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Chapter 1

What’s a Probability
Anyway?

As far as pure probability theory is concerned, probabilities are real numbers
between 0 and 1, attached to sets in some mathematical space, assigned in a
way which let us prove nifty theorems. We’re not going to worry about any of
these details.

Mathematical probabilities make good models of the frequencies with which
events occur, somewhat in the same way that Euclidean geometry makes a pretty
good model of actual space. The idea is that we have a space of occurrences
which interest us — our probability space. We carve this up into (generally
overlapping) sets, which we call events. Pick out your favorite event A, and
keep track how often occurrences in A happen, as a proportion of the total
number of occurrences; this is the frequency of A. In an incredibly wide
range of circumstances, frequencies come very close to obeying the rules for
mathematical probabilities, and they generally come closer and closer the longer
we let the system run. So we say that the probability of A, P(A), is the limiting
value of the frequency of A. 1

Take-home: probabilities are numbers which tell us how often things happen.

1The foundations of probability are one of the most acrimoniously disputed topics in math-
ematics and natural science; what I’m spouting here is pretty orthodox among stochastic
process people, and follows my own prejudices. The main alternative to the “frequentist” line
is thinking that probabilities tell you how much you should believe in different notions. This
“subjectivist” position is OK with assigning a probability to — say — the proposition that a
perpetual motion machine will be constructed within a year.
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Chapter 2

Probability Calculus

The function which takes an event and gives us its probability is called the
probability distribution, the probability measure, or simply the distri-
bution. It generally isn’t defined for every possible subset of the probability
space; the ones for which it is defined, the “good” (technically: measured)
events, are sometimes called the “field” of the distribution. We won’t need that
terminology, but it’s good not to be frightened of it when you run across it.

2.1 Basic Rules

Here A and B are any two events. Following custom, Ω is the special event
which contains every point in our probability space, and ∅ is the event which
contains no points, the empty set. Ā is the complement of A, the event which
is all the occurrences which are not in A. A+B is the union of A and B; AB is
the intersection of A and B. (Both A+B and AB are also events.)

1. 0 ≤ P(A) ≤ 1 (Events range from never happening to always happening)

2. P(Ω) = 1 (Something must happen)

3. P(∅) = 0 (Nothing never happens)

4. P(A) + P(Ā) = 1 (A must either happen or not-happen)

5. P(A + B) = P(A) + P(B)− P(AB)

The last rule could use a little elaboration. The meaning of A+B is “A
alone, or B alone, or both together”. To figure out how often it happens, we
add how often A and B happen (P(A) + P(B)) — but each of those includes A
and B happening together, so we’re counting those occurrences twice, and need
to subtract P(AB) to get the right value.

What follows are some simple exercises which give you useful rules for ma-
nipulating probabilities. Some of them should be trivial, but do the exercises
anyway.

2



2.2. CONDITIONAL PROBABILITIES 3

Exercise. Convince yourself that P(AB) ≤ P(A).

Exercise. Convince yourself that P(A + B) = P(A) + P(B) if A and B are
mutually exclusive or disjoint.

Exercise. Convince yourself that if A0,A1, . . .An are mutually exclusive and
jointly exhaustive, then P(A0) = 1−

∑n
i=1 P(Ai).

Exercise. Use (4) and (5) to show (2); or use (2) and (5) to show (4).

2.1.1 A Caution about Probabilities 0 and 1

Ω is not necessarily the only event with probability 1, nor ∅ the only one with
probability zero. In general, probability 0 means that an event happens so rarely
that in the limit we can ignore it, but that doesn’t mean it never happens.
Probability 1 events are said to happen “almost always”, or “almost surely”
(abbreviated a.s.) or “almost everywhere” (a.e.), while probability 0 events
happen “almost never”.

Exercise. Convince yourself that if there is an event A 6= ∅ for which P(A) =
0, then there are events smaller than Ω with probability one.

2.2 Conditional Probabilities

Suppose you’re interested only in part of the probability space, the part where
you know some event — call it A — has happened, and you want to know how
likely it is that various other events — B for starters — have also happened.
What you want is the conditional probability of B given A. We write this
P(B|A), pronouncing the vertical bar | as “conditioned on” or “given”. We can
write this in terms of unconditional probabilities:

P(B|A) ≡ P(AB)

P(A)
, (2.1)

which makes some sense if you stare at it long enough.

Conditional probabilities are probabilities, and inherit all the necessary prop-
erties; just re-write (1)–(5) above with bars and extra letters in the right place.1

(Get used to seeing the bars.)

If P(B|A) = P(B), then whether or not A happens makes no difference to
whether B happens. A and B are then said to be independent or statistically
independent. (If B is independent of A, then A is independent of B. Exercise:
show this.) It is often extremely useful to break probability problems up into
statistically independent chunks, because there’s a lot of machinery for proving
results about those.

1You may be worrying about what happens when P(A) = 0. That is one of the conditions
under which conditional probabilities can fail to exist — but sometimes they’re mathematically
well-defined even when the event we condition on has zero probability. If you really want to
worry about this, read Billingsley (1979).



4 CHAPTER 2. PROBABILITY CALCULUS

Conditional probabilities can be inverted. That is,

P(A|B) =
P(B|A)P(A)

P(B)
. (2.2)

This relationship is called Bayes’s Rule, after the Rev. Mr. Thomas Bayes
(1702–1761), who did not discover it.

Exercise. Prove Bayes’s Rule from the definition of conditional probability.
Exercise. Suppose A0,A1, . . .An are mutually exclusive and jointly exhaus-

tive events. Prove the following form of Bayes’s Rule:

P(Ai|B) =
P(B|Ai)P(Ai)∑n
j=1 P(B|Aj)P(Aj)

(2.3)

Exercise. Show that A and B are independent if and only if P(AB) =
P(A)P(B).

A and B are said to be conditionally independent given C (or indepen-
dent conditional on C) when P(AB|C) = P(A|C)P(B|C).

Exercise. If A and B are independent, are they still necessarily independent
when conditioning on any set C?



Chapter 3

Random Variables

Essentially anything which has a decent probability distribution can be a ran-
dom variable. A little more formally, any function of a probability space,
f : Ω 7→ Ξ, is a random variable, and turns its range (the space Ξ) into a
probability space in turn. So start with your favorite abstract probability space
Ω, and take functions of it, and functions of functions, until you come to what
you need, and you have so many random variables.1

It’s conventional to write random variables with upper-case italic letters:
A,B,C, X,Y, Z, and so forth. (Note that I’ve been writing events as upper-
case romans, A, B, C.) We write the particular values they may take on —
realizations — in lower-case italics: a, b, c, x, y, z. We say “The roll of this die
is a random variable, X; this time it came up five, so x = 5.” You’ll have to
trust me that this leads to clarity in the long run.

If X is a random variable, then the space Ξ it lives in must be a probability
space, and that means there needs to be a distribution over Ξ. That distribution
is fixed by the distribution on the original space Ω and the mapping from Ω to
Ξ. We simply define the probability of a set A ⊂ Ξ as P(f−1(A) ⊂ Ω). That is,
the event A, in the space Ξ, is equivalent to the set of points in Ω which map to
A under f , and we know the probability of that.2 We say that the distribution
on Ω and the function f induce a distribution on Ξ.

1There are actually ways of defining “random” which don’t invoke probability, just algo-
rithms, so that the original abstract space can be constructed legitimately. This is a very
interesting and strange topic which will probably be covered by other instructors.

As a further aside, if you know some category theory (Cohn 1981), you can set up a
category of random variables, where the objects are probability spaces and the morphisms
are measurable functions.

2As usual, this ignores measure-theoretic quibbles about whether f−1(A) is a proper event,
i.e., whether that set is measurable. The more elegant way of avoiding this difficulty is to
confine our attention to sets in Ξ whose pre-images in Ω are, in fact, measurable.

5



6 CHAPTER 3. RANDOM VARIABLES

3.1 Properties of Random Variables

3.1.1 Functions of Random Variables

Any function of a random variable is a random variable. As with random
variables themselves, the distribution of the values of that function is said to be
the induced distribution.

Notice that the above includes constant functions of random variables. This
is a bit of a degenerate case, but it’ll prove to be useful mathematically.

3.1.2 Multiple Random Variables; Independence

Given two random variables, we can construct a larger probability space in which
each variable provides one coordinate. The distribution over this larger space
is called the joint distribution, and we usually write it like P(X = x, Y = y),
meaning the probability of getting X = x and Y = y at the same time. Two
random variables are independent when P(X = x, Y = y) = P(X = x)P(Y =
y) for all x and y. The conditional distribution is defined in the natural way,

P(X = x|Y = y) ≡ P(X = x, Y = y)

P(Y = y)
. (3.1)

The marginal distribution of one variable say X, is just P(X = x). You can
think of it as P(X = x|Y = y) averaged over all values of y. (See below, on
expectations.)

If X and Y are independent, then functions of them are independent of each
other: i.e. for any functions f, g, f(X) is independent of Y and g(Y ), and g(Y )
is independent of X.

All of this extends in the natural way to three or more random variables.
Exercise. Convince yourself that X and Y are independent when P(X =

x|Y = y) = P(X = x).

3.2 Expectation

So we have our probability space Ω, and we have a probability distribution P
over it, and together they give us a random variable X. Now imagine that we
have a function f which takes a point in the space and outputs a number — it
could be an integer or a real or complex or some vector, so long as we can add
them up and multiply them by real numbers. So now we want to know, if we
pick inputs to f according to our distribution, what will the average value of the
output be? This is called the expectation value of f , or just its expectation
for short. It’s written as Ef(X), or Ef(X), or E{f(X)}, or Exp{f(X)}, or,
especially in physics, as ¯f(X) or 〈f(X)〉. (Sometimes the argument to f is
dropped if it’s clear what random variable we’re talking about. Sometimes it’s
dropped even if it isn’t clear, alas.) I’ll use Ef(X), and sometimes ¯f(X), simply
because they’re easy to write in TEX, and keep it clear that taking expectations
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is an operation we perform on the function, that we’re not multiplying it by
some number E; for the same reason, I’ll use E{f(X)} at the blackboard.

Assuming, as we are for now, that Ω is discrete, so that every point has a
probability assigned to it, then we can write

Ef(X) ≡
∑

x∈Ω

f(x)P(X = x) . (3.2)

That is, the expectation value is just a weighted sum of the values of f(x), the
weights being given by P(X = x).

Taking expectations is a linear operator: E(f(X)+g(X)) = Ef(X)+Eg(X),
and Eαf(X) = αEf(X).

Exercise. Convince yourself of this from the defining formula.
We will sometimes need to take expectations using several different distri-

butions. To avoid confusion, expectation with respect to distribution θ will be
written Eθ.

3.2.1 Expectations of Multiple Variables

If we have a function of two or more random variables, it’s a random variable
itself of course, and we can take its expectation in the obvious way. If Z =
f(X,Y ),

EZ ≡
∑

x,y

f(x, y)P(X = x, Y = y) . (3.3)

From the defining formula, E(f(X) + g(Y )) = Ef(X) + Eg(Y ). If If X and
Y are independent, then Ef(X)g(Y ) = (Ef(X))(Eg(Y )) as well.

Exercise. Convince yourself of the statement about addition of random
variables from the definition.

Exercise. Convince yourself of the statement about multiplying independent
random variables.

Conditional expectations are just expectations taken with respect to
some conditional probability distribution or other. To indicate the expectation
of X conditioned on Y = y, we write E(X|Y = y).

Fun but irrelevant fact: It’s possible to define probabilities in terms of ex-
pectations, if you start with certain axioms about them. Some people find this
comforting.

3.3 Moments

The moments of a distribution are the expectations of various powers of its
random variable. That is, we assume that the points in our probability space
are things we can add up and divide, so we can take expectations of X and its
powers. Then the qth moment of X — for some reason it’s always q — is just
EXq.
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3.3.1 Particularly Important Moments

Mean

The mean is the first moment, or simply the expectation value of X.

Variance and Standard Deviation

The second moment, EX2 doesn’t have any particular name. The difference
between the second moment and the square of the first moment — EX2−(EX)

2

— is called the variance of X, and is sometimes written VarX.
The square-root of the variance is often called the standard deviation,

which is often written σ.
Exercise. Convince yourself that EX2 − (EX)

2
= E(X −EX)

2
. Further

convince yourself that this quantity is never less than zero.
Exercise. Convince yourself that if X and Y are independent, then the mean

of their sum is the sum of their means, and that Var(X + Y ) = VarX + VarY .



Chapter 4

Important Discrete
Distributions

We’re only going to look at two; there are about a half-dozen others which are
common in practice, or at least in theory, and which you’ll find discussed in
any good textbook, such as Grimmett and Stirzaker (1992), or in the reference
manuals, e.g. Patel, Kapadia and Owen (1976).

4.1 The Bernoulli Distribution

Here the space is very simple: {0, 1}, or any other two-element space: heads or
tails, rain or shine, Democrat or Republican. The probability of getting a one
is the parameter of the distribution, which is conventionally written either p or
µ. That is, P(X = 1) = p or = µ.

By itself, a Bernoulli variable isn’t very interesting. But a string of indepen-
dent Bernoulli variables with the same parameter is very interesting, because
very powerful theorems can be proved about them fairly easily, so a lot of proba-
bilistic effort goes into making things look like Bernoulli variables. In particular,
think of your favorite event in your favorite probability space. Now either that
event happens or it doesn’t; so we write down a 1 when it does and a 0 when
it doesn’t, and presto, we have a Bernoulli random variable, and can apply all
our theorems to it. We’ll see shortly how this can be important.

4.2 The Binomial Distribution

We have a great number of objects which come in two sorts — the classical
example, the gods alone knows why, is white and red marbles in an urn. A
fraction p of them are of one sort (red, say), and we pick out N of them at
random. We care about how many are red, but not about any sort of order or
what-not might be among them. So our random variable, X, is the number of

9



10 CHAPTER 4. IMPORTANT DISCRETE DISTRIBUTIONS

red balls (or more generally successes). The distribution of X is the binomial
distribution. It is also the distribution of a sum of N Bernoulli variables, and
while deriving it is a fine way of building character, I’ll just state it:

P(X = x) ≡
(
N
x

)
px(1− p)N−x (4.1)

The last two terms on the right-hand side are easy enough: they’re the prob-
ability of getting a success x times and failing the other N − x times, if every
ball is independent of the others. But what’s the ugly thing up front? It’s read
“from N choose x,” or just “N choose x”, and it’s the number of ways of picking
x objects from N objects, without replacement and without caring about the
order. It’s = N !

x!(N−x)! , where x! is “x factorial”.

4.3 The Poisson Distribution

The Poisson distribution is

P(X = k) =
λk

k!
e−λ , (4.2)

for k ≥ 0 and λ > 0. It is the limit of the binomial distribution as N →∞ and
p → 0 but Np → λ — the total expected number of successes remains fixed,
even as their density goes to zero. We’ll encounter this distribution again under
stochastic processes.

4.4 First Moments of These Distributions

Distribution P(X = x) EX VarX Comments

Bernoulli
p if x = 1

1− p if x = 0
0 otherwise

p p(1− p) 0 < 1 < p

Binomial

(
N
x

)
px(1− p)N−x Np Np(1− p) N integer, 0 < p < 1

Poisson λx

x! e
−λ λ λ k ≥ 0, λ > 0



Chapter 5

Continuous Random
Variables

The tricky thing about continuous random variables is that you can’t make
points your basic events. The problem is related to the fact that every point
has length 0, but if you string enough points together you have something with
positive length. The usual way around this difficulty, for us, is to define probabil-
ities for intervals. (I’ll just talk about one-dimensional continuous distributions;
you need a bit more trickery for higher-dimensional distributions, but not too
much more.)

5.1 The Cumulative Distribution Function

The standard trick is to consider intervals which stretch from −∞ to your
favorite point x, and have a function which gives you the probability of each of
them. There’s something of a convention to write that function with a capital
letter. So F (x) = P(−∞ < X ≤ x) gives us the probability that X ≤ x. This
is called the cumulative distribution function or CDF for X.

If we want the probability for some other interval, say from a to b, we just
subtract: P(a ≤ X ≤ b) = F (b)− F (a).

Exercise. Convince yourself that this last statement is right, using the ax-
ioms for probabilities of events. Remember that disjoint intervals are mutually
exclusive events, so their probabilities will add.

5.2 The Probability Density Function

If you use the CDF to find the probability of smaller and smaller intervals around
your favorite point, you’ll get smaller and smaller numbers. The natural thing
for a mathematician to do is to divide those probabilities by the length of the
intervals; then you’ve got a derivative, which tells you how much probability

11
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there is in the neighborhood of your favorite point. This is the probability
density function, or pdf, or probability density, density function, or even

probability derivative function. More formally, p(x) = dF (x)
dx

. The probability
of a set A is now

P(X ∈ A) =

∫

x∈A
p(x)dx . (5.1)

Some people prefer to write dp instead of p(x)dx. (There are even cases where
it is a Good Thing, but I won’t get into that.)

Exercise. Convince yourself that this gives the same result for intervals as
using the CDF.

Some otherwise-satisfactory CDFs do not have well-defined derivatives, so
they don’t have pdfs. This is a bitch, but not one we’re likely to encounter here.

There are conditional CDFs and pdfs, just as you might expect. The exis-
tence of conditional pdfs is even trickier than that of regular pdfs, but again,
we probably won’t have to worry about that.

5.3 Continuous Expectations

The expectation of a function f of a continuous random variable X, with pdf
p(x), is simply

Ef(X) ≡
∫
f(x)p(x)dx . (5.2)

All the properties of expectations in the discrete case generalize, substituting
integrals for sums where necessary. Conditional expectations, moments, etc.,
are all defined analogously.



Chapter 6

Important Continuous
Distributions

Again, we’re going to really limit ourselves here to some particularly important
examples. Again, for more distributions and more details, see Patel, Kapadia
and Owen (1976).

6.1 The Exponential Distribution

This is simply the result of a constant rate of decay, i.e., there is a constant
probability per unit time λ of disappearing. decay. The CDF is F (x) = 1−e−λx,

so that the pdf is p(x) = λe−λx. (Observe that this is the solution to dp(x)
dx

=
−λp(x).)

6.2 The Normal or Gaussian Distribution

So-called after Karl Friedrich Gauss, who did not discover it. This is the classic
bell-curve.

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (6.1)

This is the single most important distribution in probability theory, owing to
the Central Limit Theorem. (See below). When we want to refer to a Gaussian
distribution with mean µ and variance σ2, we’ll write N (µ, σ2).

If X N (µ1, σ
2
1) and Y N (µ2, σ

2
2), and X and Y are independent, then aX +

bY N (aµ1 + bµ2, a
2σ2

1 + b2σ2
2). This will often be useful later on.

13
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6.3 The χ2 Distribution

This is very important in hypothesis testing and other parts of statistics. There
is one parameter, an integer d. The pdf is

p(x) =
1

Γ(d2 )2d/2
x
d
2−1e−x/2 (6.2)

where Γ(t) =
∫∞

0
xt−1e−xdx. This has the nice property that Γ(t+ 1) = tΓ(t),

and in fact for integer t, Γ(t) = (t − 1)!. Since d is an integer, the only other
fact we need to compute it for our purposes is that Γ(1/2) =

√
π.

The parameter d is called the number of degrees of freedom. We write
this distribution as χ2(d). The importance of this distribution comes from the
fact that the square of a normal random variable is distributed as χ2(1), and
from the fact that if X and Y are independent, with distributions χ2(n) and
chi2(m), then X + Y is χ2(n+m).

6.4 The Lognormal Distribution

So-called for obvious reasons:

p(x) =
1√

2πσ2
e−

(log x−µ)2

2σ2 (6.3)

That is to say, the logarithm of x has a Gaussian distribution. Thus here
µ and σ are the mean and standard deviation of the logarithm of X, not of X
itself.

Note that E log x = µ, but that doesn’t mean that log Ex = µ! (See sec. 6.6.)

6.5 Power-Law Distributions

The pdf for this distribution is

p(x) = kx−α , (6.4)

where α > 0. Note that x cannot go through 0, since then the integral which
ought to give us the CDF diverges. So power-laws describe parts of distributions,
those above (or below) a certain cut-off value. The simplest way of doing this is
to simply say that we never observe values below the cut-off, giving us what’s
called the Pareto distribution,

F (x) = 1−
(a
x

)α−1

(6.5)

when x ≥ a, and P(X < a) = 0.
People around SFI are very into power-law distributions, for reasons which

probably will become clear over the course of the summer school.
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6.6 First Moments and pdfs of These Distribu-
tions

Distribution pdf EX VarX Comment
Exponential λe−λx λ−1 λ−2 λ > 0, x ≥ 0

Gaussian 1√
2πσ2

e−
(x−µ)2

2σ2 µ σ2

χ2 1
Γ( d2 )2d/2

x
d
2−1e−x/2 d 2d d integer

Lognormal 1√
2πσ2

e−
(log x−µ)2

2σ2 eµ+σ2

2 eσ
2
(
eσ

2 − 1
)
e2µ x > 0

Power Law (Pareto) αaα

x−(α+1)
αa
α−1 if α > 1 αa2

(α−1)2(α−2)
if α > 2 α > 0, x ≥ a



Chapter 7

Tricks with Random
Variables

In the next two sections, X1, X2 . . .Xn . . . are independent, identically-distributed
(IID) random variables. X has the finite mean µ. The average of the first n of
them is

Sn ≡ 1

n

n∑

i=1

Xi . (7.1)

7.1 The Law of Large Numbers

Theorem. The means of IID sequences converge to the mean of the variables:

Sn −−−→
n→∞

µ . (7.2)

This will probably satisfy most of you in most applications. At other times,
you ought to worry about just what it is I mean by “converge”.

The weakest sense is that the cumulative distribution functions of the Sn
will converge on the CDF of the “random variable” which is always µ. (That
CDF is 0 if x < µ, and 1 if x ≥ µ.) This is called “convergence in distribution”,
and requires merely that EX is well-defined and finite.

The strongest sort of convergence, “almost-sure” convergence, is when, for
almost all realizations of the random variables Xi, Sn → µ, i.e., when the con-
vergence happens with probability one. The necessary and sufficient condition
for this is that E|X| < ∞. (It may be easier to show that EX2 < ∞, which
implies a finite expectation for the absolute value.) Such variables are said to
satisfy the “strong law of large numbers”. 1

1Just to make matters confusing, the “weak law of large numbers” is not converge-in-
distribution to the mean. Rather, it is convergence in probability: P(|Sn − µ| > ε) −−−−→

n→∞
0

for any positive ε. The necessary and sufficient condition for this is a pair of ugly integrals I
won’t bother you with (Grimmett and Stirzaker 1992, ch. 7).

16
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No form of the law of large numbers says anything about how fast the Sn
converge to µ. What’s wanted here is a result which says something like P(|Sn−
µ| > ε) ≤ f(n, ε), for some function f which goes to zero as n goes to infinity.
For IID variables, the general result, called the large deviation principle
(den Hollander 2000), is that, as n → ∞, P(|Sn − µ| > ε) → e−ng(ε), where
g(ε) is some polynomial, called the rate function2. But the large deviation
principle is another asymptotic result; there are rate of convergence results
which are valid at all n, but the generally depend on the kind of distribution
we’re looking at. For more on this, and the applications of rate of convergence
results to statistics, see Vapnik (2000) (highly recommended), Pronzato, Wynn
and Zhigljavsky (1999) and van de Geer (2000).

The obvious application of the law of large numbers is to take our favorite
event A from any probability distribution we like, with random variable Y , and
then apply an indicator function IA to Y , a function which gives 1 when its
input is in in A and 0 otherwise. Now we have a Bernoulli random variable
with parameter p = P(A). This has finite mean and variance, so it has a finite
second moment, and consequently the strong law applies. So if we take a long
sequence of random trials, then with probability one the frequency of successes
will converge to the true probability (and by the large deviation principle, they’ll
converge exponentially fast).

7.2 The Central Limit Theorem

Theorem. Assume that X has a finite variance σ2. Then as n → ∞, the Sn
converge to a Gaussian random variable with mean µ and variance σ2.

Note 1. The convergence here is convergence-in-distribution (see previous
section).

Note 2. The conditions needed for the density function to converge are a bit
stronger (Grimmett and Stirzaker 1992, sec. 5.10).

Note 3. Note again that the theorem doesn’t say anything about the rate of
convergence. This can again be a tricky subject, though an admirably simple
result is available if the Xi are themselves Gaussian...

7.2.1 The Extraordinary Importance of the CLT

Thus Francis Galton in 1886:

I know of scarcely anything so apt to impress the imagination as
the wonderful form of cosmic order expressed by ‘the law of error.’
A savage, if could understand it, would worship it as a god. It
reigns with severity in complete self-effacement amidst the wildest
confusion. The huger the mob and the greater the anarchy the more

2More exactly, limn→∞
1
n

log P(|Sn − µ| > ε) = g(ε). The problem with the statement in
the main text is that, since the probability goes to zero as n goes to infinity, it will converge
on any function which does likewise, and we want to pick out the exponential convergence.
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perfect its sway. Let a large sample of chaotic elements be taken and
marshalled in order of their magnitudes, and then, however wildly
irregular they appeared, an unexpected and most beautiful form of
regularity proves to have been present all along. 3

More prosaicly: the CLT tells us that, if only we can arrange to be dealing
with IID sequences, in the long run we know what the distribution must be.
Even better, it’s always the same distribution; still better, it’s one which is
remarkably easy to deal with, and for which we have a huge amount of theory.
Manipulate your problem so that the CLT applies, and, at least asymptotically,
you’ve got it made.

7.2.2 Ways in Which the CLT Can Fail

First: the variables may not be independent. There are some situations in which
this can be overcome (Manoukian 1986).

Second: the variables may not have well-defined variances. There are quite
respectable probability distributions with a well-defined mean, but where the
integral for the variance diverges. (Some of these, important in physical theory,
are called “Lévy walks”.) No variance, obviously no sequence of variables with
equal variance!

Third: the variables might not be identically-distributed. There are some
generalizations here, too, supposing at least that the means are identical (Manoukian
1986).

7.2.3 The Many-Independent-Causes Story for Why Things
Are Gaussian

It is often asserted that in many situations errors in measurement are at least
roughly Gaussian. As someone who taught introductory physics for four years, I
can assure you that this is actually true. There is even a story for why this should
be so. Think of your favorite measurement activity — let us say, measuring the
height of a pendulum-string with a meter-stick. There are lots of things which
can make this go wrong: the stick may bend or warp; the markings may be
smudged, slanted or twisted; the string may bend; its ends may be frayed; it
may move; the eye will not be exact; I could go on. Now suppose that the effects
of each of these causes simply sum up to give the total error; that the mean
error induced by each cause is 0 (i.e., that they introduce no systematic bias
into measurement); and that the causes are statistically independent. Then we
should expect that the sum — the total error — will have a roughly Gaussian

3As the historian and philosopher Ian Hacking notes, on further consideration Galton was
even more impressed by the central limit theorem, and accordingly replaced the sentence
about savages with “The law would have been personified by the Greeks and deified, if they
had known of it.” If it had been discovered in our time, I daresay we would have called it
“self-organized normality,” and written books about it with titles like How Nature Works.



7.2. THE CENTRAL LIMIT THEOREM 19

distribution, and the more independent causes, the better the fit to a Gaussian.4

Generalizing this story, whenever we have additive effects of many indepen-
dent causes, each of which has only a small relative effect, we are inclined to
suspect Gaussians. Thus the many biological examples of Gaussian distribu-
tions (e.g., chest widths of Scots army recruits, annual number of sucides in
Belgium) which so impressed nineteenth century authors like Galton.

7.2.4 Multiplicative Noise and the Lognormal Distribu-
tion

Suppose that we have variables Xi which, as before, are IID, and have a finite
mean and variance, but that instead of adding them together and dividing, we
multiply and take the nth root (“the geometric mean”), i.e.,

Sn =

(
n∏

i=1

Xi

)1/n

so that (7.3)

logSn =
1

n

n∑

i=1

logXi . (7.4)

Then, assuming that logXi has finite mean and variance, it follows that
logSn will be normally distributed, and the distribution of Sn will be log-normal.
So if the Xi represent noise variables which multiply instead of adding, and their
logarithms are well-behaved, then the effect of lots of small sources of noise will
be to give us a lognormal distribution for the total noise.

Notice that it’s often very hard to distinguish lognormal distributions from
power-law distributions, especially when over-enthusiastic people forget to check
for this possibility! This is a primary reason why you should be suspicious of
claims that such-and-such a process produces power-laws.

Aside. Let’s expand on that last part just a little. Recall that the pdf for a
power-law is p(x) = kx−α. So log p = logk − α log x, and if we make a log-log
plot of the density curve we get a straight line; very often when people claim to
have found a power-law, they mean nothing more than that they got a decent fit
to a straight line on such a curve. Now let’s do the same thing for the lognormal
pdf.

p(x) =
1√

2πσ2
e−

(log x−µ)2

2σ2 (7.5)

log p = − log
√

2πσ2 − (log x− µ)
2

2σ2
(7.6)

log p = b− µ

σ2
log x− (log x)

2

2σ2
, (7.7)

4You may be worrying about the fact that the causes of errors are independent but not
identically distributed. There are theorems which say that even in this case the sum should
be Gaussian, provided some conditions on moments are met.
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where we’ve lumped all the constants into one term b. If x ≈ 1, then log x is
small and (log x)

2
is negligible, so

log p ≈ b− µ

σ2
log x (7.8)

which, of course, looks like a power-law with exponent α = µ
σ2 .



Chapter 8

The Care and Handling of
Data

Sit down before fact as a little child, be prepared to give up
every preconceived notion, follow humbly wherever and to whatever
abysses Nature leads, or you shall learn nothing.

— T. H. Huxley, letter to Charles Kinsley, 23 September 1860

Data simply occur to me.
— Dr. Science

Dr. Science is lucky; most of us have to work for our data, earning it with the
sweat of our instrumentation; even theorists like me have, these days, near-data
in the form of simulation results. Data are accordingly quite precious, and, as
Huxley indicates, they are not to be lightly tampered with. We’ll start looking
at statistics by looking at ways of summarizing or describing data which don’t
rely on any sort of auxiliary hypothesis. (I am going to assume throughout that
the data are numbers.)

8.1 Counting

First, some ways of dealing with data which involve mere counting.

8.1.1 The Question of Bins

Before continuous data can be counted up, they need to be divided into discrete
blocks, or binned. A natural question is, what sort of bins to use? This is
tricky; generally you want the bins to be large and coarse enough that there’s
a reasonable degree of representation in each, but not so coarse that you lose
all structure. If you make the bins too small, then the variance in the expected
number of points in each bin will get too big.

21
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It’s generally a bad idea to have variable-sized bins, but not always.

It may be a good idea to experiment with different bin-sizes until you find
a regime where the bin-size doesn’t have much effect on your analysis. This
unfortunately is quite time-consuming.

8.1.2 Histograms

A histogram is simply a plot of how many data-points fall into each bin. As
such, it’s a kind of approximation to the probability density function. (There are
actually quite sophisticated techniques for estimating the pdf from histogram
data.)

Some people want to use the word “histogram” only for one-dimensional
data; I don’t see why.

8.1.3 Percentiles

Assuming the data are one-dimensional, so they can be put in a simple order,
then we can talk about the percentiles — just like on the GREs. The xth

percentile value is simply the value equaled or exceeded by only x
100 of the data-

points. That is, x percent of the data are at or above that value. Similarly for
deciles and quartiles.

Just like the histogram is an approximation to the pdf, the percentiles con-
tain information about the cumulative distribution function.

8.1.4 Median

Again assuming one-dimensional data, the median is the value such that half
of all points have a higher value and half a lower. If there is a gap in the data,
there may well be a range of values which can claim to be the median; there is
a weak convention, in such cases, to use the mid-point of the range.

8.1.5 Mode

The mode is simply the value with the most data-points.

8.2 Adding

8.2.1 Sample Mean

The sample mean, µ̂, is just what you’d expect:

µ̂ ≡ 1

n

n∑

i=1

xi . (8.1)
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8.2.2 Sample Variance

The sample variance, s2, is again what you’d expect:

s2 =
1

n

n∑

i=1

(xi − µ̂)2 . (8.2)

Now here comes a subtlety: the sample variance is not a good estimate of the
population variance; it’s too small. The population variance is best estimated
by n

n−1s
2. (That’s why I write s2 and not σ̂2.) The story here, heuristically,

is that you tend to lose variation under sampling, so measures of variation in
the sample need to be corrected upwards. A slightly more sophisticated story
is that, if samples are independent, some analysis of the sampling distribution
shows that ES2 = n−1

n
σ2, so this is the right correction to use. A still more

sophisticated story claims that what’s really important in estimation, and what
we really should divide through by, is not the number of data-points but the
number of “degrees of freedom,” and that to get the variance we need to estimate
the mean, thereby losing one degree of freedom.

The bottom line is that, while you should use n
n−1s

2 as your estimate of

the population variance, if the difference between that and s2 is big enough to
matter, you probably should think about getting more data points!

8.3 Correlating

“Correlation” is used in a specific sense in statistics; it almost always refers to
a linear relationship (plus noise) between two random variables: when one goes
up, the other goes up, on the average by an amount proportional to the increase
in the first variable.

8.3.1 Covariance

One way of measuring correlation between two variables is their covariance:

Cov(A,B) ≡ EAB − (EA)(EB) (8.3)

Exercise. Convince yourself that this should be 0 when A and B are inde-
pendent.

Covariations are often used in statistical physics, where for some reason we
call them correlation functions.

8.3.2 The Correlation Coefficient

a.k.a. Pearson’s correlation coefficient, is just a normalized covariance:

Corr(A,B) ≡ Cov(A,B)√
(VarA)(VarB)

(8.4)
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The correlation coefficient is thus constrained to lie between −1 and +1
inclusive. The extreme values indicate perfect linear dependence.

Exercise. Convince yourself of this.
Instead of writing Corr(A,B), some people write ρAB , or even just ρ.



Chapter 9

Sampling

We assume that whatever it is that gave us our data is well-modeled by some
random process. In effect, each time we make a measurement, we ask the process
to spit out numbers according to some distribution; we sample the distribution.
If we think of sampling as closing our eyes and picking a data point out of a box,
we call the set of all data-points in the box the population. (That last isn’t
as silly as it sounds; think of opinion polls.) In either case, we assume that the
true distribution is the unknown one which lies behind our data. If we want to
learn about that distribution from the data, then we need to know something
about the kind of data it is likely to give us. That is to say, we need to know
the sampling distribution, the distribution of data values given that the true
distribution takes a certain functional form, with certain parameter values, and
we sample from it in a specified way.

9.1 The Notion of “A Statistic”

We want to ignore as much about our data as we can get away with; we want to
summarize it, rather than having to remember (say) the exact sequence of heads
and tails for a million coin-tosses. A summary of the data is called a “statistic”
in the trade. More formally, any function of the data is a statistic, provided
(1) it’s well-defined for any number of data-points, (2) it has no random inputs
other than the data. We include constants functions as degenerate cases.

9.2 Loss of Variability Under Sampling

It’s generally true that, whatever measure of variability we pick, its value in
a sample will tend to be smaller than its population value. (We have already
mentioned that this is true of the variance.) It’s not hard to see why this
should be so; consider, as an extreme case, the limit where our sample consists
of a single piece of data, and so there is no variation in the sample. More
generally, picking out a subset from the population, which is what sampling

25
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does, is unlikely to give an exactly representative sample, and naturally the
higher probability events will be the ones which tend to show up in the sample.

Exercise. Consider a Bernoulli variable with p = 0.01. If we sample this 100
times, what is the probability of not getting any successes in our sample?

Loss of variability due to sampling is important in evolutionary genetics,
since it is the origin of genetic drift (Gillespie 1998).

9.3 Figuring the Sample Distribution; Monte Carlo
Methods

Even if you know what the exact population distribution is, it can be extremely
hard to figure out what the sampling distribution is. In such cases you have
three alternatives:

• Do the work yourself.

• Turn to the literature in the hopes that somebody else has already done
it.

• Simulate.

The virtues and the drawbacks of the first two courses of action speak for
themselves. The third is a bit trickier. If you know what your sampling proce-
dure is, and you know what the population distribution is, and you have a good
source of random numbers, then in principle you can simulate a sample from
the population. If you simulate many samples, then the laws of large numbers
tell us the the empirical frequencies of your simulations will approach the actual
sampling distribution. This is called “Monte Carlo simulation”, or even “the
Monte Carlo method”. (Several other things are also called Monte Carlo, but
they’re actually related.) By the same procedure, you can get the sampling
distribution for an arbitrary statistic of your data.

The obvious question, then, is how many times you have to run your simula-
tion before you can be confident that you’re pretty close to the right distribution.
That is tricky. Sometimes a few hundred points is enough; sometimes you need
hundreds of thousands or more. For most classroom-type problems, you can
get away with using a few thousand or ten thousand points, but I recommend
looking at what Numerical Recipes (Press, Teukolsky, Vetterling and Flannery
1992a; Press, Teukolsky, Vetterling and Flannery 1992b) has to say, and, if it’s
really important, books like Mark Newman’s treatise on Monte Carlo methods
(Newman and Barkema 1999), or MacKeown (1997).



Chapter 10

Estimation

10.1 Point Estimates

A point estimate is a statistic which, given the data and an assumption that
the distribution is of a certain form, gives us a guess at to what one of the
distribution’s parameters is. The statistic (or the function it applies to the
data) is called an estimator. We say it’s a point estimate because it only
returns a single value for the parameter; other kinds of estimates give us ranges.

Conventionally, the possible values of the parameter are θ, the true value
is θ0, and the estimator is Θ̂ (for the random variable) or θ̂ (for its particular
value given our data).

10.1.1 Bias, Variance, and Other Sorts of Quality

An estimator Θ̂ is consistent if Θ̂ converges to the true parameter value θ0 as
the number of data-points n goes to infinity.1

The bias of an estimator Θ̂ is the expected error in its estimate: EΘ̂ −
θ0. In general, the bias is a function of θ0 (since EΘ̂ is). If the bias is zero
whatever the true value of the parameter, then Θ̂ is unbiased. Note that
a consistent estimator is not necessarily unbiased; the sample variance is a
consistent estimator of the population variance, but it has a negative bias. (See
section 8.2.2.)

Exercise. Convince yourself that the sample variance is a consistent estima-
tor of the true variance.

The variance of Θ̂ is simply its normally defined variance. In general, the
variance depends on the number of data-points, and should go down as the
number of data-points goes up.

The mean square error of Θ̂ is E(Θ̂− θ0)2 =
(
EΘ̂− θ0

)2

+ VarΘ̂. That is,

the mean square error is the bias squared plus the variance.
Exercise. Convince yourself of this.

1Technically, converges in probability.
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We want our estimators to be unbiased and to have very small variance.
For a fixed number of data-points n and the same bias, we prefer the estimator
which has the lower variance. One can establish a lower bound on the mean
square error which depends only on the bias, n, and the population distribution
(the Cramér-Rao inequality or information inequality; see Cramér (1945,
sec. 32.3)). In the case of unbiased estimators, this establishes a lower bound
on the variance of the estimate. An unbiased estimator which has the minimum
variance for any n is called efficient. An estimator whose variance approaches
the minimum as n→∞ is asymptotically efficient.2

A sufficient statistic for a parameter is one where the distribution of sam-
ples, conditional on the statistic, is independent of the parameter. That is, T
is a sufficient statistic for θ iff pθ(x|T = t) is independent of θ. In this sense,
T summarizes all the information the data contain about the value of θ. As a
consequence, for any function f of the data x, pθ(f(x)|T = t) is also indepen-
dent of θ. As another consequence (the Neyman factorization theorem),
there are functions g and h such that ptheta(x) = g(θ, t)h(x), where h has no
dependence at all on θ. A sufficient statistic T is minimal if it is a function of
every other sufficient statistic R, i.e. if for every sufficient R there is an f such
that T = f(R).

There are two reasons by sufficiency statistics are important. First, they
lead to lower-variance estimates (the Rao-Blackwell theorem). Say D is
an unbiased estimator of θ. Then one can show (Lehmann and Casella 1998,
theorem 1.7.8) that δ(t) = E(D(X)|T = t) is also an unbiased estimator of θ,
and that Varδ < VarD, unless D(X) = η(T (x)) with probability one, in which
case the variances are equal. Second, sufficiency is invariant under a change of
coordinates in the parameters. If T is sufficient for θ, then for any nice function
h, h(T ) is sufficient for h(θ).

Every efficient estimator is a sufficient statistic for its parameter.

(All this is about parametric sufficiency. There is also the notion of
predictive sufficiency, where T (X) is sufficient for predicting Y from X if
P(Y |X) = P(Y |T (X)). It has similar desirable properties.)

10.1.2 Some Common Kinds of Estimates

Least Squares

It is very common to measure errors by the square of the difference between what
is predicted by a hypothesis and what is actually measured. So, for instance, if

2There are two tangent directions here.
One is that, given that there’s a fixed lower bound on the error, which is the sum of the

bias and the variance, we may sometimes be able to decrease one of these only by increasing
the other. This is sometimes called the bias-variance tradeoff in non-parametric estimation
and machine learning (Zapranis and Refenes 1999).

The other tangent is that the kind of reasoning employed in the proving the Cramér-
Rao inequality can be generalized, leading to connections between estimation error and a
quantity known as the Fisher information matrix, which in turn connects to information
theory (Kullback 1968) and the design of experiments (Atkinson and Donev 1992).
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we expect that a curve will follow y = f(x, θ), and we measure n pairs of values
(xi, yi), the mean square error is

E2(θ) =
1

n

n∑

1

(yi − f(xi, θ))
2
. (10.1)

The least squares estimate of θ is

θ̂LS(x1, . . . xi, . . . xn) = arg min
θ
E2(θ) . (10.2)

Notice that, if f(x, θ) is a probability distribution, and the y are observed fre-
quencies, so that (xi, yi) is how often we observe the event xi, we can use least
squares to estimate the distribution’s parameters.

Note that least squares, in this form, takes no account of how much variance
our hypothesis says there ought to be at a given value of x. A modification
which does this is minimizing χ2 — see sec. 11.1.2 — which is also more robust,
in general, than least squares.

Maximum Likelihood

The likelihood of getting data x1, x2, . . . xn is simply the probability of seeing
all those values of the data, given a certain value of the parameter : L(θ|x1, x2, . . . xn) =
Pθ(X1 = x1, X2 = x2, . . . Xn = xn). Taking the data as fixed, we ask what value
of the parameter maximizes the likelihood:

θ̂ML(x1, . . . xi, . . . xn) = arg max
θ
L(θ|x1, x2, . . . xn) . (10.3)

It is important to keep straight what this means. The maximum-likelihood value
of θ is the one which makes our data as probable as possible; it is not the most
probable value of the parameter given our data.

Notice that maximizing the likelihood is equivalent to maximizing the loga-
rithm of the likelihood. If the data are independent samples,

L(θ|x1, x2, . . . xn) =

n∏

i=1

L(θ|xi) (10.4)

logL(θ|x1, x2, . . . xn) =

n∑

i=1

logL(θ|xi) (10.5)

=

n∑

i=1

log Pθ(xi) (10.6)

and finding the θ which maximizes that is much easier than the general problem.
Maximum likelihood estimates are extremely common, because, under some

fairly mild conditions which I shan’t spell out (Lehmann and Casella 1998),
they are guaranteed to be both consistent and to have a Gaussian distribution
about the true parameter θ0, at least in the limit where n → ∞. In the case
of Gaussian errors, least-squares estimates and maximum-likelihood estimates
coincide, but ML estimation is much more widely applicable than least-squares
is.
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10.2 Curve-Fitting or Regression

Suppose we have data consisting of pairs of input values (independent vari-
ables) x and output values (dependent variables) y. We assume that there’s
some kind of functional relationship between the input and the output, so that
Y = f(x, θ)+η, where η is some kind of random noise. Assuming the functional
form is fixed, and the character of η is known, regression is the problem of
making a good guess at θ. Technically, this is a sort of parameter estimation
problem, since θ is one of the parameters for the distribution of Y at each value
of x. (The other parameters are in the noise term.) In the case of linear re-
gression, we assume that Y = a+ bx+ η, and generally that η is a mean-zero
Gaussian, independent for each measurement, and then we ask for good values
of a and b. Linear regression involves little more than linear algebra, but it’s a
bit too involved for me to go into here; see, among many other books, Gonick
and Smith (1993) and Weisberg (1985).

Both input and output values can be vectors, not just scalars.

10.3 Propagation of Errors

We often wish to calculate quantities which are functions of other, measured
quantities. Given that there is some degree of uncertainty in the measurements,
there will be uncertainty in the value of the quantities that depend on them.
If you want, you can regard these calculated quantities as statistics of a sort,
and try forming point estimates and confidence intervals for them. A much
cruder but often adequate way of dealing with these uncertainties is what’s
called propagation of errors, which rests on the assumption that errors of
measurement are Gaussian.

Consider a quantity z = f(x, y). We know the arguments only imperfectly,
so we model them as independent random variables, X ∼ N (x̄, σ2

x) and Y ∼
N (ȳ, σ2

y). Together they give us a new random variable Z = f(X,Y ). What is
Z like?

Let us apply Taylor’s Theorem:

Z = f(x̄, ȳ)

+

(
∂f

∂x

∣∣∣∣
x=x̄

)
(X − x̄)

+

(
∂f

∂y

∣∣∣∣
y=ȳ

)

(Y − ȳ) + higher order terms (10.7)

We assume that higher order terms are negligble. Now, X − x̄ and Y − ȳ are
independent Gaussians with mean 0, and this is not changed by multiplying
them by the partial derivatives in front. (Call those partials fx and fy, for
convenience.) And if we add independent Gaussians with mean 0, we get another
Gaussian with mean 0, so Z is going to be a Gaussian with mean z̄ = f(x̄, ȳ).



10.4. CONFIDENCE REGIONS 31

What, however, is the variance of Z?

Z − z̄ = fx(X − x̄) + fy(Y − ȳ) (10.8)

(Z − z̄)2
= f2

x(X − x̄)
2

+ f2
y (Y − ȳ)

2
+ 2fxfy(X − x̄)(Y − ȳ) (10.9)

E(Z − z̄)2
= f2

xE(X − x̄)
2

+ f2
yE(Y − ȳ)

2
(10.10)

VarZ = f2
xσ

2
x + f2

yσ
2
y (10.11)

So, in the end, Z ∼ N (f(x̄, ȳ), fx
2σ2
x+fy

2σ2
y), and we have a standard deviation

for z.
This extends to any number of variables, naturally.

10.4 Confidence Regions

One of the problems with point estimates is that they give us a single value.
This may in some sense be the best single guess we could come up with for
the value of the parameter, but it would be nice if we could get some idea of
the range of good values — the range of what’s reasonable, given our data.
This is accomplished through a marvelously counter-intuitive construction due
to Jerzy Neyman (Reid 1982; Cramér 1945), called confidence intervals or
confidence regions.

The construction goes like this. We choose a statistic, call it X. Next we
pick a probability α — one large enough that we don’t mind a 1− α chance of
being wrong. For each value of the parameter θ, we calculate an interval C(θ)
such that P(X ∈ C(θ)) = α. Generally we choose the intervals so that they’re
symmetric about EθX, but we don’t always do this; we almost always choose
them so that the end-points of the intervals are continuous functions of θ. We
now perform our experiments and get a certain value x for the statistic. The
confidence region is the set of all values of θ for which x falls within C(θ):

R(x) ≡ {θ|x ∈ C(θ)} . (10.12)

(More visually, imagine a graph where θ runs along the horizontal axis and
x runs along the vertical axis. Plotting C(θ) gives us two curves, such that the
probability of X being between them is just α. Now we take a particular x and
run a horizontal line across the graph at that height. It will (generally) cross
each curve once, marking off an interval of θ. That is the α confidence interval
compatible with x.)

Say we do this with α = 0.999, and get a particular confidence region R for
θ. This does not mean that there is a 99.9% chance that the true value θ0 is in
R — it either is or it isn’t, and probability doesn’t enter into it. What it does
mean is that either θ0 ∈ R, or an unusual event, one with probability at most
1 − α, happened in our experiment. If we repeat the experiment many times,
then R (a random variable, determined by the statistic X) will include θ0 in α
of the experiments.
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So the meaning of the confidence region is “either the real parameter is in
here, or we’re very unlucky”. Put this way, it becomes plausible — and is
even true — that there is generally a trade-off between getting a tight estimate,
having a small confidence region, and covering our asses. In the words of that
eminent investigator C. Chan, “Improbable events permit themselves the luxury
of occuring.”

“Confidence interval” is generally used when θ is one-dimensional; “confi-
dence region” is more general.

Formulæ for confidence regions for different standard distributions and sam-
pling regimes are available in many textbooks and reference manuals. In the
all-too-likely case that your sampling distribution is not among these, you can
always construct the C(θ) by numerical integration or Monte Carlo, and then
invert as normal.



Chapter 11

Hypothesis Testing

The basic idea is to ask, does this hypothesis fit the data better than the alter-
natives? We need to also ask, though, whether the fit is so much better that it
couldn’t, plausibly, be due to chance.

Obviously, the first thing we need is a way of measuring the fit between data
and hypotheses.

11.1 Goodness-of-Fit

Traditionally, statistics which measure how well data accord with a statistical
hypothesis are called goodness-of-fit measures. The name is a little mislead-
ing, because in almost all cases high values of these statistics indicate a very
bad fit.

We have actually already looked at two goodness-of-fit statistics: the mean
squared error and the likelihood. (High values of the likelihood actually indicate
good fit.) Another and very important measure, however, is the χ2 statistic,
which is related to the mean square error, but more flexible. It has the advantage
of letting us see whether or not the lack of fit is significant, an idea which I’ll
explain before getting to the test itself.

11.1.1 Significant Lack of Fit

We have a statistical hypothesis, which tells us that our data come from some
distribution, with a parameter θ0. Assume for simplicity that, if our hypothesis
matches the data exactly, our goodness-of-fit statistic Ĝ will be 0, and that larger
values of Ĝ become less likely, i.e., Pθ0(Ĝ ≥ g) is a monotonically-decreasing
function of g. (There’s no particular difficulty if Ĝ is not centered at 0, or if
it can be either positive or negative.) We take our measurements and compute
the value of ĝ. We now ask, what is the probability p that Ĝ ≥ ĝ, assuming the
hypothesis is true? This is the p-value of the lack of fit.
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An actual test of the hypothesis involves setting a threshold α, the signifi-
cance level before taking the data, and rejecting the hypothesis if p ≤ α. That
is, we reject the hypothesis if the deviation between it is highly significant, i.e., if
it was very unlikely (had probability of at most α) of occuring by sheer chance.

11.1.2 The χ2 Test

Suppose we have n data-points, S1, . . . Sn, and we want to test whether or not
they conform to a certain hypothesis H0, for which the cumulative distribution
is F (s). To do a χ2 test, we first partition the range of S into m bins Ii. These
bins do not have to be of equal size, but it’s generally a good rule to have at
least, say, five data-points in each bin. Then we say that pi is the probability
of falling into the ith bin, if H0 is true, i.e., pi = PH0(S ∈ Ii). Similarly,
we say Ni is the number of data points falling into the ith bin. Now if H0 is
true, the expectation value of Ni is just npi (remember we have n data-points).
So we want to see if the deviation from expectation is too big. Now a bit of
manipulation of binomial variables tells us that the deviation should be normally
distributed for each bin, and we remember (sec. 6.3) that sums of squares of
normals have the χ2 distribution. So we make our test statistics

X2 =

m∑

i=1

(Ni − npi)2

npi
. (11.1)

You might expect, from what you know about the binomial distribution, that
the denominator should be npi(1 − pi), but a careful analysis (Cramér 1945,
sec. 30.1) gives us 11.1.

If H0 is true, X2 should be distributed like χ2(m − 1), at least in the limit
of large n. We say that we have m−1 degrees of freedom in the data. Since the
CDF of the χ2 distribution is readily calculated and has often been tabulated,
we can then see whether or not X2 is so large that we can reject H0 with a
specified confidence level.

The above assumes that the same hypothesis, and so the same CDF, would
have been used regardless of the data Si. If instead we estimated r of the
parameters from the data, we imposed r constraints and eliminated r degrees
of freedom, and the distribution of X2 should be χ2(m− r − 1).1

One of the most important applications of the χ2 test is to regression prob-
lems. Suppose that we believe our dependent variable Y is a function of our
independent variable x in such a way that Y (x) = f(x, θ) + ε, where θ is
some parameter or set of parameters to a known functional form, and ε is a
Gaussianly-distributed noise, with mean 0 and a standard deviation which de-
pends, possibly, on x. Suppose we have m measurements, i.e., m pairs (xi, yi).
For each pair, the error or residual is yi−f(xi, θ), and we expect these to have a
Gaussian distribution, with mean 0 and standard deviation σi. Now if we look

1This assumes that the parameters are estimated in a “nice” way. For details, see Cramér
(1945, sec. 30.3). The “−1”, incidentally, is because the data are always under the constraint
that the Ni sum up to n, i.e., there is always at least one constraint.
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at (yi − f(xi, θ))
2
/σ2

i , we expect that to be the square of a Gaussian variable
with mean 0 and variance 1, so it should have the distribution χ2(1). And if we
add these squared, normalized residuals up over all our pairs,

X2 =

m∑

i=1

(yi − f(xi, θ))
2

σi2
(11.2)

we should get something which is distributed like χ2(m). Note that all of this is
true even if some of our m data-points have the same value of xi, i.e., we make
more than one measurement with the same value of the independent variable.
(This assumes that errors are independent between measurements.) Again, if
we estimated r parameters from the data — that is to say, r components of θ
— the number of degrees of freedom needs to be reduced by r, and so we need
to look at the distribution of χ2(m− r).

11.2 The Null Hypothesis and Its Rivals

In the goodness-of-fit cases we’ve just talked about, we had a hypothesis in
mind, and tried to see if it matched the data. This baseline hypothesis is more
formally called the null, and all standard hypothesis testing consists of asking
whether the data force us to reject it, in favor of one of our alternatives. (If we
are very lucky, we may have a situation where there is only one alternative.)
Conventionally, we denote the null hypothesis by H0, and its parameter value
by θ0. (Note that θ0 no longer means the true parameter, since that’s precisely
the point at issue!)

There are three ways of thinking about the null.

11.2.1 The Status Quo Null

This sort of null is what we actually believe. We want to see whether we have
to go through the agony of changing our minds, or whether we can continue in
our dogmatic slumbers.

One obvious problem with status quo nulls is that sometimes we’re not sure
what we believe; we may not believe anything, really. A more subtle problem
is that, even if we believe a certain hypothesis holds, for technical reasons of
test-construction we may not want to make it the null.

11.2.2 The It-Would-Be-the-Worst-Mistake Null

Suppose we’ve got to choose between two courses of action as the result of our
test — we do one thing if we reject the null, and another if we keep it. We
assume that there’s some cost if we choose the wrong course of action. Then we
make the null the hypothesis whose action is most costly if chosen wrongly.

Let me unpack that a little. Think of medical testing for some rare disease:
either the patient hasn’t or he doesn’t. If we think he does, we stick him full
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of some chemical which will combat the disease if it’s present, but makes him
wretchedly sick if it’s not. If we don’t think he has the disease, we let him
alone, and he gets sick if we’re wrong. If false negatives — letting the disease go
untreated — are worse than false positives — giving the medicine to a healthy
person — then we say that the null is not having the disease.

The reason for this is that, as we’ll see, we can control the chance of wrongly
rejecting the null much more easily than we can control the chance of wrongly
accepting the rival.

This sort of null is very important in signal detection theory, behavioral
ecology (Shettleworth 1998), and so forth. The problem with using it to evaluate
scientific hypothesis is that it’s hard, often, to know which course of action would
be worse for us, if we shouldn’t have done it. (There is also the what-you-mean-
we-white-man objection: worse for who?) You can, with some sophistry, bring
status quo nulls under this heading, but that’s not of much use to us.

11.2.3 The Random-Effects Null

Here we want to see whether our data could be due to chance, or more generally
to some boring, uninteresting, stop-the-investigation-now mechanism. In other
words, the idea is that what looks interesting about our data might just be
a mistake. So we craft a null hypothesis which embodies this mistake, and if
we can reject it then we think that the data were not due to chance, or more
generally to boring mechanisms.2

This is my favorite kind of null, because we can apply it straightforwardly to
scientific questions, and because I have some skill in making up null models. It’s
important to remember that in this case, each hypothesis test is a test against
a specific kind of error. If we can be confident that we’ve avoided one sort of
mistake, that doesn’t mean that we’ve not made many others!

11.2.4 The Alternative Hypothesis

In formal hypothesis testing, we always have at least one rival to the null in
mind. In the easiest cases, it’s another distribution of the same form, but with
a different parameter. Or it could be of a completely different form. If there
is only one alternative acceptable to us, we write it H1 and its parameter (if
applicable) θ1. This is the case of a simple alternative. If, on the other
hand, there are several acceptable rivals — a composite alternative — we
index them either numerically (if there’s a finite number of them) or by their
parameters (if not).

The null and the alternatives together make up the class of admissible
hypotheses.

2For specialists. I’d be willing to argue that the maximum entropy principle (Jaynes 1983)
is really a successful recipe for crafting null models. But developing that argument here would
require, at the least, a chapter on information theory.
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11.3 Formalism of Tests

11.3.1 The Test Statistic

Call the test statistic T .
Goodness-of-fit measures are common test statistics, but they’re not the

only ones. Generally speaking, we do chose test statistics for which increasingly
large values are increasingly improbable, if the null is true, but even that isn’t
strictly necessary. All we really need to do is be able to calculate the sam-
pling distribution of the test statistic under both the null and the alternative
hypothesis.

11.3.2 The Regions

We divide values of T into two sets: the acceptance region X0, where we keep
the null, and the rejection region X1, where we reject it in favor of the alterna-
tive. These regions need not be contiguous. (This is particularly true if the test
statistic is actually multidimensional.) Some authors speak of the critical re-
gion as the boundary between the two, but they differ as to whether we should
accept or reject if we hit right on the critical region, and the concept doesn’t
seem necessary.

The problem of designing a good test is to place the acceptance region so
that we minimize our error probabilities.

11.3.3 The Kinds of Errors; Error Probabilities

There are two types of errors we can make in a test. The null hypothesis could
be true, and we could still reject it (Type I error); or one of the alternative
hypothesis could be true, and we could still accept the null (Type II error).

The error probabilities of a test are sometimes called its operating char-
acteristics.

Significance Level or Size

The significance level of a test, conventionally α, is its probability of making
a type I error, of falsely rejecting the null. It’s the probability of getting a value
of the test statistic inside the rejection region, calculated as though the null were
true:

α = PH0(T ∈ X1) . (11.3)

Suppose we use a test with some low value for α, e.g. 0.002, and we get a
rejection. Then we know, regardless of what the data were, that it was rather
unlikely we would have rejected the null if it were true; the test is good at
avoiding false negatives. Note however that, if we had gotten results in the
acceptance region instead, knowing the significance level of the test wouldn’t
have told us much, if anything, about how trustworthy that acceptance was.
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Power

The power of a test, conventionally β, is the probability of not making a type
II error, that is, the probability that the null will not be accepted when the
alternative hypothesis is true:

β ≡ PH1(T 6∈ X0) (11.4)

= PH1(T ∈ X1) . (11.5)

Power is in general a function of which alternative hypothesis we consider;
tests which have a high power against one alternative may have a low power
against another. If we are dealing with a composite alternative, we write β as
a function of which hypothesis it is we’re considering. In some cases, we can
choose the acceptance region so as to maximize power against all the allowed
alternatives; this gives us what are called uniformly most-powerful tests.
They’re good things when you can find them.

Power can be hard to calculate analytically, even when you know exactly the
alternatives you are considering. But then we can always use Monte Carlo.

Severity

We do our experiment and we get a particular value for the test statistic, call it
t̂. We either accept the null or we reject it. Suppose we accept. Then we could
ask, what is the probability that a particular alternative hypothesis would have
given us a value of a test statistic which matches the null at least as well as our
data did? Assume that, under the null, increasingly large values of T become
increasingly improbable, so X0 is just all values of t below some threshold tc.
Then we compute, given that t̂ ≤ tc, for a specific Hi,

PHi(T < t̂) . (11.6)

This is the probability of passing spuriously; one minus this is the severity
of the test which H0 passed against Hi. It is the probability that we would
not have gotten such a good fit as we did, if the null were false. The severity
against a bunch of Hi is the minimum of the individual severities. Similarly, for
rejections, we ask how likely it is that we could get an even worse fit than the
one which made us reject the null, even if it is true.

Note that the severity of accepting the null, vs. Hi, is at least the power of
the test against Hi.

The severity (of a passing result) is not the probability that the null is true.
It is the probability that, if the null is false, this test, fed this data, would have
caught it. It tells us whether or not we have a high probability of having avoided
a certain kind of mistake. I think severity is a very important concept, certainly
when it comes to ruling out mistakes, but curiously unappreciated. Readers are
referred to Mayo’s book (1996), and her paper with Spanos (2000) for details.
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The Trade-Offs

It’s always possible to design very bad tests, which have both very high signifi-
cance levels and low power; these are tests which can, so to speak, be improved
in both directions at once. Unfortunately, it’s generally not possible to design
tests with both a significance level of 0 and a power of 1, so at some point we
hit a limit where we need to begin making trade-offs: more power for higher
significance levels, or vice versa. Here unfortunately we come to matters which
can only be decided by experience and the particulars of the problems you face,
i.e., taste and caprice.

On the other hand, the use of some significance levels is standard: social-
science journals generally don’t bother with anything which isn’t significant at
the five percent level, for instance. A standard significance level, plus a standard
test, will fix your procedure.

11.3.4 Test for Whether Two Sample Means Are Equal

Let’s put these ideas together to come up with a test, in a reasonably simple
situation. We have two heaps of one hundred IID samples each, giving us two
sample means, µ̂1 = 10.2 and µ̂2 = 10.0. Now, µ̂1 6= µ̂2, but we know that
two samples from the same population may not have the same mean simply
by chance. So our random-errors null H0 is the hypothesis that µ1 = µ2 = µ̂,
where µ̂ is the sample mean from pooling both samples = 10.05. That is, we are
looking at two samples from populations with the same mean, and we estimate
that mean from the overall sample. The alternatives are simply summed up by
µ1 6= µ2; we’ll index them by θ = µ1 − µ2. Now, we know from the CLT that
the sample means should be approximately Gaussian, and we know that the
sum (or difference) of two independent Gaussians is another Gaussian. So if H0

is true, M̂1 − M̂2 ∼ N (0, 2σ̂2), where σ̂2 =
σ̂2

1+σ̂2
2

2 is the population variance
as estimated from the sample. On the other hand, if Hθ is true, we expect
M̂1 − M̂2 ∼ N (θ, 2σ̂2). (That is to say, our class of admissible hypotheses
limits itself to those where the variances of the two populations are equal.) Say
σ̂1 = 0.097 and σ̂2 = 0.101, so that σ̂ = 0.099. This suggests that a nice test

statistic would be Z = M̂1−M̂2√
2σ̂

, which ∼ N (0, 1) under H0 and ∼ N ( θ√
2σ̂
, 1)

under Hθ.

Clearly, Z should have a small absolute value if H0 is true, and its most
likely value is 0. It can be shown that, for the alternatives we’ve chosen, the
uniformly most powerful test has for its acceptance region a symmetric interval
centered at zero, so we’ll use that. A customary significance level is α = 0.05,
and this says that the acceptance region is −1.96 ≤ z ≤ 1.96. Our actual value
of z = 10.2−10.0

(
√

2)(0.099)
= 1.43, and so the null is saved.

How severe a test was this? Well, that depends on the alternative we have in
mind. For Hθ, we need to compute S(θ) = 1−PHθ (|Z| ≤ 1.43), the probability
of getting a fit to H0 at least as good as what our data gave us. Now we
saw that Z ∼ N ( θ√

2σ̂
, 1) = N (7.14θ, 1), so Z ′ = Z − 7.14θ ∼ N (0, 1). So
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S(θ) = 1− P(−1.43− 7.14θ ≤ Z ′ ≤ 1.43− 7.14θ). There isn’t a nice analytical
expression for this, so I’ve tabulated it for a few values of θ.

θ S(θ)
±0.05 0.179
±0.10 0.255
±0.20 0.514
±0.30 0.761
±1.00 ≈ 1

Notice that, while we were able to reject H0.05, the severity is low; indeed,
if H0.05 were true, the chance of getting data that fit the null at least as well as
our data do is better than four-fifths.



Chapter 12

Funky Statistics

Or, more advanced stuff you might find useful or interesting.

12.1 Nonparametric Estimation and Fitting

What we’ve talked about assumes that you know the kind of distribution in-
volved, and you’re just not sure what the parameters are. But maybe you don’t
have such luck. There are actually techniques which don’t require this. The
Kolmogorov-Smirnov test we mentioned is a non-parametric test for whether
or not two samples come from the same distribution. Mostly, though, non-
parametric methods are useful in estimation and curve-fitting. Artifical neural
networks are (in some of their guises) non-parametric curve-fitters — see Za-
pranis and Refenes (1999). So are the piecewise-polynomial functions called
“splines,” for which there is a very elegant theory (Wahba 1990). There are
others, with odd names like “kernel density estimators” and “support vector
machines” and so forth. Most of them assume some sort of functional form for
the distribution you care about, but promise that you can approximate any dis-
tribution you like arbitrarily closely. Generally, there’s a trade-off here between
having simple non-parametric models and having accurate ones...

What computer programmers call “data-mining” (Weiss and Indurkhya 1998)
is extremely relevant here, though not enough is being done at the interface.

12.2 Machine Learning

Lots of machine learning problems are formally problems of using algorithms to
do estimation (possibly non-parametric). This is extremely fruitful in actually
building up a theory of machine (and animal) learning, and in turn leads to new
sorts of statistical problems. See Kearns and Vazirani (1994), Vapnik (2000)
(though that’s a very Russian mathematical tome), and Valiant (1994).
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12.3 Causal Inference

Correlation is not causation. Not even statistical dependence is causation; at
best both of these tell us that there’s an association between two variables, but
that could be cause one causes the other, or vice versa, or both are caused
by other things and they have causes in common. In the last ten years or so,
there’s been a lot of work on the conditions under which we can legitimately
infer causal models from statistical data, and what the inference procedures
should be. See Pearl (2000) or Spirtes, Glymour and Scheines (2001) (a second
edition is supposed to come out this summer), for regression-type problems, and
Shalizi and Crutchfield (2001) for causal models of processes.

12.4 Ecological Inference

Can we recover any information about individual actions from aggregate data?
More than might be thought. See King (1997).

12.5 Optimal Experimental Design

If we want to do estimation or testing, not every selection of independent vari-
ables is equally good. Depending on what you want to do, there is actually
mathematical theory about which distributions are better than others, and what
the best optimal ones are. This can be extremely useful if you are planning ex-
periments or simulations which involve collecting large amounts of data. See
Atkinson and Donev (1992).



Chapter 13

A Stochastic Process Is a
Sequence of Random
Variables

Or a random variable whose value is a sequence; the latter view is actually
a little easier to handle mathematically. It’s common to write the successive
random variables S0, S1, . . . St, . . . and so forth. Now, the space each of these
random variables lives over is the same, and when we need to talk about that
we’ll talk about S, and realizations will be s.

Distributions are now over sequences. Sometimes we imagine these to start
at some point in time and then go on forever, and at others to go from minus
infinity to plus infinity. Distributions over finite-length sequences, starting and
stopping at a certain time, are marginal distributions from these. That is, if we
want to know the distribution over sequences running from t0 to t1, we sum over
the variables which represent what happened before t0 and what will happen
after t1.

We could probably stand more convention about how to write finite se-

quences than we have; I’ll use
→
S
L

t for the sequence of length L which starts

from, and includes, St. Similarly,
→
S t is the infinite series starting at t.

I’ve been talking, all this time, as though time were discrete. This is by far
the easier case to handle. If time is continuous, then stochastic processes are
distributions over functions, and that’s mathematically very tricky to handle.
I’ll try to say a little bit about continuous-time stochastic processes at the end,
but I’m afraid it’ll only be a little.
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13.1 Representing Stochastic Processes with Op-
erators

Consider some particular value of
→
S t, call it

→
s t = stst+1st+2 . . . . What is

→
s t+1? Well, obviously just st+1st+2 . . . . To move one time-step into the future,
we just lop off the first item in the sequence. The operator T which does this

is called the shift or shift map, and we say T
→
s t =

→
s t+1. Its inverse, T−1,

gives all the trajectories which could map to the trajectory we apply it to:

T−1→s =
{→
s
′
|T→s

′
=
→
s
}

. We say that T−1→s consists of the predecessors of
→
s .

We can apply T and T−1 to a set of trajectories A; the result is the union of

applying them to the individual trajectories, i.e., TA =
⋃
→
s∈A

T
→
s , and likewise

for T−1. TA is the image of A, and T−1A its inverse image.

A set of trajectories is invariant if TA = A, if it is its own image. (Then
it’s its own inverse image too.)

Suppose we have a certain distribution µt over trajectories at time t. What
will be the distribution at the next time step, i.e., what will be µt+1 = Tµt? It
is determined by the obvious equation,

P(
→
S t+1 ∈ A) = P(

→
S t ∈ T−1A) . (13.1)

This is a very crude introduction to the important topic of symbolic dynam-
ics; see Badii and Politi (1997), Beck and Schlögl (1993) or Kitchens (1998).
(The last is very mathematical.)

13.2 Important Properties of Stochastic Processes

13.2.1 Stationarity

Stationarity is simply the property of time-translation invariance for the dis-

tribution. More exactly, if we may abuse notation by writing P(
→
S
L

t ) for the dis-

tribution of
→
S
L

t , then the process is stationary if and only if P(
→
S
L

t ) = P(
→
S
L

t+τ ,
for any integer τ , for all L.

Observe that if St is stationary, then if Rt = f(St), for some deterministic
function f , the sequence Rt is also a stationary process.

In terms of the shift operator of sec. 13.1, if the process is stationary, then
the distribution µ over trajectories is unaffected by the shift: Tµ = µ. The
converse is also true.
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13.2.2 Ergodicity

A process St is ergodic if there exists a random variable Y such that ES1 = EY
and, with probability one,

1

T

T∑

i=1

Si −−−−→
T→∞

Y . (13.2)

The left hand side of Eq. 13.2 is called the time average of St.
Theorem. Any stationary process such that E|S1| <∞ is ergodic.
If the distribution over trajectories µ (see sec. 13.1) is such that, for every

invariant set of trajectories A, either Pµ(A) = 1 or Pµ(A) = 0, then Y = ES1

almost surely.
The above is for discrete time; in continuous time, replace the sum with the

left hand side of Eq. 13.2 with 1
T

∫ T
0
S(t)dt.

13.2.3 Mixing

The mixing property is essentially that of forgetting what happened in the past.
It gets its name from the idea that, if you take a well-defined chunk of the state
space and let it evolve, it will get mixed with the images of any other nice chunk.

More technically, a quantity conventionally called α is defined as the max-
imum deviation from independence between any two events at two different
times:

α(t, t′) ≡ max
B,C
|P(St ∈ B, St′ ∈ C)− P(St ∈ B)P(St′ ∈ C)| (13.3)

If α decays exponentially as t−t′ grows, then the process is strongly α-mixing,
and various powerful statistical techniques can be applied to it (Bosq 1998). The
strong-mixing property is also thought to be important in the foundations of
statistical mechanics.
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Markov Processes

In deterministic dynamics, future states are uniquely fixed by the present state
alone; how that state was reached is irrelevant. If our model has this property,
that is a good (but hardly infallible) sign that we’ve found the right states. It
would be nice to extend this notion to stochastic processes, and that is done
through the idea of a Markov process.

A discrete-valued, discrete-time stochastic process has the Markov prop-
erty when

P(Sn+1 = sn+1|Sn = sn) =

P(Sn+1 = sn+1|Sn = sn, Sn−1 = sn−1, . . . S1 = sn) (14.1)

for all si and for all n. That is, the probability distribution for the next state
depends solely on the current state. We then say that Sn is a Markov process.
The analogous condition for continuous time is

P(S(tn+1) = sn+1|S(tn) = sn) =

P(S(tn+1) = sn+1|S(tn) = sn, S(tn−1) = sn−1, . . . S(t1) = s1) (14.2)

for all values si and any increasing sequence of times ti.
Finally, a real-valued, continuous-time stochastic process is Markovian when

P(X(tn+1) ≤ xn+1|X(tn) = xn) =

P(X(tn+1) ≤ xn+1|X(tn) = xn, X(tn−1) = xn−1, . . .X(t1) = x1)(14.3)

for any xi and any increasing sequence of times ti. This only requires that X(t)
have a CDF at every point in time, not necessarily that it have a pdf.

14.1 Markov Chains and Matrices

A discrete-valued Markov process, whether in discrete or continuous time, is
called a Markov chain. Let’s think about the discrete-time case first.
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We know, from the definition, that the important quantities are the proba-
bilities P(Sn+1 = j|Sn = i). If these probabilities are independent of n, then we
say that the chain is homogeneous. In that case, we represent the probabilities
by the elements of the transition matrix T, where Tij = P(Sn+1 = j|Sn = i),
the probability of going from state i to state j. It is often easiest to figure out
what the process will do by examining the properties of its transition matrix.

If we write the distribution over states at one time as a column vector µ,
then the distribution over states at the next time-step is just Tµ. If we know
that we are in state i now, and wish to know the probability of being in state j
after n time-steps, that is simply the ijth element of Tn, which I will write as
Tnij .

The images of a state i are the points it could go to next, i.e., the j such
that Tij > 0. The inverse images of i are the points which could have led to
i, the j such that Tji > 0. The (inverse) image of a set of points is the union of
their (inverse) images. A set is invariant if it is equal to its own image.

14.2 Some Classifications of States, Distributions
and Chains

A state i is recurrent or persistent if there is some n ≥ 1 such that Tnii = 1;
that is, after some amount of time, a process which starts in i is bound to return
to i. If a state is not recurrent it is transient. A state is absorbent or an
absorbing state if Tij = 0 for all j 6= i.

The mean recurrence time of state i is the expectation-value of the time
required to go from i back to itself. A persistent state with infinite mean recur-
rence time is null, otherwise it is non-null.

The period k of state i is the greatest common denominator of the n such
that Tnii > 0. If k = 1 the state is aperiodic, otherwise it is periodic. A
persistent, non-null, aperiodic state is ergodic.

In general, all these terms apply to sets of states if they apply to each member
of the set.

State i communicates with state j if, for some n, Tnij > 0; that is, it is
possible to go from i to j. If j also communicates with i, they intercommu-
nicate.

A set of states C is irreducible if, for every pair of states in C intercom-
municates. The whole state space may be irreducible.

A set of states C is closed if no state in C communicates with any state
outside C. This is equivalent to having Tij = 0 for all i ∈ C and any j 6∈ C.
(An absorbing state is a closed set with only one member.)

A distribution over the state space is invariant if it is mapped to itself, i.e.
if Tµ = µ. Thus the invariant distributions are the eigenvector of the matrix T
with eigenvalue 1, and they can be found by solving for those eigenvectors. A
set of states is invariant if it is closed and irreducible. An invariant distribution
is ergodic it it gives every invariant set either probability 0 or probability 1.
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Theorem. An irreducible chain has a unique invariant distribution iff all
its states are non-null persistent.

If a chain is irreducible and “ergodic”, i.e., every state is persistent, non-null
and aperiodic, then the ergodic theorem applies.

Theorem (Ergodic Theorem for Markov Chains). If an irreducible
aperiodic chain has a unique invariant distribution µj , then Tnij → µj as n→∞.
Furthermore, P(Xn = j)→ µj .

14.3 Higher-Order Markov Chains

Suppose that

P(Si+2, Si+1, Si) 6= P(Si+2|Si+1)P(Si+1|Si)P(Si) but (14.4)

P(Si+3, Si+2, Si+1, Si) = P(Si+3|Si+2, Si+1)

×P(Si+2|Si+1, Si)P(Si+1, Si) (14.5)

The process isn’t a Markov chain, but the future depends only on the past two
values; it would be a chain if we looked at pairs of values. (Exercise: show
that.) So we say that this is a second-order Markov process. If we need to
condition on the n previous variables, then it’s an nth-order process. If you
can’t have a Markov chain, then having a higher-order Markov process is often
the next best thing.

14.4 Hidden Markov Models

If we apply a function to the state of a Markov chain, or the transition be-
tween states, we get a new stochastic process (just like applying a function to
an ordinary random variable gives us a new random variable). In general, this
new process will not have the Markov property. This suggests that if we have
data which isn’t Markovian, we might still be able to describe it as a function
of a Markov chain, and then we’ll be happier.1 Such a beast is called a hid-
den Markov model or HMM, and there are well-established algorithms for
inferring them from data. Each transition between the hidden states now has a
value of our observed data tacked on: when the process makes that transition,
we see that value in our data-stream. (Formally, we now have one transition
matrix for every value of the data.)

There is a friendly introduction to inferring HMMs in Charniak (1993); El-
liot, Aggoun and Moore (1995) is considerably more advanced.

1One of the theorems in Shalizi and Crutchfield (2001) shows that every stationary discrete-
valued, discrete-time process can be represented in this way.
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Examples of Markov
Processes

15.1 Bernoulli Trials

This is dead-stupid, but it fits all the definitions...

15.2 Biased Drift on a Ring

Consider a Markov chain with five states and the following transition matrix:

T =





.2 .7 0 0 0.1

.1 .2 .7 0 0
0 .1 .2 .7 0
0 0 .1 .2 .7
.7 0 0 .1 .2





This represents motion along a ring, with a general trend in one direction, but
sometimes staying put or drifting the other way. The whole space is irreducible,
every state is non-null, persistent and aperiodic, and the invariant distribution
is the uniform distribution.

15.3 The Random Walk

A.k.a. the drunkard’s walk. The probability space is the number-line. At each
time-step, we either add one to our current location, or subtract one; this is
completely independent of everything. This is a sort of Bernoulli variable, only
taking values from {−1,+1} rather than {0, 1}. Start at the origin at time 0.
Then the position at time N depends only on how many plus moves (m) there
have been, since the others must’ve been minus moves. If we have had m plus
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moves, then our position = 0 + m − (N −m) = 2m − N . Or, if r = 2m − N ,
(r + N)/2 = m. The probability of being at position r after N moves is thus
given by a binomial probability, that of having m = (r +N)/2 successes out of
N chances.

P (X(N) = r) =

(
N

(r +N)/2

)
(0.5)

(r+N)/2
0.5N−(r+N)/2 (15.1)

=
1

2N

(
N

(r +N)/2

)
(15.2)

Exercise: Convince yourself that the random walk has the Markov property.
As N →∞, the distribution of the position of the random walker approaches

a normal distribution, N (0, N). The mean distance from the origin is always 0,
because we’re equally likely to go be on either side of it. The expectation of the
square of distance from the origin is the variance plus the square of the mean,
or N . So in a way we drift away from the origin by a distance which grows as
the square-root of the time we allow the process to run. This is despite the fact
that, at each step, we are just as likely to move towards the origin as away from
it.

Naturally, this generalizes to two or more dimensions: instead of just having
the moves {−1,+1}, we let the random walker move along each of the axes with
equal probability. Then the exact distribution for the coordinates is a product
of binomial distributions (each coordinate is an independent random variable),
and the limit is again Gaussian, with a square-root drift from the origin. In one
dimension, the random walk can be expected to return to the origin infinitely
often; this is not true in higher dimensions.

To a good approximation, physical processes of diffusion also have this
square-root dependence on time, and random walks make good models for them;
this is part of why they have been studied to death. (Hughes’s Random Walks
and Random Environments (1995), for instance, fills two volumes of about 800
pages each, and is far from complete.)
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Continuous-Time Stochastic
Processes

16.1 The Poisson Process

“Hits” arrive randomly and accumulate. N(t) is the number of hits which have
arrived up to time t; N(0) = 0. The time between successive hits is exponentially
distributed with parameter λ, and the inter-arrival times are independent of each
other. Then N(t) is Poisson distributed with parameter λt, that is, P(N(t) =

k) = (λt)k

k! e−λt.
The Poisson process is a Markov chain in continuous time, but with discrete

states. Such beasts are sometimes called jump processes. Among the jump
processes, the Poisson process is one of those which is said to be cadlag, an
acronym for the French phrase �continue à dextre, limite à gauche� — “con-
tinuous to the right, limited to the left”. That is, we say that the function is
continuous up to the jump point as we approach it from the right, and that it
has a limit as we approach the jump point from the left. (Cadlag processes are
also called Skorokhod maps and R-processes.)

Because N(t) is a process in continuous time, we cannot just represent it with
a simple transition matrix as we could discrete-time Markov chains. Of course
we can define the transition probabilities pij(s, t) = P(N(t) = j|N(s) = i), and
these are (by the Markov property) all we need. If pij(s, s + τ) = pij(0, τ),
then the process is homogeneous (just as in the discrete case), and we can
represent that set of transition probabilities by a matrix Tτ . It is very often
(but not universally) the case that there is a generator, a matrix G such that
Tτ = eGt. In particular, this is the case for the Poisson process, where the
entries of G are given by

Gij =






−λ if j = i
λ if j = i+ 1
0 otherwise

.
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16.1.1 Uses

The Poisson process is a good model for random “arrivals” — the number of
nuclei of a radioactive substance which have decayed in a certain amount of
time, for instance. It makes a good null model for neural spike trains (Rieke,
Warland, de Ruyter van Steveninck and Bialek 1997), and, generalized to allow
differences in where “hits” occur, it turns out to be very good at describing how
things (raindrops, hail, WWII-vintage bombs) fall from the sky.

In a sense which can be made precise through maximum-entropy arguments,
the Poisson distribution is the “most random” way of arranging a specified mean
number of marks in a fixed interval.

16.2 Brownian Motion, or the Wiener Process

This is the continuous-time generalization of the random walk. The paths it de-
scribes are fully continuous, and it was the first completely continuous stochastic
process with a mathematically decent theory behind it, which Wiener worked
out in the 1920s. In the ’40s he adapted the same math to problems of control
(feedback mechanisms), prediction (automatic anti-aircraft guns) and commu-
nication (radio and radar), and came up with cybernetics, whence (by a long
route) us here today. The uses of pure mathematics, when you throw a lot of
military money at it, are wonderful to behold...1

W (t2) −W (t1) is the increment between t2 and t1. The condition for the
Wiener process is that

1. Stationarity. For any two times t1 < t2, the increment W (t2) −W (t1)
depends only on t2 − t1.

2. Independence. For any three times t1 < t2 < t3, W (t3) − W (t2) and
W (t− 2)−W (t1) are independent.

3. Normality. W (t2)−W (t1) is normally distributed.

Using these three, you can show that W (t2) −W (t1) has the density function
N (0, σ2τ), where τ = t2 − t1, and σ is a parameter we’re free to vary.

The curves described by the Wiener process are continuous, and in fact
Wiener’s prescription gives us a way of assigning probabilities on the whole
space of continuous curves. (There is a very nice construction of this probability
measure in the opening chapters of Wiener’s book on Nonlinear Problems in
Random Theory (1958), which otherwise is the kind of thing that makes my head
want to explode.) Unfortunately, the curves are almost never differentiable, i.e.,
they almost never have a well-defined derivative with respect to time.

Suppose we start the Wiener process at the origin: W (0) = 0. Then we can
ask where it is, on average, at later times. Well, the average position at t is
just EW (t) = E(W (t) −W (0)) = 0, since increments are normally-distributed

1Wiener (1961) describes the earlier part of this history.
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about zero. But if we look at the square of the position, E((W (t)−W (0))
2
),

that is the variance plus the square of the mean, or σ2t. (Remember we got
a result like this from the random walk.) So if we try to compute an average

speed on that basis, we get v̄ =
√
σ2t
t

= σ√
t
. And if we take the limit t→ 0, this

blows up — which means that the curve doesn’t have a well-defined derivative.
The physical picture here is that, as we look over briefer and briefer times,

we see incredibly intense activity (high v̄) which, however, has absolutely no
direction to it; most of that motion cancels out. Enough is uncanceled, over
finite times, that we tend to drift away from the origin, but more slowly than
we would if we had any non-zero, constant velocity.

If the Wiener process had a derivative, it would be white noise — the noise
with a flat power-spectrum, whose values at any two times are independent,
identically-distributed Gaussians. This can actually be made quite precise, but
involves horrendous excursions through analysis and measure-theory to prove;
Gardiner’s book (1990) on stochastic methods and Keizer’s book on molecular
fluctuations (1987, ch. 1) are about the most hand-holding, cook-booky ways
of approaching it. (Keizer perversely writes his conditional probabilities back-
wards, but it’s an excellent book otherwise, and has a nice treatment of more
realistic models of Brownian motion than the Wiener process, i.e., ones where
the velocity is well-defined.)



Appendix A

Notes for Further Reading

A.1 Probability

A good textbook and reference (i.e., the one I usually look things up in first)
is Grimmett and Stirzaker (1992). Stirzaker’s solo effort (Stirzaker 1999) is in-
tended for those with less math, or time, or interest. Feller (1957) is, deservedly,
a classic. Billingsley (1979) is for mathematicians or masochists, but gives rigor-
ous proofs of everything, which from an applied point of view often amounts to
telling people that perfectly reasonable things will sometimes not work. There
is a good discussion of how to define “random” algorithmically in Cover and
Thomas (1991), among other places. Bennett (1998) is a popular book, roughly
at the level of Scientific American, and nicely done.

Gigerenzer, Swijtink, Porter, Daston, Beatty and Krüger (1989), Hacking
(1975, 1990), Porter (1986) and Stigler (1986) are all fine histories of the devel-
opment of probabilistic methods and of statistics. Hacking in particular is an
excellent writer.

For the debates over what probabilities should mean, see below under statis-
tics.

A.2 Statistics

The classic work on mathematical statistics, which includes a superb discussion
of measure and probability theory, is Cramér (1945). There are any number of
competent and recent textbooks, of which I might name Lupton (1993). Reid
(1982) is an excellent biography of one of the founders of modern statistics.
Gonick’s book (Gonick and Smith 1993) is, like all his works, excellent as far as
it goes, but leaves out a lot.

The books by Tufte (1983, 1990, 1997) are masterpieces which cannot be
too strongly recommended.

Lehmann (1997) and Lehmann and Casella (1998) are the Law and the
Prophets for estimation and hypothesis-testing. Weisberg (1985) is a useful
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introduction to linear regression. An interesting perspective on statistical infer-
ence is given by Kullback (1968).

Differences over whether probabilities should represent frequencies of oc-
curence, degrees of belief, or something else altogether make real differences in
the kind of statistics you do. People who like the degrees-of-belief idea will find
the kind of estimation and hypothesis-testing I’ve presented completely point-
less, and vice-versa. A classic presentation of the degrees-of-belief school, in its
most modern incarnation called Bayesianism, is Savage (1954). Bernardo and
Smith (1994) is an encyclopedia. The anti-Bayesian arguments which convinced
me — and a very good book in general — are those of Mayo (1996), which is
also highly recommended if you have any interest in the philosophy of science.
Rissanen (1989) makes an interesting (if ultimately unconvincing) case for mak-
ing probabilities refer not to frequencies or beliefs but to coding schemes; the
book is hard to follow unless you already know information theory.

The third traditional branch of statistical inference, besides estimation and
testing, is decision theory. Luce and Raiffa (1957) is a good compendium of ideas
thereon, though with a Bayesian bias (i.e., they tend to assume that it makes
sense to say things like “I think the probability of Chelsea Clinton being elected
President in 2044 is 0.01”). It’s extremely well-established experimentally that
human judgment and decision-making is not even close to what Bayesian theory
would consider rational (Camerer 1995). Whether you think this is bad news
for human beings (Kahneman, Slovic and Tversky 1982) or bad for Bayesian
theory (Simon 1996; Cosmides and Tooby 1996; Gigerenzer, Todd and the ABC
Research Group 1999) is to some degree a matter of taste.

I’ve already named relevant books about extensions to standard statistical
inference.

A.3 Stochastic Processes

First of all, see Grimmett and Stirzaker, already mentioned; also, again, Feller.
Hoel, Port and Stone (1987) is a decent modern textbook, which assumes a
background probability course. Doob (1953) was the first modern book on
stochastic processes, and still a standard reference for probabilists. Gardiner
(1990) is a useful compendium of techniques and processes.

The literature on Markov processes is huge. All the textbooks I’ve just
named devote considerable space to them. Kemeny and Snell (1976) and Ke-
meny, Snell and Knapp (1976) are encyclopedic.

Information theory is an important adjunct of stochastic processes, which
will be covered at some depth during the course. Cover and Thomas (1991)
is so much better and more complete than everything else on the subject that
there’s little point in reading any other book, unless you’re going to make this
your specialty. (In that case, however, see Kullback and Rissanen.)

Statistical inference for stochastic processes is a more scattered and tricky
topic than might be expected. Bosq (1998) deals with powerful non-parametric
techniques, but assumes considerable knowledge of statistics. Many books on
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time-series effectively deal with aspects of the problem: see Kantz and Schreiber
(1997), or, old but still valid and often useful, Grenander and Rosenblatt (1984),
which is explicitly statistical. Billingsley (1961) collects useful results for Markov
chains and jump-processes. Elliot, Aggoun and Moore (1995) is, like Billings-
ley, an advanced book, with many useful results and algorithms. Much of the
machine-learning literature effectively talks about fitting stochastic processes
from data, but too much of it ignores statistical issues of efficiency, bias, conver-
gence, etc. (References which offend in this respect are available upon request.)



Appendix B

What’s Wrong with These
Notes

• There are no pictures.

• There are no real problems.

• There is no index or glossary.

• There isn’t enough about how to actually do probability theory; the reader
would have no idea about how to even sketch a proof of, say, the law of
large numbers.

• There should be more on the binomial distribution and its manipulation,
and at least a mention of the multinomial.

• The treatment of multi-dimensional continuous variables is very sketchy.

• Covariance should probably be moved to the section on moments.

• The chapter on data-handling needs to say more on display. Is there a
graphics package which implements Tuftean principles?

• The chapters on data-handling and sampling may not be in the right order.

• The chapter on estimation should have some worked examples.

• I don’t explain how to do linear regression.

• The chapter on hypothesis-testing doesn’t say how to handle composite
nulls; or say enough about calculating severity and its relations to size and
power.

• It doesn’t distinguish between one-sided and two-sided tests.

• In the Gaussian worked example, I don’t show that the symmetric accep-
tance region delivers the uniformly most powerful test.
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• There is no example using the χ2 test.

• Describe the Kolmogorov-Smirnov test.

• I don’t mention and refute any of the common fallacies about tests of
hypotheses.

• There is nothing about decision theory; a chapter in Part II sounds about
right.

• There is nothing about autocorrelation or power spectra for stochastic
processes.

• There is nothing about information theory; a chapter in Part III sounds
about right.

• There needs to be more on continuous-time stochastic processes. Define
diffusion processes. Give a workable definition of white noise. Explain the
Fokker-Planck equation.

• There is nothing on inference for stochastic processes. Stealing from
Billingsley (1961), at the very least, suggests itself.
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