3-D Topography of Oscillatory Patterns in the Hippocampus of a Behaving Rat

Jagdish Patel, Sebastien Royer \& Gyorgy Buzsaki Center for Mol \& Behav Neuroscience, Rutgers University, Newark, NJ

Longitudinal Axis

Phase variation as a function of longitudinal axis during theta periods

Conclusions:

1) Phase shifts investigated at higher resolution (20 micron steps) within CA1 pyramidal layer and found to exist (Winson, 1973).
2) Phase shifts investigated along the transverse axis i.e. from CA1 to CA3 at every 300 microns until CA2.
3) Phase measurement in the longitudinal axis revealed moderate shift in the septal $2 / 3 \mathrm{rd}$ of the CA1 i.e. about $8 \mathrm{deg} / \mathrm{mm}$.
4) Phase measurements at the two ends of the longitudinal axis revealed a 180 deg shift.
5) Theta in the Ventral pole of the hippocampus is highly intermittent and has low power
6) However, selective high coherence in the theta band may permit integration of representation along the whole axis
7) SWR occurrence decreases gradually along the axis. However a significant fall is only observed at the most ventral pole.

Question: Are these changes gradual or sudden?
Are hippocampal representations continuous or modular?

