror
filters, which satisfy the orthogonality constraint:

GH∗ = HG∗ = 0 and G∗G + H∗H = I (2)

Each decomposition of the signal results in a finer and finer
partition of the frequency axis, which is assigned to an in-
creasing depth within the wavelet packet table. The max-
imum degree of decimation and smoothing, which is the
“maximum depth” in the wavelet packet table, is equal toJ .

A wavelet packet table represents an original signal in
the time–frequency (phase) plane. Each component in the
wavelet packet table is known as a time–frequency atom and
the collection of atoms is called a time–frequency dictionary
(see Chapter 10 inWickerhauser, 1994for review). Each
atom,Q, is indexed by its depth in the table (d), its degree
of oscillation (b), and its location in time (k), i.e., Qd,b,k.
The atoms representing the signal are ordered by their am-
plitude,a. The atoms accounting for the largest portions of
the difference vector (with the largest amplitude),Qmax, are
thus chosen as the feature that best discriminating basis.

Prior to the identification of additional features, features
are extracted from the initial difference vector to give a resid-
ual difference vector,dres. For each iteration,k, the residual
difference vector,dk

res, is equal to the previous difference
vector,dk−1

res , minus the product of the time–frequency atom,
Qk, and its associated amplitude,ak:

dk
res = dk−1

res − akQk (3)

The complete set of features is determined by performing
the wavelet packet decomposition on the series of residual
difference vectors.

It is possible to automatically choose a reduced set of fea-
tures for classification, for example, using scree plot analy-
sis. Here, the amplitude accounted for by each component
is plotted in decreasing order and a line is fit to the upper
half of the distribution. They-intercept and slope for this
line is determined and those components that have larger
amplitudes than is expected by this line (i.e., that are larger
than they-intercept) are considered to be potentially useful
for classification.

2.3. Neurophysiological data

Data from the published study byLaubach et al. (2000)
were used to evaluate the DP method. Briefly, adult, male
rats (Long Evans) were trained to perform a reaction-time
task. The task required that the rats maintained a lever-press
over a variable delay period and then released the lever when
a trigger stimulus (tone or vibration of the lever) was pre-
sented. Correct trials consisted of the animals maintaining
the lever press over the delay period and releasing the lever
with a reaction time less than 1 s. Error trials occurred when
the lever was released before the trigger stimulus. Chronic
and simultaneous recordings of neuronal spike trains were
obtained in the forelimb area of the rat motor cortex as the
animals learned the task and in fully trained subjects. Pro-
cedures for chronically implanting arrays of microwire elec-
trodes (NB Labs, Dennison, TX) and data acquisition, using
a multielectrode single-unit recording system (Plexon, Dal-
las, TX), are described elsewhere(Nicolelis et al., 1997a).
All rats were treated in accordance with NIH guidelines.

In the data set used for this study, 19 neurons were
recorded simultaneously in layer V of the rat motor cortex
(in the medial and lateral agranular cortex). The rat had
been trained to perform the reaction-time task for more
than two months. There were 133 correct and 55 error trials
in the 1-h session. Thus, the chance level of classification
was 70.7%.

2.4. Simulated spike trains

A series of point events from an actual behavior experi-
ment were used to create simulated spike trains with realistic
statistical and qualitative features to those obtained in actual
neuronal ensemble recording experiments. Baseline signals,
used in all simulations, were 2 Hz random processes with
inter-event intervals selected from the Poisson distribution
and that occurred over the entire epoch from 406 ms prior to
the node (time 0) to 106 ms after the node. The first event af-
ter the occurrence of the trigger stimulus was used as an on-
set for the epoch containing the signal components (Fig. 2A)
that was added to the baseline activity. These signals were
analogous to what one would expect to find if a hidden event
in the nervous system occurred during behavior and elicited a
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Fig. 2. The construction of the simulated spike trains used in this study is illustrated. In A, the random background discharge is shown in the raster
(upper) and peri-event histogram (lower) plots. In B, the two periodic components, based on a triplet of spikes, are shown. These two signals were
combined with the background activity in A to give the two classes of simulated signals shown in C. Note that while the signals differed in the timing
of the triplet of spikes there was no difference in the total spike count (D).

neuronal response that contained some degree of information
about the animal’s performance of the behavioral task. The
signal components were periodic processes that consisted
of three events, with 50 ms intervals, that occurred after the
first event after the trigger stimulus (Fig. 2B). The events
in one of the periodic components were simply shifted by
25 ms to give the other periodic component. The signal com-
ponents were then combined with the baseline activity to
give the signals used in the analyses (Fig. 2C). Both signals
contained an increase in the time-averaged firing rate for the
epoch 200 ms prior to the node (time 0), with time-averaged
rates of 11.85± 1.50 Hz and 2.37± 0.30 spikes. There was
no difference therefore in the time-averaged firing rates
for the signals (Fig. 2D): box plots of the total number
of spikes in the 200 ms epoch prior to the node showed
that the signals contained equivalent numbers of spikes
(median= three spikes). The goal of the analysis was to
determine if any available method for spike train analysis
could detect the phase difference between the two classes
of signals.

3. Results

3.1. Neurophysiological data

The DP method is illustrated for a neuron recorded in the
rat motor cortex during the performance of a simple reac-

tion time task(Laubach et al., 2000). In this task, trials with
correct responses (i.e., a motor response was sustained over
a delay period until a trigger stimulus was presented) were
compared with trials with error responses (i.e., the rat re-
sponded prior to the scheduled time of the trigger stimulus).
The goal was to determine if neuronal activity in rat motor
cortex was different on these types of trials. A difference
in activity might reflect the encoding of the trigger stimu-
lus by the motor cortex or of the animal’s ability to inhibit
responding on the error trials (seeLaubach et al., 2000for
discussion of this task).

Prior to application of DP, the spike trains for each trial
were smoothed using low-pass filtering and five-fold deci-
mation (seeSection 2). This process is illustrated inFig. 3A,
where the smoothed spikes can be seen as an approximation
of the time-varying firing rate or spike probability, which was
referred to as the spike density byRichmond and Optican
(1987). Average signals for correct and error trials are shown
in Fig. 3B. The neuron fired at an increasing rate over the
final 100 ms of the foreperiod on the correct trials (solid
black line) and was otherwise not modulated on the error
trials (dashed gray line). The difference vector (Fig. 3C)
revealed a trend for the neuron to fire at a higher rate
immediately prior to movement onset on the correct trials.

Decomposition of the difference vector using DP resulted
in the distribution of amplitudes for the complete set of ba-
sis functions shown inFig. 3D. The first six basis functions
(Fig. 3E) accounted for larger portions of the difference
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Fig. 3. Application of the discriminant pursuit method to a spike train recorded from a neuron in the rat motor cortex during the performance of a
simple reaction time task(Laubach et al., 2000)is shown. In A, the smoothing procedure for converting the impulse train into a smooth representation
of spike density is illustrated. In B, the mean signals for each type of trial, correct and error responses (see the text for details) are shown. In C, the
difference between the two mean signals is illustrated as the so-called “difference vector”. This signal was decomposed using the discriminant pursuit
method. The amplitudes of the series of coefficients identified with the method are shown in the scree plot in D. A reduced set of six features with the
largest amplitudes was used for subsequent analyses. In E, the time course of the identified features, or firing patterns, is shown.

vectors than was anticipated based on the distribution of the
amplitudes of the complete set of basis functions. The first
basis function was localized to the final 100 ms of the trial,
i.e., the portion of time when the mean signals for the correct
and error trials were most different for this neuron. The sec-
ond basis function reflected the slight increase in firing rate
that was apparent in the mean response for the correct trials
at approximately 50 ms prior to movement onset. The third
and fifth basis functions were based on the time of move-
ment onset, which was the time with the largest difference
between the two types of signals. The fourth function was
not well localized and accounted for the overall shape of the
difference vector, especially around times earlier in the his-
togram when the neuron fired at slightly higher rats on the
error trials. Finally, function 6, which was near the level of
“noise” expected from the scree analysis above, further em-
phasized differences in firing rates between the correct and
error trials around 150 ms prior to movement onset.

Dyadic tiling of the time–frequency domain by wavelet-
packet decomposition is illustrated schematically inFig. 4A.
An actual wavelet packet table for the difference vector, or
“contrast”, obtained from the data inFig. 3 is shown in
Fig. 4B. The initial difference vector, with a length of 64
samples, is shown in the upper row (depth 0). The second
row stores the result of applying a single decimation to the
signal and stores the smooth (low-pass) component on the
left side (s1–32) and the detail (high-pass) component on the
right side (d1–32). A similar splitting of the signal is then
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Fig. 4. Wavelet packet decomposition is used in the discriminant pursuit
method to decompose a signal into its essential components that are well
localized in the time and frequency domains. In A, the standard wavelet
packet table is shown for a signal of length 64 and a maximum depth
of decomposition of 6. See the text for details on this method for signal
decomposition. In B, the wavelet packet table for the difference vector
from Fig. 3 is shown. The energies of the signal components are depicted
in the line plots at each depth in the wavelet packet table. Note that
almost all of the signal energy is concentrated in the smooth aspects of
the signal (i.e., on the left side of the table).
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Fig. 5. Partitioning of the difference vector in the time and frequency domains using the discriminant pursuit method. In A, the wavelet components for
the difference vector from the neuron shown inFig. 3 are depicted in the time–frequency plane. The components have been weighted using the best
basis algorithm for the purposes of illustration. The signal component that accounts for the largest portion of the difference vector is removed and the
difference vector is re-expressed. The initial basis function is called the “best discriminating basis” and is shown in the time–frequency plot in B and in
the time and frequency domains in C and D, respectively. The feature was localized in the wavelet packet table at a depth of 4, a degree of oscillation of
0, and a temporal location of 2. After the first discriminating basis function is removed from the difference vector, the residual difference vector (E) is
then decomposed with wavelet packet decomposition. The next largest component of the signal is shown in F–H. This is the second best discriminating
basis and it was localized in the wavelet packet table at a depth of 5, a degree of oscillation of 2, and a temporal location of 1.

done for each of the representations at depth 1 resulting in
a smooth-smooth component, a detail-smooth component,
and smooth-detail component, and a detail-detail compo-
nent, each with length 16. This process is further repeated
to a depth of 6.

The sequential breakdown of the difference vector into a
series of features can also be visualized in the time and fre-
quency domains (Fig. 5). A time–frequency representation
of the initial difference vector is shown inFig. 5A. The con-
tributions of each wavelet component have been weighted
via the “best basis” algorithm(Coifman and Wickerhauser,
1992) to emphasize the amount of variance in the differ-
ence vector that was accounted for by each component. In
Fig. 5B, the best discriminating basis function is shown in
the time–frequency plane. In the time domain (Fig. 5C), this
function was localized to the second half of the time prior
to movement onset. In the frequency domain (Fig. 5D), this
function was mostly localized to the low frequency range
(∼0.1 times the Nyquist frequency or 10 Hz for spikes sam-
pled at a 5 ms precision). The residual difference vector is
shown inFig. 5Eand the location of the next best discrim-
inating basis is inFig. 5F. This function exhibited a larger
degree of fluctuation during the time prior to movement
(Fig. 5G) and this was reflected in the frequency domain
(Fig. 5H), where there were multiple frequencies around 10
and 20 Hz accounted for by the basis function.

Classifications based on smoothed spike trains (five-fold
decimation) and the LDA and LVQ methods were correct for
56.4 and 71.8% of trials (0.003 and 0.147 bits), respectively.
The improved performance of LVQ over LDA is likely due
to the large number of bins in the spike trains that results in
having an underdetermined data set. When DP-based fea-

tures for this neuron were fed into the LDA and LVQ clas-
sifiers, 75.5 and 70.2%, respectively, of trials were classi-
fied correctly as correct or error responses (0.076 and 0.134
bits of information). Despite the percentage correct being
higher for LDA than LVQ, LDA produced less well-balanced
confusion matrices and thus provided less total information
about the animal’s performance of the task. In fact, the LDA
classifier was highly biased to the correct response trials
and correctly predicted the class labels for 123 of 133 tri-
als with correct responses (92.5% correct) and only 19 of
55 trials with error responses (34.5% correct). By contrast,
LVQ was biased toward the error response trials and cor-
rectly predicted the class labels for 88 correct responses tri-
als (66% correct) and 44 error response trials (80% correct).
This result shows why it is essential to check the confusion
matrix whenever a multivariate method is used for discrim-
inant analysis as the percentage correct metric if used alone
can be misleading (see the on-line supplementary material
from Laubach et al., 2000).

At the ensemble level (i.e., for all 19 neurons that were
recorded simultaneously), the following results were ob-
tained using five-fold decimation and low-pass filtering
on the spike trains: LDAraw—45.7% correct, 0.003 bits;
LDADP—70.7% correct, 0 bits (all trials classified as cor-
rect responses); LDADP·PCA—79.3% correct, 0.151 bits;
LVQraw—73.9% correct, 0.096 bits; LVQDP—79.3% cor-
rect, 0.202 bits; LVQDP·PCA—77.7% correct, 0.177 bits.
Here, raw is for the direct application of LDA and LVQ
to the spike trains, DP is for using DP processing prior to
LDA or LVQ, and DP·PCA is for following DP with PCA
on the collection of features from all neurons. The best
overall results were obtained with the LVQDP method and
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this analysis provided∼14% more information than the
next best classification scheme (LVQDP·PCA). As in the case
of the direct application of LDA, the LDADP·PCA classifier
was biased towards the correct responses. Finally, analyses
without DP prior to the combination of PCA and LDA or
LVQ produced the following results: LDA: 69.2% correct,
0.024 bits; LVQ: 62.7% correct, 0.032 bits.

3.2. Simulated spike trains

Feature extraction using DP and PCA(Richmond and
Optican, 1987)was compared for simulated spike data that
differed only in the precise timing of a triplet of spikes
(seeSection 2). Eigenvectors for the first three principle
components are shown inFig. 6A. The first component
was similar to the overall average response for signal com-
ponents 1 and 2. Power spectral analysis showed that the
higher components accounted for the frequency content of
the triplet of spikes, with maximum power in the range of 20
and 40 Hz (Fig. 6B). The 40-Hz component accounted for
the difference in the phase of the signals. Classifications of
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Fig. 6. The decompositions of the simulated spike trains are shown for
the PCA (A–B) and DP (C–F) preprocessing methods. The top three
features identified with PCA are shown in the time (A) and frequency (B)
domains. In C and D, the means signals and difference vector for the two
classes of signals are shown. This signal was decomposed into the set of
features using the DP method (E—time domain, F—frequency domain).

the PCA-based features with LVQ were correct for 61.3%
of trials (0.037 bits of information with chance equal to
50%). Features extracted with DP improved on the results
obtained with PCA. Average signals for signal class and the
difference vector are shown inFig. 6C–D. The best discrim-
inating basis function was periodic and accounted for the
frequency range of the true signal difference with maximum
power in the frequency domain at 20 Hz (Fig. 6E–F). The
second and third features accounted for the timing of the
onset and offset, respectively, of the periodic signals. These
features allowed for the classification of the signals by their
phase (64.5% correct, 0.065 bits, 1.75 times that provided
by the PCA-based features). Also, classifications by both
methods were significantly better than expected by chance
(P = 0; 1000 repetitions with a permutation test, i.e., class
labels randomly permuted). Chance levels of prediction for
this data set averaged around 48.6% correct (STD= 2.8)
and provided 0.003 bits of information (STD= 0.003).

4. Discussion

Spike train data from the rat motor cortex and simu-
lated data sets were used to show that discriminant pursuit
(DP) outperforms principal component analysis (PCA) in ac-
counting for temporally localized events in spike trains that
vary as a function of experimental condition (e.g., across a
range of sensory stimuli or different types of motor acts).
A major strength of the method is that the dimensionality
of the spike train data can be greatly reduced following ex-
traction of the relevant features. As a result, methods for
discriminant analysis, such as Linear Discriminant Analysis
or methods based on artificial neural networks (e.g., LVQ),
are able to operate on a much more efficient representation
of the data and can therefore provide significantly better sta-
tistical predictions than if the raw spike trains were directly
analyzed with a statistical classifier.

In the studies described in this manuscript, we used
five-fold decimation and low-pass filtering to convert “raw”
spike trains (i.e., single-trial peri-event histograms with 1
ms bins) into continuous signals that estimated the density
of spikes over time. This value of decimation was chosen
based on prior work(Laubach et al., 2000)in which a range
of bin sizes was compared: The outcomes of single trials
were predicted equally well with five-fold (79.6 ± 1.9%
correct, 0.207 ± 0.032 bits) and 10-fold (77.3 ± 1.4%,
0.178± 0.025 bits) decimation. However, predictions were
significantly worse (ANOVA:P < 0.005) with 20-fold
decimation (71.8 ± 0.7% correct, 0.105 ± 0.008 bits) or
when a single bin of 200 ms was used for classification
(63.6±1.9% correct, 0.038±0.008 bits). We also observed
that there is no improvement over the results above when
time scales finer than 5 ms are used as input to DP and LVQ
and that application of LVQ to “raw” peri-event histograms
(i.e., 1 ms bins) results in classifications at chance levels.
The time scale of neuronal activity in the rat motor cortex
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during reaction time performance therefore seems to be on
a short time scale (<10 ms). Resolution of information pro-
cessing on this time scale seems to require preprocessing
with methods like DP. However, this may not be the case in
other neuronal systems or other types of behavioral tasks or
sensory mapping experiments. It is thus important to exam-
ine this issue by comparing spike trains at different temporal
resolutions in future studies that use methods such as DP.

Despite the strengths of the DP method described above,
the algorithm is not flawless.Intrator and colleagues (1997)
pointed out that DP is not able to discriminate between
certain combinations of purely periodic functions. This is
due to potential cancellations between such functions in the
process of computing the difference vector. However, this
is not a practical issue for spike train data, as pure sinu-
soidal oscillations are rarely seen. In such a case, the lo-
cal discriminant basis method ofSaito and Coifman (1994),
which is not affected by this issue, could serve as an al-
ternative to DP.Intrator et al. (1997)also commented that
in their experience DP performs worse than LDB when ap-
plied to high-dimensional data that are measured over a lim-
ited number of trials. However, our experience using these
two methods has not revealed such a difference in perfor-
mance. In fact, we have repeatedly observed that for spike
data and a given wavelet (e.g., Haar or d4) the two meth-
ods typically converge to a highly similar reduced set of
features.

The use of a method such as DP for preprocessing spike
trains can help resolve a major issue in systems neuro-
science: the extent to which neurons make use of temporal or
rate based codes for transmitting information (Engel et al.,
1992; Shadlen and Newsome, 1995; Softky, 1995;
Theunissen and Miller, 1995). The DP method described
here is well-suited to this issue due to its ability to reveal
changes in overall firing rate (which results in a single flat
wavelet function; Laubach, unpublished observations) and
to localize fine temporal patterns in spike trains that vary
as a function of the parameters of experimental stimuli,
movements, or the performance of a behavioral task.

The DP method has much potential for wider applica-
tion within neurophysiology (e.g., spike sorting and analy-
sis of local field potentials, EEG, and EMG). The method
is relatively fast and inherently parallel, allowing it to be
used for studies of real-time decoding of brain signals. In-
deed, we have recently implemented an on-line version of
the method for performing real-time analyses of neurophys-
iological data(Laubach, 2003). In this context, the method
may provide a means for experimental validations of pu-
tative brain codes during neurophysiological recording ses-
sions in awake, behaving subjects. The DP method is also
applicable to non-spiking data such as EMG data(Laubach
et al., 2000)and EEG signals collected in the context of
brain-computer interfaces(Wolpaw et al., 1991). Indeed, our
initial application of the method to such signals has shown
that it is a strong candidate for such signals (see the results
from the BCI2003 data analysis competition).
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